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ABSTRACT:

Surveys of roadways with Mobile Laser Scanning (MLS) are nowadays the faster and more secured way to collect topographic data
compared with conventional techniques. To deliver topographic plans, the voluminous data collected by the MLS device need to
be processed. If the acquisition step is quite fast, the second part of interpretation and vectorization of the LiDAR data and the
panoramic images is laborious and time consuming. This paper proposes two approaches that have been developed in order to
reduce the time required to process roadway MLS data. The first one is about automatic detection of pole like objects, and the
second one is about the detection of linear objects. The presented workflow try to automatically extract a 3D position for each
object from MLS Data.

1. INTRODUCTION

Mobile Laser Scanning (MLS) is a very popular technique to
carry out extended topographic survey. In addition to the high
acquisition speed, they are used to accomplish secure surveys
on urban or rural roads and highways. Most of the time, point
clouds are not the final goal of the survey mission but consti-
tute intermediate data. The objective is to produce, topographic
maps, 3D or BIM models, textured meshes, and other deliv-
erables. Thought the acquisition step is quite fast compared
to conventional techniques, raw data are time-consuming and
costly to process. The interpretation, digitalization (or vec-
torization) of LiDAR data remains a hand performed step in
most of cases. In a road context, an exhaustive inventory of
the punctual objects is often requested (streetlamps, road signs,
street furniture. . . ). Linear objects such as curbs, road mark-
ings, guardrail, walls or building facades, need to be synthe-
sized into 3D polylines to be appearing on a map. These tasks
currently have to be performed by an operator from a point
clouds and the corresponding panoramic images. This paper
proposes two approaches that have been developed in order to
reduce the time required to process roadway MLS data.

The goal is to obtain automatic 3D vectorization of road scenes
(urban or highway environment). It means that all the inter-
est’s objects should be identified and precisely located in the
data (images & point clouds). The precision should be better or
equal to a manual vectorization. A high-level representation of
the elements must then be calculated. Each object is assigned
to an object class and a 3D geometry representation (point or
polyline). This 3D representation allow to use them in a CAD
software and represent them in topographic map. This paper fo-
cuses on streetlamps in an urban environment (Section 4), road
markings and guardrail in a highway environment (Section 5).

2. RELATED WORKS

The point clouds vectorization embraces different fields: pat-
tern recognition, classification, segmentation, computer vision,

point clouds processing. . . In this section, a brief review of the
existing techniques is presented.

Most of the time, a road surface extraction is a preliminary
step for the extraction of other elements (road marking, road
manhole, poles, trees. . . ). Because of the influence of this step
on the further treatments, the method should be efficient and
adapted to the data. The employed technique also depends on
the data structuration. Different techniques have been proposed.
The planar geometry of the road is frequently used. (Smadja et
al., 2010, Wu et al., 2017, Jung et al., 2019) implement Random
Sample Consensus algorithm (RANSAC) to perform the road
extraction. A scan-line structure, based on the GNSS times-
tamp or scanning angle field, is used by (Yu et al., 2015, Yao
et al., 2018) to realize the segmentation and the following ex-
tractions steps. The altitude along the scan-line is analyzed to
identify the road’s points. If most of the techniques, directly ex-
tracts pavement, (Kumar et al., 2017) proposed a raster method
to extract the edges and then segment the point clouds even in
a rural environment without curb. After achieving this prelim-
inary step, further and thinner treatments can be performed to
detect the searched objects.

2.1 Road Marking Extraction

The road markings are extracted using the high radiometric con-
trast of the markings with the asphalt surrounding. Most of
the studies that propose road marking extraction method use a
2D approach because it reduces the complexity of the data and
permit to use image processing tools. Different thresholding
technique have been proposed to extract the marking from the
image (or scanline). Because the laser pulse intensity decrease
with the increase of the scanning range and the incident angle
between the scanner and the scanned objects, (Jaakkola et al.,
2008, Kumar et al., 2014, Yu et al., 2015, Soilán et al., 2017)
adapt their threshold using these information. Others adaptative
thresholding methods have been proposed by different authors
(Cheng et al., 2017, Yao et al., 2018) to deal with the inhomo-
geneous intensity observed in the point clouds.
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To realize a classification and a vectorization of the marking
road, different techniques have been proposed. (Jung et al.,
2019) describes geometrical criteria to achieve line association
and reduce over-segmentation. It allows to reconstruct the traf-
fic lane. (Yao et al., 2018) performed a skeletonization followed
by a template matching method to identify specific markings
like arrows, text or other specifics road markings.

2.2 Streetlamp detection

Different approaches have been proposed to segment streetlamps.
The knowledge-based techniques try to match the point cloud
with known model of the objects. (Lehtomäki et al., 2010) pro-
posed a method based on scan-line analysis and cylinder fit-
ting. After Applying an Euclidian clustering method to the non-
ground points, (Yu et al., 2015) realize a shape matching with
prototype objects to isolate streetlamp.

(Li, Elberink and Vosselman, 2018) proposed a feature-based
technique. The method is founded on the analysis of horizon-
tal slices of the non-ground points. Different geometrics rules
allow to distinguish streetlamps from three and other above
ground components.

Other methods can be regrouped into the Deep Learning tech-
niques based on labeled data. (Wu et al., 2017) use the point
clouds and the 2D images to realize the segmentation. The
method is divided into three steps: raw localization map gen-
eration, ”ball falling” and position of detection.

2.3 Systematic segmentation

The systematic segmentation of the point clouds is another way
to extract the searched objects. They do not focus on one spe-
cific object type but aim to classify all the points. These tech-
niques are based on machine learning or neural networks.

(Tchapmi et al., 2018) proposed a voxel approach to deal with
LiDAR data. Following a similar idea (Riegler et al., 2017)
proposed an octree-voxel structure with an adaptative voxel size
to handle more details. The segmentation is then achieved by a
3D Fully Convolutional Neural Network (3D FCNN).

(Landrieu and Simonovsky, 2018) proposed a graph-based ap-
proach. Points belonging to geometrically homogeneous ele-
ments like plans are gathered to constitute the nodes of a graph
called “SuperPoint”. This approach allows to have a compact
representation of data without simplifying the relationship be-
tween objects parts. The graph is then given as an input to a
specific neural network.

The famous neural network Point-Net introduced by (Qi et al.,
2017) is capable of dealing with raw point clouds directly as
input. This work is very popular because of its ability to extract
a brief description of the scanned objects (“critical points”) and
is therefore reused in lots of other works.

We can also mention the view-based methods (Badrinarayanan
et al., 2017) that benefit from trained CNN on point cloud’s
screenshot (Boulch et al., 2018). The semantic informations in
the image are then reprojected on the points. This is performed
knowing the position and orientation of the images.

3. GENERAL INFROMATIONS

3.1 Data Source

The point clouds presented in this paper have been acquired
with a Riegl VMX450 placed on the roof of a vehicle. Panoramic
images were acquired by a FLIR LadyBug LB5+ associated
with the IMU and DMI of the Riegl device.

3.2 Data Storage

Because point clouds are massive and unstructured data, a database
storage has been chosen to perform the different treatments.
First, the raw point clouds in “las” format is decomposed into
smaller groups of 400 point named “patches”. Those clusters
are then spatially indexed and put in a postGIS postgresSQL
database. This process allows to access quickly to specific and
localized areas without dealing with heavy files. Obviously,
the database setup has a computational cost, but this can be
achieved without human intervention.

3.3 Data Storage

3.4 Computer specifications

The technical specifications of the used hardware and software
are given below:

Processor Intel Xeon CPU E5-1620v4 3050 Ghz
RAM 16.0 Go
GPU NVIDIA Quadro M2000, 4 Mo RAM

Python V3.5.2
CUDA V9.0

CuDNN V7.1
PostGIS Bundle PostGis 10 v2.5.1-1

Tensorflow GPU v1.9.0

Table 1. Computeur specifications.

4. AUTOMATIC DETECTION OF POLE LIKE
OBJECTS IN URBAN POINT CLOUD

4.1 Objectives and approach

The goal of this first part is to propose an automatic method
that aim to segment pole like objects in point clouds and then
compute their corresponding 3D insertion point. After a study
of the state of the art, a hybrid method using both point clouds
and panoramic images has been chosen. Figure 1 resume the
main points of the proposed method.

4.2 Pre-processing

The pre-processing phase is made of two different and indepen-
dent workflows. On the first hand, the panoramic images are
decomposed into cubemaps to discard spherical distortions. In-
stance segmentation is then performed on these distortion-free
images. A pre-trained model of Mask R-CNN proposed by (He
et al., 2017) is used (Figure 2). A specific training with 345
manually labelled images has been achieved to enhance perfor-
mance on the searched objects. On the other hand, point clouds
are ground/non-ground segmented using the method proposed
by (Zhang et al., 2003). This segmentation based on mathemat-
ical morphology allows to eliminate all the ground points that
are irrelevant as they do not contain the searched objects.
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Figure 1. Streetlamp’s detection and vectorization workflow.

Figure 2. Examples of the instance segmentation results.

4.3 Images and point clouds matching

The segmented mask and the bounding boxes obtained are then
used to identify the corresponding points on the LiDAR data.
The masks are reprojected into the spherical system of the panoramic
images. Knowing the position and orientation of each image,
non-ground points are projected back on the panoramic images.
It can be seen as a coordinate conversion, from cartesian (X, Y,
Z) to spherical coordinates (λ, φ, ρ). The origin of the spher-
ical coordinate is given for each image by the principal point
of the spherical camera. By doing so, pixel coordinates can be
associated to each point. Multiple points can have the same
pixel coordinates, but points of interest are those at the fore-
ground in relation with the shooting position. A Hidden Point
Removal (HPR) filtration proposed by (Katz and Tal, 2015) is
then performed. This technique is more robust than a simple
filtration based on the distance between the shooting position
and the points and can deal with noisy points. The drawback of
this technique is that it eliminates points describing the back of
the object. Since the same object is visible from different im-
ages, the multiple selection enables to finally obtain an almost
complete segmentation of the desired objects.

The selected points are those among the remaining points which
intersect the semantic masks. This selection may contain oth-
ers object than road signs and streetlamps. These unwanted
elements are describing nearby items, vegetation, electric box,
noise. . . They need to be removed because they may disturb the
inserting point calculation.

4.4 Point filtration

To realize a filtration of the selected points, a DBSCAN (Ester
et al., 1996) clustering method is used. This technique based

on point density allows to reduce noise and to regroup objects
into clusters. These clusters are then filtered by the following
assignment:

• The distance between the point of view and the cluster’s
center must be less than 100 m. Indeed, at this distance
objects are very small on the pictures.

• A score is then calculated for each remaining cluster, thanks
to formula (1) given below:

score = scoreMaskR−CNN +
1

d2D
+ nbpoints (1)

Where scoreMaskR−CNN is the confidence score obtained
by the semantic mask CNN.
d2D is the planar distance between the point of view and
the cluster centroid,
nb points is the cluster’s number of points.

The remaining points are finally divided into groups by a coa-
lescence algorithm. Some results are given in Figure 3.

Figure 3. Example of the point clouds segmentation.

4.5 Computation of the insertion point

The simplest way to compute an insertion point is to calculate
the XY barycenter of the group and then to get the ground corre-
sponding altitude. But despite the efforts to reduce the outlier’s
points, their presence can lead to errors. This is the reason why
this technique cannot be considered as robust enough. To go
further, we have to use the shape of the searched object, their
pole. Most of the time, the pole’s profile is cylindrical. The
horizontal section of a pole is a circle provided that the pole is
vertical, an ellipse otherwise. To deal with non-vertical pole, a
Principal Component Analysis (PCA) is achieved to determine
the main axis of the pole. Using that direction, the points are
sliced into different cylinders. For each one, the points are fit-
ted to a circle with the RANSAC method (Fischler and Bolles,
1981). The different computed centers are finally averaged to
obtain a final XY position in the original coordinate system as
shown on Figure 4.

4.6 Test data

The test data consists in 435 panoramic images and the corre-
sponding point clouds with the characteristics presented in table
2. The data correspond to an urban residential area.
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Number of points 498 349 258

Mean density 1 628 pts/m²

XY surface 0.29 km²

X extent 1,02 km

Y extent 1,708 km

Z extent 157 m

Table 2. Point clouds specifications.

Figure 4. Inserting point calculation.

4.7 Results

An instance segmentation evaluation was performed with ground
truth images generated manually on the datatest. As there were
too few road signs in the dataset, the evaluation only concerns
streetlamps. The results are given below in table 3. The bounding-
box IoU with a 63% score allows to say that that the detector
operates correctly for most of the objects. A qualitative study
explains the gap with the mask IoU score: the semantic masks
are always smaller than the objects. The others values seem to
indicate that the detector is balanced, and not in favor of certain
situations. The average score shows that the prediction model
can be improved.

IoU IoU Precision Recall F-Score
(bbox) (mask)

Mean 0.60 0.23 0.53 0.56 0.54

Min 0.07 0.00 0.00 0.00 0.00

Max 0.86 0.62 0.91 0.95 0.91

Median 0.63 0.2 0.56 0.64 0.61

Table 3. Instance segmentation results.

Then an evaluation of the computed insertion points with ground
truth data obtained by a manual vectorization has been achieved.
The fact that the same object is present on several images allows
to obtain a better recall score than the prediction model. The
precision goal is practically achieved. The elevation estimation
is still perfectible because the technique used is not as robust as
the XY determination. Indeed, the ground elevation estimation
could be difficult.

The total time of treatment is around 13h, 2h for the point cloud
segmentation, 8h for the instance segmentation and finally 2,5h
for the insertion points.

Recall σx σy σz emqX emqY emqZ

71 % 3,0 2,7 9,1 0,8 0,2 5,0
cm cm cm cm cm cm

Table 4. Inserting point precision results.

4.8 Conclusion and prospects

The results obtained using our detection workflow are promis-
ing. Despite the small training data for the instance segmenta-
tion, the results reach a recall of 70 % of the detected cande-
labras, with an accuracy of less than 5 cm in planimetry and
10 cm in altimetry. However, the proposed engine can be en-
hanced with more training data. It can also be generalized to
other objects.

5. AUTOMATIC DETECTION OF LINEAR OBJECTS
IN HIGHWAY POINT CLOUD

The goal of this second part is to detect and vectorize pavement
markings and guardrail in highway point clouds. The purpose
of this study is to obtain 3D polylines that describe the posi-
tion of these elements. The needed precision had to be better
or equal than a manual vectorization. After studying the state
of the art, the image approach has been chosen. A highway
is considered as a simple environment because vertical super-
positions are occasional. Converting the point cloud into an
enhanced elevation raster does not compromise the data. The
Figure 5 present the main points of the proposed method.

Figure 5. Main points of the proposed guardrail and marking
road extraction and vectorization.

5.1 Pre-processing

Figure 6. Profiles of the most encountered guardrail in France.
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The image approach requires a discretization of the point cloud
into contiguous images. Due to the complexity of this step con-
sidering the numerous specific cases, the discretization is per-
formed manually. An AutoCAD’s function as been created to
perform this step. The user visualizes the point cloud in Au-
toCAD in top-view mode and has to draw the outlines of the
future images. Thus, the user is able to optimize the position of
the images with respect to the point clouds and can targets the
area of interest by reducing them to the road only. An optimal
image length of 100 meters has been choose after computational
test realized with the computer used in this study (Cf. 3.3). We
assume that the results would have been different with another
configuration.

5.2 From point clouds to images

The outlines drawn by the user are used to perform queries in
the point cloud database. The recovered points are ground/non-
ground segmented with the Cloth Simulation Filter (CSF) al-
gorithm (Zhang et al., 2016). More precisely, the CSF is per-
formed twice. The first implementation is used to remove all
points presenting a height above 1,5 m. These points are irrel-
evant because they cannot correspond to interest objects. The
second implementation is used to truly perform a ground/non-
ground segmentation of the remaining points. Then, the road
direction is determined using a Principal Component Analysis
(PCA). The point cloud is rotated in order to align the road di-
rection with the width of the future image. This rotation allows
to optimize the image size so to reduce computation cost. The
points belonging to the ground class are rasterized into an inten-
sity and elevation image with a pixel size of 2 cm. This inten-
sity image will be used to detect road markings. The remaining
points belonging to the non-ground class, are rasterized into an
elevation image with a pixel size of 1 cm. This elevation raster
contains two channels, corresponding to the minimum and max-
imum point altitude available for each (2D) pixel location. This
elevation image is used to detect guardrail. The guardrails are
non-planar objects, a smaller pixel size is used to avoid a shape
smoothing of the objects.

5.3 Road marking detection

As mentioned earlier, the road marking detection lies on the
intensity image processing. Because some areas contain any
point, the raw intensity images contain no-data pixels. A first
pre-processing step consists in carrying out an interpolation.
The nearest neighbor technique is used. A maximal search ra-
dius is fixed at 2 pixels (4 cm) to avoid extrapolation and to limit
calculation time. A default value is attributed to the no-data re-
maining pixels. This value corresponds to the most represented
value in the histogram of the image. Assuming that this value
always matches with a mean road color, those pixels are then
indirectly classified as road-pixels.

After theses pre-processing steps, all the pixels have a value.
The road marking extraction is performed by an adaptative thresh-
olding method presented by (Bradley and Roth, 2007). This
thresholding method is especially able to deal with road color
or light exposure changes. The obtained binary image is then
filtered to reduce false positives with geometrics criteria. Road
markings, as defined by traffic regulation, can have different
width and length that lead to different meanings. The filtering
criteria must take this into account and be generic. The Con-
nected Component (CC) filters used are listed below:

• The minimum area is fixed to 0,15 m²

• The length over width ratio must be greater than 4.

• The CC verify the inequity:

P

2(w + h)
> 0, 11 (2)

Where P is the perimeter,
w = width of the CC,
h = height of the CC ,

The CC presenting a length greater than 4 m or a width greater
than 0.5 m are difficult to handle because of their extensive
shape. These are cut in pieces of 1 m length maximum that
are easier to process. This procedure is inspired by the “divide
and conquer” method. A long marking can be the conglomer-
ation of several markings or the gathering of a marking with
another object. The cutting step allows to treat successfully
healthy parts of a noisy marking.

5.4 Road marking vectorization procedure

Two different vectorization methods are used depending on the
width of the filtered connected component. In most cases, CC’s
width is lower than 0,5 cm so they are modelled by straight
lines. Each pixel of a CC is considered as an observation with
x and y coordinates. The modelling is performed by least square
method if the outlines are regular otherwise by RANSAC method.
The use of the robust RANSAC method allows to detect the
outliers and to enhance the vectorization result. The regularity
criterion used is based on the standard deviation of the CC’s
width along its major axis.

In other cases, when the connected component’s width is greater
than 0,5 m, the vectorization is different. In this case, the out-
lines of the CC are modelled. It enables to perform a successful
vectorization of the markings that separate the main track from
the insertion and deceleration lane for example (Figure 7). Indi-
viduals marking lines filtered are then linked together in order to
rebuild traffic lanes. It is performed by an assembling program
based on geometric criteria. These criteria, inspired by (Jung
et al., 2019) are based on the relative orientation and position
between two individual marking lines. The thresholds are estab-
lished to limit assembly possibilities. A cost function is used to
select the best association between the remaining possibilities.
As final step, some geometrics verifications are performed. If
two lines overlap, a procedure is launched to fix that issue.

5.5 Detection of the guardrails

As mentioned before, the guardrail detection is based on the el-
evation image obtained after the vertical projection of the non-
ground points. The first objective is to reduce the research area
on the images. The searched objects (Figure 6) present a ver-
tical amplitude. The first step is a 2D rough vectorization (in
XY plan) of the element having a vertical amplitude. This is
achieved using the fact that points describing vertical surfaces
create high density areas after a vertical projection on a plan,
as illustrated in Figure 8. Vertical surfaces are simply detected
by thresholding the point density on the image. The obtained
connected components after the thresholding are then vector-
ized, with the same technique used for the road markings. The
obtained lines contain false-positive that mostly correspond to
vegetation and vehicles. To deal with possible occlusions and
density differences, a specific algorithm tries to lengthen the
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Figure 7. Different vectorization of the detected markings road.

Figure 8. Vertical surfaces create high point density after a
vertical projection.

individual straight lines previously obtained. This sequential
algorithm, based on the growing surface algorithm, is working
step by step. It identifies the direction of the line and detect
points that might be continuing the considered line. If the re-
quired conditions are met, it lengthens the current line.

After the obtention of those rough 2D polylines, a fine study
of the neighborhood of those lines is completed. Profiles are
regularly extracted along the lines. They are used to identify
the nature of the objects and to vectorize them. The extraction
of the profiles is performed in a neighborhood of 10 cm along
the line and about 30 cm on both sides in order to get enough
data to apprehend successfully the shape of the object (Figure
9).

The nature identification is performed with a template matching
method. A profile library is available for the program. For each
registered profile, a class and an inserting point is given. The
method is performed in two steps. The nature of the object is
identified by testing all the known templates and choosing the
one who gets the maximum score. The position of the object
is then deduced from the correlation image obtained by a nor-
malized cross-correlation between the profile and the selected
reference template. The use of the normalized cross-correlation
especially permits to determine a position even if the object pro-
file is incomplete or noisy. Due to the regularity of the profile
extraction, and after a connection of the different 3D vectorized
points, we obtain 3D polylines describing the guard rail. The fi-
nal phase consists in a connection of the partial results obtained
for each image. The final 3D polylines describing the guardrail
and the road markings are then exported in DXF format.

5.6 Evaluation

The 3D polylines are compared to 2D polylines manually vec-
torized and considered as ground truth. The first step is a 2D
comparison of the polylines. Each polyline is discretized in
infinitesimals lines. For each small segment, the distance to
the corresponding reference polyline is computed. Each one
is classified according to a precision class as shown in table
5. For each tolerance (T), the recall (R), precision (P), and F-
score (FS) can be computed. The presented results have been

Object T(cm) 35 25 10 5 3

Road Marking
R(%) 97 96 92 84 67
P(%) 735 51 327 69 94

FS(%) 94 94 90 82 66

Metallic guardrail
R(%) 83 82 78 69 53
P(%) 73 72 68 60 46

FS(%) 77 76 73 64 49

Concrete guardrail
R(%) 92 91 88 74 50
P(%) 86 86 83 70 48

FS(%) 89 82 85 72 49

Table 5. Linear object detection and vectorization results.

obtained for a cumulated length of 14 km for the road marking,
and 10 km for the guardrail. The used test dataset are composed
of different sample of highways in different configuration (var-
ious traffic lane number, straight or curved trajectory, tunnel...).

The decreasing of the score with the augmentation of the preci-
sion mean that the objects are correctly detected but their vec-
torization must be enhanced. The recall values are greater than
80% for all the objects at 10 cm precision. Only 66% percent of
the road marking and 49% of the guardrail are vectorized with
a 3 cm precision.

Different causes have been identified. The transition between a
concrete and a metallic guardrail cause program failure because
it requires a specific management. We also have to consider that
the handmade vectorization cannot be perfect and sometimes
simplifies the trajectory. The template matching procedure can
be enhanced to avoid false positives.

The 3D evaluation of polylines has been performed qualita-
tively with a simultaneous visualization of the point clouds and
the results (Cf. figures 10 & 11). It shows that the vectorized el-
evation is successful most of the time. The typical error (around
2 cm) can correspond to the LiDAR acquisition noise. Because
the vectorization is performed in a unique stage, elevation er-
rors are highly correlated with 2D errors. This qualitative study
shows that our method can vectorize the guardrail even if it has
been rugged (Figure 10). This ability causes an underestimation
of the quantitative result because the handmade vectorization
has smoothed those trajectory variations.

Concerning processing time, the execution speed from a ”.las”
format point clouds to a dxf file represents between 0,5 and 1
km/h. The pre-processing step, which is the more time consum-
ing, has been optimized with a parallelization. The other steps
have not been computationally optimized yet.

5.7 prospects and improvements

The described workflow presents interesting results but needs
improvements. If the vectorization process is efficient in most
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Figure 9. Guardrail extraction process.

Figure 10. Results of the guardrail vectorization.

Figure 11. Results of the road marking vectorization in blue and
guardrail in green or red.
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of the situations, some specifics cases disturb the correct ex-
ecution of the program. More robustness is needed to reduce
manual rework. The vectorization process can be enhanced for
all the objects. The object detection reaches very promising
scores, but the vectorization part needs to be enhanced. The
program can also be generalized to others items like walls and
curbs by adding them to the known profiles.

6. CONCLUSION

These two studies show that achieving point clouds processing
automatization is possible but needs more research and devel-
opment to be truly efficient. The proposed method for the au-
tomatic vectorization of the streetlamps, marking road and the
guardrail presents encouraging results. If our results are not as
good as those of the state of the art, this difference can partly
be explained by the different objectives and evaluation meth-
ods used. Obtaining a high level representation (3D vectoriza-
tion) of the searched objects is difficult, the proposed algorithm
needed more robustness. The workflow presented in this pa-
per can be optimized and also generalized to other objects. The
second study that concentrate on markings and guardrail points
out that deep learning method are not the only way to deal with
these complex issues. To go further, a combination of the two
detection engines is being considered. The addition of a knowl-
edge base of the objects and their relationship could enhance
the detection sensibility and leads to better results.
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