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ABSTRACT:

In this paper we propose a virtual control point based method for the registration of photogrammetry and computed tomography
(CT) data. Because of the fundamentally different two data sources, conventional registration methods, such as manual control
points registration or 3D local feature-based registration, are not suitable. The registration objective of our application is about
3D reconstructions of gyroscopes, which contain abundant geometric primitives to be fitted in the point clouds. In the first place,
photogrammetry and CT scanning are applied, respectively, for 3D reconstructions. Secondly, our workflow implements a seg-
mentation after obtaining the surface point cloud from the complete CT volumetric data. Then geometric primitives are fitted in
this point cloud benefitting from the less complex cluster segments. In the next step, intersection operations of the parametrized
primitives generates virtual points, which are utilized as control points for the transformation parameters estimation. A random
sample consensus (RANSAC) method is applied to find the correspondences of both virtual control point sets using corresponding
descriptors and calculates the transformation matrix as an initial alignment for further refining the registration. The workflow is

invariant to pose, resolution, completeness and noise within our validation process.

1. INTRODUCTION

Sensor fusion is an important topic in many fields, because in
real applications it is quite often difficult for a single sensor
alone to provide the complete desired information. Therefore,
the advantages of different sensors are integrated to strengthen
the data characteristics. In the 3D digitization field of Tech
Heritage (TH), the Gyrolog project (Fritsch et al., 2018;
Fritsch et al., 2021) funded by the Federal Ministry of Edu-
cation and Research of Germany, has innovatively introduced
different methodologies, such as Photogrammetry, Computed
Tomography (CT) as well as Endoscopy for the 3D digitization
of the gyroscopic instrument collection of the University of
Stuttgart. The combination of photogrammetry and CT has
been discussed frequently in the medical field (Bolandzadeh
et al., 2013), however, has not yet been applied often in TH
digitization applications (Zhan et al., 2020). This paper mainly
discusses a new registration method of photogrammetric and
CT point clouds in such TH applications, where complete
models are required.

A point cloud is chosen as the common representation for
photogrammetric surface data and CT volumetric data, due to
the fact, that point cloud registration is an ongoing topic in the
field of photogrammetry and computer vision, with various
methods being put forward. The most frequently applied
method is the iterative closest point (ICP) registration (Besl
and McKay, 1992) or it’s variants, which iteratively calculates
the discrepancy of the overlap between two point clouds.
Despite the wide application and continuous research with
many algorithm variants, the requirement of sufficient initial
registration makes it only suitable for the refinement of the
registration.

Methods based on automatic 3D features extraction such as the
fast point feature histogram (FPFH) (Rusu et al., 2009) or nor-
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mal aligned radial feature (NARF) (Rusu and Cousins, 2011)
etc. have problems in the computation efficiency and even in
detecting validate feature correspondences. These problems
occur due to the original discrepancy between photogrammetry
and CT data, such as density, edge and material characteristics,
and the incomplete representation of CT scans.

There are also works using geometric primitives such as
(Alshawa, 2007) applies lines instead of points to implement
an iterative process. But the application is intended to solve
the registration of topographic terrestrial laser scanner data.
(Yang et al., 2016) introduced a registration method based on
semantic feature points, which also rely on the line feature
and works for terrestrial laser scanning data. (Stamos and Le-
ordeanu, 2003) calculates the intersection lines of neighboring
planes and estimate the transformation matrix with at least two
corresponding line pairs. (Theiler et al., 2012) put forward
a terrestrial point clouds registration method by using virtual
tie points from the intersection of plannar surfaces. However,
the method deals with point clouds from the same source and
a relatively easier situation for planes extraction. All the listed
works are generally to align the point clouds based on primitive
based information, they are more focusing on the same data
type with same characteristics and lack the adaptability for
multi-source data as well as complex structured 3D models.
Other possibilities such as the artificial landmarks (Ayoub et
al., 2007; Xin et al., 2013), however, have various drawbacks:
(a) CT data contains no texture information, only geometry
information could be used; (b) some of the surface information
will be incomplete due to the characteristics of the CT scan; (c)
unsharpness of corners for photogrammetry data which limits
the accuracy of the manual control point picking process.

The proposed method below takes advantages of the char-
acteristic of the artificial objects containing many regular
geometry shapes such as cylinders, spheres or simply planes.
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For a best-fit process, point cloud segmentation is necessary
to increase both the efficiency and precision. In our case, the
region growing method (Vo et al., 2015) using just the normal
and other attributes such as the color, delivers good results.
Most frequent geometric primitives, such as planes, are fitted
and used for control point determination by intersections. In
addition, the primitives such as spheres or 3D circles could
directly provide their centre points as control points. The
correspondence of the extracted control point information from
both datasets could be estimated via the RANSAC method
(Buch et al., 2013). Afterwards, the registration is refined,
based on the initial virtual control points selection.

2. METHOD

In the proposed workflow as shown in Figure 1, point clouds
from CT and photogrammetry are generated from the multiple
CT slices and multi-view imagery, respectively. After obtain-
ing a CT surface point cloud, we implement the segmentation
for the purpose of fitting geometry primitives for both datasets.
The segmentation applies region growing methods based on dif-
ferent principles, such as color information, curvatures etc. In
the next step, the virtual control points are calculated to estim-
ate the transformation matrix with an refinement as a follow-up.

Computed-Tomography 3D Model Multi-view Images

Photogramrﬁetric

CT Surface Point Cloud

CT Remaining Data

‘ Point Cloud S'egmentation
Primitive/PvIane Fitting
\ Virtual Control Po;nts Determination
RANSAC Correspo;ldence Estimation
Initial Transfor:mation Matrix
‘ ICP/Gauss-HeImervt Fine Registration
Spatial Transfo}mation Matrix

Integrated 3D Model

Figure 1. Virtual control points based registration workflow.

2.1 3D reconstruction

Generally 3D reconstruction is the technology of determining
the 3D digital representation of a real object. The principle of
photogrammetry is to use the overlapping information between
multiview images to solve the 2D to 3D projection, and finally
obtain the 3D surface model with texture. The quality of the
final 3D model depends on factors such as the texture homo-
geneity of the object, the redundancy and the resolution of the
photos, which reflect on the accuracy or even the completeness
of the final 3D model. CT scanning records the attenuation in-
formation in each voxel space by X-rays passing through the
object to reflect the internal structure and material properties of
the object. The final 3D CT volumetric model consists of voxels
with penetrating information. Though having the ability to re-
cover the internal information in a non-destructive way, CT 3D
reconstruction suffers from the noise and beam hardening arte-
facts and scattering. More details of 3D reconstruction as well
as the CT surface extraction process could be referred to (Zhan
et al., 2020).

2.2 Primitive fitting

The preliminary step of primitive fitting is point cloud segment-
ation, which has not been mentioned in most other point cloud
registration methods using geometric primitives. However, for
a watertight 3D model of a complex structured gyroscope ob-
ject, the fitting process will be influenced by the spatial dis-
tribution of the points. Therefore, it is of vital importance to
implement the point cloud segmentation into different clusters
before fitting the primitives. Region growing is a conventional
segmentation method, which is also validated in this work. A
CT point cloud has high geometric accuracy regarding the voxel
positions as well as the normals. Therefore, a region growing
algorithm using the normals and curvatures works well in CT
surface point cloud segmentation. As for photogrammetry, the
primitives generally differ from each other in material and color.
Hence the color-based region growing segmentation is applied
for the photogrammetric 3D model.

For each segmented cluster, parameterized geometric primitives
are used to fit to the discrete point cloud data. Like other fitting
problems, various principles are available but mostly origin-
ates from RANSAC. Due to the diversity of the point clouds,
a simple threshold definition is hardly to meet the requirements
for a best primitive fitting problem. Maximum Likelihood Con-
sensus (MLESAC), which improves the RANSAC by optim-
izing the inlier scoring rather than simply counting the inlier
numbers, is adopted. The coefficients of the most frequent 3D
primitives are listed as Table 1.

3D Primitives Point Vector Constant  Angle
Cone Apex Axis Open angle
Plane Normal Distance
Sphere Center Radius
Cylinder  Point on axis Axis  Radius
3D Circle Center Normal Radius

Table 1. Coefficients of 3D primitives

2.3 Correspondance Estimation

With good fitting results, these parameterized primitives can be
used to directly or indirectly obtain virtual control points. Be-
cause the fitting process is based on the RANSAC principle,
the virtual control points are the representation of the overall
characteristics of the point cloud clusters. Theoretically, they
are more reliable than the manually selected control points or
the feature points calculated using the neighboring informa-
tion from the incomplete point cloud. After obtaining the vir-
tual control points, their corresponding relationship needs to be
solved. In general, after obtaining the key points, the corres-
ponding descriptor will be calculated for the process of corres-
pondence estimation. Global and local descriptors use global
and neighborhood point information respectively, but these are
not applicable to calculate virtual points, due to the fact that
virtual points are outside the point cloud. The information of
geometric primitives, which is used for virtual control point
calculation, could be encoded. The virtual control points could
be obtained from the center of a sphere, the intersection of the
cylinder axis and the plane, or the intersection of three planes.
(Theiler et al., 2012) applied mainly the plane angle for the con-
dition of three planes intersection. If (a1, b1, ¢1) and (a2, b2, c2)
stand for normal vectors of two intersecting planes, the angle
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between can be expressed as (1),

ai1-az+b1-batci-c
Q. = arccos @))]

Vai+b3+c2 - \Jai+ b3 +c3

We denote planes that are related to the intersection point as
target planes, which can be ordered by the angles, and the rest
non-target planes. Except the angles between target planes, the
angles between each target plane and all non-target planes could
also be calculated. All angle values are binned into a histogram.
A similar to the idea of a point feature histogram (PFH), the bin-
ning process divides the angles into certain subdivisions, and
counts the number of occurances in each subinterval. A sim-
ilar process could also be applied to the cylinder axis and plane
intersection situation by replacing the plane angle to line-plane
angle. An example is shown in Figure 2.

| |

Plane Angle Histogram

Figure 2. Histogram of plane angles.

2.4 Error analysis

After the correspondence estimation, the transformation mat-
rix can be directly calculated to serve as an initial match. The
next method is generally through ICP. ICP is mainly an iterat-
ive loop to calculate the nearest neighbors of two sets of point
clouds, and usually good results can be obtained under good
initial matching conditions. In the iterative process, the sum of
the squared errors, as shown in (2) is minimized.

BR#) = =3 o~ R-pi— t|? @)

where IV, is the number of points, x; and p; are corrresponding
points, R and ¢ are rotation and translation, respectively.
Though ICP is widely used, it is a well-known fact, that most
implementations of ICP do not consider precision measures as
given in the field of photogrammetry. The alternative could
be based on the least squares method. Here we use the well-
known Gauss-Helmert model to solve the overall 7 parameters
transformation problem as shown in (3). In addition, for
providng a best fusion model, a complete accuracy evaluation
result using the law of error propagation can also be obtained
with the assumption of precision values for both data sets, the
target and the source data.

X=Xo+u R-z 3)

where X and « stand for target and source points, p, X o and
R are scale, translation and rotation respectively. More detailed

mathematical derivation could be referred to (Fritsch et al.,
2021).

3. EXPERIMENT AND RESULTS

3.1 Object

The main experimental object for this study is a pneumatically
driven directional gyro, manufactured by GM corp in US as
shown in Figure 3. The object is chosen due to its rich geo-
metric primitives design while few evident corner points within
the rounded edges could be manually picked for CT and photo-
grammetry point cloud registration.

Figure 3. Original image of the Ternstedt directional gyro

3.2 CT and photogrammetry 3D reconstruction

The sensors used for CT scanning and photogrammetry can be
referred to (Zhan et al., 2020). As for photogrammetric 3D
reconstructions, Figure 4 shows the camera poses represented
by circular white rectangles via StM (Structure-from-Motion)
and the watertight 3D surface model from DIM (Dense Image
Matching) and texturing procedure.

Figure 4. Photogrammetric 3D surface model of Figure 3

CT is used to reconstruct internal structures of an object that is
not visible from outside. Figure 5(a) shows the complete CT
reconstructed 3D model visualized in VGStudio (VGStudio,
n.d.). Figure 5(b) is the point cloud of CT data by representing
each voxel by the center point with its intensity value.

3.3 CT surface extraction

The CT volume can be converted to the point cloud according
to the spatial coordinates of each voxel. The coordinate of each
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(a) 3D volumetric model (b) Point cloud

Figure 5. CT 3D model of Figure 3

voxel is calculated with the use of the grid origin of the reg-
ular CT volume and grid spacing, which describes the initial
position of the volume and space between two voxels respect-
ively. Thereafter a CT surface extraction is necessary to provide
the similar information as given by the photogrammetric point
cloud for registration. We apply a ball query method for each
point to extract the points with less neighbouring points within
a threshold range, which are interpreted as the points on the
surface of the 3D CT model. An alternative method finding the
convex hull could be found in (Zhan et al., 2020). Figure 6(a)
shows the surface extraction result. In addition, by removing
this shell of certain thickness will also avoid the visualization
ambiguity of the integrated model on the surface.

(a) Extracted surface

(b) Segmentation result

Figure 6. CT surface point cloud
3.4 Point cloud segmentation and primitive fitting

After obtaining a CT surface and photogrammetric point
cloud, the implementation of a direct geometry primitive fitting
may result in unsatisfying output, due to the highly complex
structure of our objects, which are gyroscopes. Therefore, a
point cloud segmentation as shown in Figure 6(b) using region
growing methods based on different principles is necessary
beforehand, considering the differences of the sensors as well
as the object structure characteristics.

A well-segmented point cloud contributes to an easier and more
precise best-fit of geometric primitives based on RANSAC. The
plane, as the most frequent geometric primitive in gyroscopes,
is determined by the inliers, i.e. extracted co-planar points with
a predefined threshold. Figure 7 displays examples of plane
and cylinder fitting using the Point Cloud Library (PCL) (Rusu
and Cousins, 2011). A control point could be determined
by the intersection of every three non-parallel parameterized
planes with precise coordinates. In addition, other best-fit
primitives such as spheres or 3D circles could provide their
center point directly as control points.

3.5 Transformation matrix estimation

In the next step, two sets of points are obtained as control points
for the estimation of the transformation parameters as shown

(a) plane fitting (b) cylinder fitting

Figure 7. Primitives fitting on photogrammetry model

in Figure 8. For the differences between two data-sets as well
as the primitive fitting procedures, the control points may be
disordered and different in quantity. To determine the trans-
formation, the control points together with their descriptors as
introduced in 2.3 are to be estimated for corresponding point
pairs.

The obtained result is used for the transformation matrix cal-

Figure 8. Virtual control points of photogrammetric model

culation as initial registration for the later refinement by ICP
and/or the Gauss-Helmert Model. With two transformation
matrices, the photogrammetry point cloud and the CT point
cloud without the outer shell could be registered together. In our
experiment both refinement methods delivered good registra-
tion results without too much differences. Cross sections of the
photogrammetry and CT models are displayed in Figure 9. Ad-
ditionally, more detailed precision measures could be obtained
by the Gauss-Helmert Model estimation. The ground sampling
distances (GSD) of the photogrammetry and CT for our ap-
plication are 0.05-0.09mm and 0.06mm respectively. With 25
corresponding joint control points, the estimated standard devi-
ation of unit weight ¢ = 1.03, the estimated precision of CT
oct = 0.07mm, and the estimated precision of photogram-
metry is opnot = 0.06mm. On the one hand, a high precision
pose correspondence is realized between two data sources, and
on the other hand the integrated model containing both a clean
colored surface and internal structure information is derived.

4. DISCUSSION AND CONCLUSION
4.1 Summary the findings

The proposed workflow takes into consideration the character-
istics of the point clouds from different sensors for designing
appropriate steps for a good registration. Due to the difference
of CT volumetric data from the normal surface point cloud, the

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI1-B2-2021-265-2021 | © Author(s) 2021. CC BY 4.0 License. 268



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021
XXIV ISPRS Congress (2021 edition)

(b) Cross section 2

(a) Cross section 1

Figure 9. Cross sections of the integrated model

CT data is transformed into the point cloud format and the sur-
face extraction is implemented to be fitted into the point cloud
registration framework. As for the common incomplete rep-
resentation of the surface of CT scanning data, virtual control
points generated by the fitted primitives rather than the local
information depending 3D features are applied for the trans-
formation estimation.

4.2 Strength and weakness analysis

The proposed workflow has advantages in aspects (a) robust-
ness against the noise of the point cloud; (b) robustness against
incomplete CT data due the low penetration of some materials;
(c) high efficiency on condition of good primitive fitting results.
Except the proposed workflow, registrations with other prin-
ciples such as 3D feature-based and manual control point-based
registration are also under investigation. FPFH-based coarse
registration suffers from the low efficiency. The relationship
between the computing time and the number of points is plot-
ted and the registration is shown in Figure 10 and 11. Though
the selection of manual control points works for coarse regis-
trations, it is very time consuming and delivers randomness in
the process, with unsharp corners of the photogrammetry data.

Figure 10. FPFH-based coarse registration
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Figure 11. FPFH-based computation time

The proposed workflow involves several steps to reach the fi-
nal registration. However, each single step could be improved,

such as well-extracted CT surfaces, more robust point cloud
segmentations, more adaptive primitive fittings regarding dif-
ferent objects as well as a finding more efficient descriptors for
the virtual control points.

4.3 Outlook

With regard to the analysis in section 4.2, the automation of the
workflow of each single step is necessary and can be improved.
In addition, a more detailed comparison regarding other regis-
tration strategies should be implemented to validate the pro-
posed method, for general application scenarios.
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