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ABSTRACT:  

The digital surface models (DSM) fusion algorithms are one of the ongoing challenging problems to enhance the quality of 3D models, 

especially for complex regions with variable radiometric and geometric distortions like satellite datasets. DSM generation using 

Multiview stereo analysis (MVS) is the most common cost-efficient approach to recover elevations. Algorithms like Census-semi 

global matching (SGM) and Convolutional Neural Networks (MC-CNN) have been successfully implemented to generate the disparity 

and recover DSMs; however, their performances are limited when matching stereo pair images with ill-posed regions, low texture, 

dense texture, occluded, or noisy, which can yield missing or incorrect elevation values, in additions to fuzzy boundaries. DSM fusion 

algorithms have proven to tackle such problems, but their performance may vary based on the quality of the input and the type of 

fusion which can be classified into adaptive and non-adaptive. In this paper, we evaluate the performance of the adaptive and 

nonadaptive fusion methods using median filter, adaptive median filter, K-median clustering fusion, weighted average fusion, and 

adaptive spatiotemporal fusion for DSM generated using Census and MC-CNN. We perform our evaluation on 9 testing regions using 

stereo pair images from Worldview-3 satellite to generate DSMs using Census and MC-CNN. Our results show that adaptive fusion 

algorithms are more accurate than non-adaptive algorithms in predicting elevations due to their ability to learn from temporal and 

contextual information. Our results also show that MC-CNN produces better fusion results with a lower overall average RMSE than 

Census.  

 

 

  

1. INTRODUCTION  

The quality of the digital surface model (DSM) generated from 

satellite images has always been a crucial element to most 

remote sensing and photogrammetry applications. DSM 

generated using Multiview stereo (MVS) algorithms is very 

common due to its high efficiency and low cost, but it is limited 

performance due to its sensitivity to radiometric and geometric 

distortions in the stereo images, which lead to noise, occlusions, 

missing elevation values, etc. in the DSM. One of the most 

promising techniques that raised significant attention to 

improving the quality of DSM is fusion (Albanwan and Qin, 

2020; Cigla et al., 2017; Papasaika et al., 2008). Fusion is the 

process of combining multi-temporal DSMs into a single high-

quality DSM; it takes advantage of the redundant temporal 

information to compensate for the incorrect representations or 

missing elevation points (Albanwan and Qin, 2020; Cigla et al., 

2017; Papasaika et al., 2008). DSM fusion algorithms can be 

categorized into 1) adaptive and 2) nonadaptive; the prior 

approach learns from the context, shape, and type of objects in 

the scene, in addition to the temporal information between 

DSMs, whereas non-adaptive approaches simply learn and 

predict elevation from the temporal information (Cigla et al., 

2017; Wang and Gong, 2019). One of the oldest non-adaptive 

algorithms to perform fusion is median filtering, it is known to 

be robust to outliers and preserve boundaries of the objects 
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(Kuschk and D'Angelo, 2013; Ozcanli et al., 2015). Many fusion 

algorithms have upgraded simple median filter to a more robust 

approach by including the concept of adaptivity to scene objects, 

for instance, Qin, (2017), has proposed adaptive median filtering 

where he incorporates a flexible window that is formed on the 

shape of the object and applies median filtering on each object 

instead of using a fixed-sized window. Such adaptive methods 

are able to retain boundaries and shapes of objects in the scene 

(e.g., buildings, roads, etc.). Other studies have shown that the 

uncertainty of the DSM can be correlated with the class cover 

type (Albanwan and Qin, 2020), for instance, trees and grass 

changes based on the acquisition date and season, which can 

adversely influence the performance of MVS algorithm, and 

reduces the DMS uncertainty, whereas structures like buildings 

and roads are less changeable over time and most of the times 

have lower uncertainty. This led to the development of class-

oriented fusion algorithms, as an example, (Albanwan and Qin, 

2020) developed adaptive spatiotemporal fusion to impose 

different bandwidths based on the class of objects. On the other 

hand, other methods used the concept of k-median clustering to 

locate the cluster with the most consistent elevation points to 

reduce the number of outliers (Facciolo et al., 2017), where 

others used a pair ranking scheme based on a scoring technique 

to evaluate and sort stereo pairs by their quality and merge only 

the pairs with the best scores (Facciolo et al., 2017; Qin, 2019; 

Qin et al., 2020).   

There are many factors influencing the fusion outcomes 

including the type of input and the fusion algorithm. Traditional 
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MVS algorithms generate DSMs using local window-based 

approaches, which extract and match similar feature 

correspondences to compute the disparity and then transforming 

it into a DSM. Census-Semi global matching (SGM) proposed 

by (Hirschmuller, 2005) is one of the simplest and most cost-

efficient algorithms to generate DSMs; it is one of the widely 

used methods from 2005 until today. Although it is considered 

invariant to radiometric changes, it is still sensitive to 

illumination changes and window size, therefore many have 

proposed adaptive window to capture the size and shape of 

objects instead of rigid window (Han et al., 2020; Heiko 

Hirschmuller and Scharstein, 2007; Loghman and Kim, 2013).  

Nowadays, deep learning algorithms have captured a great 

interest in the area of dense image matching and elevation 

generation, where they are intended to enhance dense image 

matching by better understanding and learning from the scene 

components (Chang and Chen, 2018; Hamid et al., 2020; 

Zbontar and LeCun, 2015). (Zbontar and LeCun, 2015) are the 

first to introduce matching cost Convolutional neural networks 

(MC-CNN) for stereo analysis and disparity and DSM 

generation; their target was to enhance the matching cost and 

produce faster and better similarity matching results. Although 

MC-CNN is able to capture the shapes of objects well, it still 

requires a lot of post-processing and filtering. Many deep 

learning MVS algorithms are inspired by MC-CNN, which are 

developed to further enhance predictability, cost matching, and 

time efficiency. One of the drawbacks to deep learning 

algorithms is their limited performance due to the training 

process; they require a great amount of time and data along with 

the ground truth data for training. Additionally, the 

generalization of the training is a very critical matter, the trained 

model should be well reflected on the testing dataset or any other 

dataset regardless of the domain difference, otherwise, the 

network must be retrained.  

 

In this work, we aim to evaluate fusion adaptive and non-

adaptive algorithms for DSM generated using Census and MC-

CNN, we use these algorithms as they have been widely used in 

the area of MVS algorithms. Understanding such work can help 

to close the holes in current algorithms of fusion and provide 

insights to improving their performance and output, in addition, 

to help the user understand how each data works under different 

fusion algorithms.   

 

The paper is organized as follows: Section 2 includes the data 

description, pre-processing steps like DSM generation, and the 

fusion algorithms used, Section 3. Include the discussion and 

analysis of the results, and finally, we present our conclusion in 

the last section.  

  

2. METHODOLOGY  

2.1 Dataset description   

In Our work, we use three different datasets from Omaha 

(OMA), Jacksonville (JAX), and Argentina (ARG) conducted 

from a very high-resolution satellite Worldview-3. Each dataset 

includes hundreds of multispectral image pairs with 0.3 meters 

spatial resolution. Every dataset includes three testing regions 

with varied spatial complexity and density, as some locations 

may be urban or suburban areas with either dense small houses 

or sparse large buildings or a mix of both as can be seen in Table 

1.  The total number of DSMs generated ranges between 91 – 

482. The dataset images were captured within almost a one-year 

time-span from September 2014- November 2015, October 

2014- February 2016, and January 2015-January 2016 for OMA, 

JAX, and ARG respectively. For evaluation, we use a reference 

ground truth DSM generated from the LiDAR dataset. 

 

 
Table 1. The dataset information and testing regions. 

  

2.2 Data pre-processing    

Our pre-processing steps can be summarized as the following: 1) 

Image pair selection based on specific criteria, 2) geo-

registration to ensure alignment, and finally 3) Disparity and 

DSM generation using census and MC-CNN cost metrics 

followed by semi-global matching for optimization 

(Hirschmuller, 2005).   

  

2.2.1  Image pair selection   

Since we have about 20 images for every dataset, we can obtain 

hundreds of DSMs for the stereo pairs, however, in practice, only 

a few numbers of DSMs can be available. Therefore, we choose 

the best 20 pairs to generate elevation and perform the fusion. 

The selection of the stereo pairs is performed using a scoring or 

ranking scheme that sorts the images based on the metadata 

information from the pair of images, we include geometrical 

information such as the intersection angles, sun angle difference, 
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and the number of days in which the images were acquired. We 

rank the stereo pairs based on their scores that are computed 

from the optimal values of sun angle difference and intersection 

angles as mentioned in (Qin, 2019).  

  

2.2.2 Ortho-ready image, geo-registration, and image 

rectification  

Each image is transformed into an ortho-ready image and 

registered to assure alignment of images using a reference image 

and using RPC Stereo Processor RSP software (Qin, 2016). We 

also rectify the images to produce epipolar images in which we 

use in the following steps for disparity and DSM generation 

using RSP software.  

  

2.2.3      Disparity and digital surface models (DSM) 

generation 

Initially, we generate the disparity from the rectified epipolar 

images, where we Census (Hirschmuller, 2005) and MC-CNN 

(Zbontar and LeCun, 2015) are used as the cost matching metrics 

to determine the horizontal displacement between feature 

correspondences, which leads to the disparity images. Census 

requires a predefined window to perform string bit/binary 

transformation, where any pixel lARGer than the central pixel 

takes a value of 1 and 0 otherwise. This transformation process 

is followed by a hamming distance to measure the score and 

compute the disparity based on the minimum score. On the other 

hand, we follow the CNN architect as in (Zbontar and LeCun, 

2015), where we first train the MC-CNN using a satellite dataset, 

then we extract image patches with a size of 9x9. The image 

patches are then fed into a single layer of MC-CNNs each with 

size 5x5 and 32 kernels, followed by a couple of series of fully 

connected layers each with 200 neurons, which are then 

concatenated into a single layer of 400 neurons and passed to 

several layers with 300 neurons until the last layer which 

classified each pixel into a match or no match. The DSM is 

finally generated using Semi-global matching as proposed by 

(Hirschmuller, 2005) and implemented in RSP software.   

  

2.3 DSM fusion and evaluation  

For DSM integration, we use different fusion algorithms that 

vary between adaptive and nonadaptive approaches including:  

  

1)  Non-adaptive fusion algorithms:  

• Median filter  

• K-median clustering fusion (Facciolo et al., 2017)  

• Weighted average fusion (Papasaika et al., 2008) 

2)     Adaptive fusion algorithms:  

• Adaptive median fusion (Qin, 2017)  

• Adaptive spatiotemporal fusion (Albanwan and Qin, 

2020)  

  

The median filter simply takes the median of the temporal DSMs 

at any pixel position and produces median DSMs. The adaptive 

median filter as suggested by (Qin, 2017) applies the same 

concept except using an adaptive window that captures the shape 

of the object and applies median filtering on individual objects. 

K-median clustering in fusion is proposed by (Facciolo et al., 

2017) to merge several pre-ranked stereo pairs into a single DSM 

by clustering the input temporal elevations and picking the 

cluster with minimum cost to fuse its elevation points. Weighted 

average fusion on the other hand is a broader algorithm 

(Papasaika et al., 2008); first, it computes the residual map 

between two DSM images, then use these residuals to get 

weights and multiply by the elevations as follows:  

 

𝐹 =
∑ 𝑤𝑖∗𝐷𝑆𝑀𝑖𝑡
𝑖=1

∑ 𝑤𝑖𝑡
𝑖=1

 (1) 

 

Where     F= the fused DSM 

  𝑤𝑖= is the weight computed from the residual maps  

  𝑡= the number of temporal DSMs  

  

Finally, we perform adaptive spatiotemporal fusion by applying 

different bandwidths for different classes, where highly complex 

and seasonally variable classes like trees, grass, and water take 

higher bandwidths, while static rigid objects like buildings and 

roads take smaller bandwidths. In Adaptive spatiotemporal 

fusion, we first compute the median and generate masks as 

suggested by (Albanwan and Qin, 2020), then difference the 

spatial and temporal DSMs from the median to calculate the 

weight and impose different bandwidths for each type of class, 

the algorithm is as follows:  

  

𝐹(𝑥, 𝑦) =
1

𝑊𝑇
∑ ∑ 𝑊𝑟 ∗𝑊𝑠 ∗𝑊ℎ ∗ ℎ𝑚𝑒𝑑(𝑥, 𝑦, 𝑡)

ℎ𝑒𝑖𝑔ℎ𝑡
𝑦=1

𝑤𝑖𝑑𝑡ℎ
𝑥=1  

       (2) 

Where     𝐹 = fused DSM   

  x, y = position of pixels in the DSM  

  ℎ𝑚𝑒𝑑 = median height from the temporal DSMs  

  𝑊𝑟= spectral weight  

  𝑊𝑠= spatial weight  

  𝑊ℎ= temporal height weight  

  𝑊𝑇= total weight  

  

Wr and Ws computes spatial and range weights from the 

orthophoto as the bilateral filter, as follows:  

 

 

𝑊𝑟(𝑥, 𝑦) = exp⁡(−
||𝐼(𝑥,𝑦)−𝐼(𝑘,𝑗)||

2

2𝜎𝑟
2 )  (3) 

 

𝑊𝑠(𝑥, 𝑦) = exp⁡(−
||(𝑥−𝑘)2+(𝑦−𝑙)2||

2𝜎𝑠
2 ) (4) 

  

 

Where     I = the orthophoto image x, y, l, k = the position of 

current and neighboring in  

the window 

 𝜎𝑟 = range 

bandwidth  

  𝜎𝑠 = spatial bandwidth  

  

The adaptivity for classes is computed using the following 

equation:  

 𝑊ℎ(𝑥, 𝑦) = 𝑒𝑥𝑝(−
||ℎ𝑚𝑒𝑑−ℎ(𝑖,𝑗,𝑡)||

2

2σ2h
)              (5)  

  

Where     𝜎ℎ= the height bandwidth relative to each class  

  

We perform the fusion on the 20 best pairs, and evaluate the 

fusion output using root mean squared error (RMSE) and the 

LiDAR data as the ground truth (GT) as follows:  

 

𝑅𝑀𝑆𝐸(𝑡) = √
∑ (𝐹−𝐺𝑇)2𝑁
𝑖=1

𝑁
⁡  (6) 
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Where 𝐹 is the fused DSM and N is the number of valid pixels. 

 

3. RESULTS AND ANALYSIS   

3.1 Parameter selection for fusion methods  

For the adaptive median filtering, we use the default setting as 

(Qin, 2017), and for the k-median clustering, we use elevation 

point from the temporal and spatial domains, where the window 

size is set to 5 and the threshold to determine the cost and when 

to stop clustering is set to less than 10. For the weighted average 

filter, we used the median fused DSM as a reference to compute 

the residuals map and compute the corresponding weights. 

Finally, for the adaptive spatiotemporal fusion we used a 

window size of 5, we obtain 4 to 5 classes for each dataset 

including buildings, roads and ground, trees, grass, and water. 

The spectral and spatial bandwidths are chosen empirically and 

set to 𝜎𝑟 = 30 and 𝜎𝑠 = 5; the elevation bandwidths for the 

classes are set to 𝜎𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 3, 𝜎𝑅𝑜𝑎𝑑_𝐺𝑟𝑜𝑢𝑛𝑑 = 3, 𝜎𝑇𝑟𝑒𝑒𝑠 = 7, 
𝜎𝐺𝑟𝑎𝑠𝑠𝑠 = 7, and 𝜎𝑊𝑎𝑡𝑒𝑟_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 7.   

 

3.2 DSM analysis   

The first step in the analysis is DSM quality inspection, which is 

necessary for the evaluation and comparison between the before 

and after fusion results. Figure 2. Represents a sample of the 

initial DSM generated by Census and MC-CNN from two OMA 

testing regions (OMA I and OMA III). We can notice that 

regardless of the method, the generated DSM is always 

associated with problems such as noise, outliers, missing 

elevation points, and fuzzy representation of object shapes, 

which can raise due to mismatching in the dense image matching 

process. These issues can vary DSMs and may be addressed in 

some of the generation algorithms, for instance, Census produce 

DSMs that are smoother, fuller, and well distributed as can be 

seen in Figure 2. (a) and highlighted by the blue boxes. On the 

other hand, MC-CNN includes more missing elevation points 

which can be obvious from the black spots in the right image of 

Figure 2. Nevertheless, MC-CNN captures the edges and 

boundaries of buildings better than Census, which can be 

indicated in the red and yellow box around the buildings in 

Figure 2. (b).  

 

 
(a) DSM from OMA I, showing Census (on the left) and 

MC-CNN (on the right) 

 
(b) DSM from OMA III, showing Census (on the left) and 

MC-CNN (on the right) 

Figure 2. The initial DSMs generated by Census and CNN 

 

3.3 Statistical analysis   

We provide a comprehensive analysis and comparison of the 

overall performance of the adaptive and nonadaptive fusion 

algorithms, in addition to the performance of fusion algorithms 

for the non-deep learning and deep learning (i.e., Census and 

MC-CNN) DSM generation algorithms. We present a visual 

and statistical evaluation for the results as presented in Figure 

3. and Table 2. From the bar representation in Figure 3., we can 

notice that the adaptive methods such as the adaptive median 

fusion and adaptive spatiotemporal fusion always produce less 

uncertainties in comparison to the other fusion algorithms, 

which can be indicated in the orange and purple bars in Figure 

3. They also had the lowest average RMSE of 5 (meters) as can 

be seen in Table 2. Their performance is consistent over 

different datasets regardless of the DSM generation algorithm, 

which is indicated by having less varying RMSE values (See 

Figure 3. and Table 2.). On the other hand, we can notice that 

fusion methods like weighted average fusion and k-median 

clustering fusion have the highest ranges of RMSE as indicated 

from green and yellow bars in Figure 3., their RMSE also 

ranges between 5 to 35 (meters).  

We can also notice during our analysis that MC-CNN performs 

better than Census in terms of robustness to outliers, like in the 

case of median filter, k-means filtering, adaptive 

spatiotemporal fusion, and weighted average fusion for dataset 

ARG I, MC-CNN was able to suppress these invalid elevation 

errors that were not resolved in Census. This can lead to 

concluding that fusing Census DSMs is not robust to outliers as 

in MC-CNN. Table 2., also show that the error range for MC-

CNN was about 4-12, whereas for Census the range is between 

6 to 31.  
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Figure 3. A comparison between fusion algorithms for DSMs 

generated from Census and MC-CNN. 

 

OMA  MF  AMF  KMF   ASPF  WAF 

I  

Census  6.39  6.38  13.96  6.36  18.29  

MC-

CNN  

7.85  7.68  7.79  7.68  11.84  

II  

Census  6.47  4.33  7.82  4.65  36.33  

MC- 

CNN  

7.21  4.53  8.53  5.30  33.57  

III  

Census  2.36  1.76  4.83  1.79  18.36  

MC- 

CNN  

2.41  1.64  3.81  1.70  15.28  

JAX  MF  AMF  KMF   ASPF  WAF 

I  

Census  5.76  5.60  5.95  5.60  7.06  

MC- 

CNN  

6.81  6.59  9.86  6.82  9.92  

II  

Census  4.11  3.87  5.27  3.90  14.92  

MC- 

CNN  

3.86  3.64  22.88  3.68  9.68  

III  

Census  3.03  2.97  5.57  2.96  17.19  

MC- 

CNN  

2.89  2.84  7.53  2.87  8.51  

ARG  MF  AMF  KMF   ASPF  WAF  

I  

Census  14.55  4.12  74.65  28.45  37.85  

MC- 

CNN  

3.98  3.87  28.31  4.20  16.15  

II  

Census  4.63  4.61  22.08  4.61  22.91  

MC- 

CNN  

3.82  3.82  4.70  3.83  20.07  

III  

Census  7.57  6.07  20.25  8.62  12.22  

MC- 

CNN  

4.63  4.52  9.93  4.70  9.40  

Table 2. The uncertainty of the fused DSMs.  Note: The 

abbreviations stand for median filter (MF), Adaptive median 

filter (AMF), adaptive spatiotemporal fusion (ASPF), K-median 

clustering fusion (KMF), and weighted average fusion (WAF), 

and Bold numbers indicate the lowest RMSE for all fusion 

methods in each testing region and each DSM generation 

algorithm. 

  

3.4 Visual analysis   

In general, we can notice that fusion has solved many problems 

related to missing or incorrect elevation points (See Figure 4). 

Moreover, the visual illustration in Figure 4. confirms our 

findings in Section 3.3. that adaptive methods produce the best 

fused results not only statistically but also visually, this can be 

seen from the second and last rows in Figure 4, where they 

produced smooth and sharp DSMs, we can also see that the 

buildings are well captured and most of the noise in the original 

DSMs have been reduced. Other methods like k-median 

clustering fusion and weighted average fusion are less robust to 

noise and outliers in the DSM, which is evident from the third 

and fourth images in Figure 4.   

  

Additionally, we can see that fusion using Census is better in 

terms of generating smoothed fused DSM for all fusion methods 

(Seen Figure 3), especially in the case of k-median clustering 

fusion and weighted average fusion, whereas fusion of MC-

CNN DSM can produce noisy results in these methods. 

Nevertheless, unlike Census, MC-CNN fused DSMs seem better 

in edge and boundary preservation in all fusion methods, as can 

be noticed in Figure 3 where buildings are sharp and better 

outlined.  

  

 

 

Method  Census  MC-CNN  

  

  

Figure 4. sample subsection of JAX II dataset to show the 

difference between Census and MC-CNN in the fusion 

algorithms. 

 

4. CONCLUSION  

To conclude, our work has shown that in general median filter 

produces fairly good results with low computational cost. 

However, adaptive fusion methods such as adaptive median 

fusion and adaptive spatiotemporal fusion always produce the 

best results due to their robustness towards outliers and 

flexibility to learn and predict elevation from homogeneous 

objects and a consistent set of neighboring pixels. The 

generalized non-adaptive fusion method did not perform as well 

due to the lack of contextual and temporal information and 

correlation in the elevation prediction and fusion process. We 

also evaluate the usage of DSMs generated using different dense 

  

Median 

filter 

Adaptive 

median 

filter 

K-median 

clustering 

fusion 

Weighted 

Average 

Fusion 

Adaptive 

spatiotemp

oral fusion 
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image matching algorithms in the fusion process. We found that 

in general, MC-CNN performs better than Census for most 

fusion algorithms, due to the architecture and mechanism of 

MC-CNN and since it can learn similarity from highly complex 

features and produces more detailed DSM. Therefore, 

combining its results can help achieve better fusion outcomes. 

Census on the other hand may generate less accurate DSMs than 

MC-CNN but leverages between quality and computational 

extensive algorithms. Overall, Census  can generate satisfactory 

results and is appropriate for when there are limited resources 

and expertise to avoid training and deep learning algorithms. 

Although MCCNN has shown its ability to preserve the shape of 

objects, they still require post-processing and refinement to 

reduce the noise and outliers in the resultant fused DSMs.  Such 

work can further be extended to improve fusion methods by 

combining DSMs from both MC-CNN and Census to take the 

advantage of both methods, however, the distribution of data 

must be taken into consideration, since different methods 

generate different DSMs.    
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