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ABSTRACT:

In a 3D reconstruction pipeline, stereo matching step aims at computing a disparity map representing the depth between image pair.
The evaluation of the disparity map can be done through the estimation of a confidence metric. In this article, we propose a new
confidence metric, named ambiguity integral metric, to assess the quality of the produced disparity map. This metric is derived from
the concept of ambiguity, which characterizes the property of the cost curve profile. It aims to quantify the difficulty in identifying
the correct disparity to select. The quality of ambiguity integral metric is evaluated through the ROC curve methodology and
compared with other confidence measures. In regards to other measures, the ambiguity integral measure shows a good potential.
We also integrate this measure through various steps of the stereo matching pipeline in order to improve the performance estimation
of the disparity map. First, we include ambiguity integral measure during the Semi Global Matching optimization step. The
objective is to weight, by ambiguity integral measure, the influence of points in the SGM regularization to reduce the impact of
ambiguous points. Secondly, we use ambiguity as an input of a disparity refinement deep learning architecture in order to easily

locate noisy area and preserve details.

1. INTRODUCTION

Among the stages that constitute a 3D reconstruction
pipeline (Michel et al., 2020), the stereo-matching step is one
of the most crucial steps, as it strongly impacts the computed
elevation surface quality. The principle of stereo-matching step
is to match homologous points between left and right images,
in order to estimate a disparity map, which reflects the apparent
motion between the image pair. Depending on the scene, the
kind of texture or the brightness, the stereo matching is more
or less challenging and correctly performed. It is therefore rel-
evant to assess the quality of a disparity map. For instance,
the 3D reconstruction downstream steps could ignore or reduce
the impact of the least confident points. This disparity map as-
sessment can be done through the computation of a confidence
metric. According to (Hu and Mordohai, 2012), a confidence
metric is characterized by high values for correct disparities
and low values for errors. They also emphasize an important
property of a good confidence: if matched pixels are sorted in
descending order of confidence value, all bad pixels (mismatch,
occlusion) should end up in last positions.

A review of existing confidence metrics in the literature is
presented section 2. Then, the ambiguity concept and an new
associated confidence metric are defined in section 3. Section
4 shows therefore the corresponding results of this new confid-
ence metric. And finally, stereo matching steps using this metric
are developed in section 5.

2. RELATED WORK

In (Hu and Mordohai, 2012), a large number of confidence
metrics has been reviewed and divided into several categories
based on: local properties of the cost curve, the analysis of
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the entire cost curve, the consistency between the left and right
disparity maps, the distinctiveness-based confidence measures.
This set of metrics has been completed by Poggi (Poggi et al.,
2017) especially with machine learning-based metrics. In en-
semble learning-based approaches, confidence metrics are es-
timated through random forests (Haeusler et al., 2013; Spyro-
poulos et al., 2014; Min-Gyu Park and Yoon, 2015; Gouveia et
al., 2015). The features used for random forests correspond to a
selection of confidence metrics mostly defined in (Hu and Mor-
dohai, 2012). With the rise of deep learning, methods based
on convolutional neural networks have been developed. Some
of these CNN approaches focused on the disparity map learn-
ing (Poggi et al., 2017), other methods worked directly with
the cost volume in order to take more information into account
(Mehltretter and Heipke, 2019; Kim et al., 2019).

Before using these metrics in a stereo pipeline, it is necessary
to evaluate them. As mentioned in the introduction, if matched
points were sorted in confidence decreasing order, all bad points
should be ranked at last. To evaluate this property, a methodo-
logy is proposed in (Hu and Mordohai, 2012). This approach is
based on the computation of the Area Under the Curve (AUC)
for the Receiver Operating Characteristic (ROC) curve, which
represents the error rate as a function of sorted matched points
in confidence decreasing order. To compute the ROC curve,
pixels are sorted in confidence decreasing order. A subset of
p% first pixels is extracted and the error rate for this subset is
computed. It represents the percentage of pixels whose absolute
disparity difference with ground truth is greater than a threshold
value. The process is reiterated until all pixels have been taken
into account. From the ROC curve, the AUC can be derived.
The AUC measures the ability to identify errors in disparity
map with the help of a confidence metric. For a disparity map
with an error rate e € [0, 1], an ideal confidence measure can
reach an error rate of 0 for the first 1 — e pixels. (Hu and Mor-
dohai, 2012) provides the formulation for an ideal confidence
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measure. The ideal ROC is:
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M

where p is the percentage of considered pixels. So, the ideal
AUC can be formulated as:

1 J— J—
AUC opt = / p—(1-¢
1 p

—€

dp=e+(1—¢)ln(l—¢) (2)

Using this methodology, (Hu and Mordohai, 2012) identify the
following measures as good confidence measures: Naive Peak
Ratio (PKRN), Naive Winner Margin (WMNN), Left/Right
Difference (LRD), Attainable Maximum Likelihood (AML),
Distinctive Similarity Measure (DSM) and Self-Aware Match-
ing Measure (SAMM). It must be emphasized that the confid-
ence metric results depend on the similarity measure used to
compute cost volume. Moreover, some methods perform bet-
ter near discontinuities. (Poggi et al., 2017) show that machine
learning based metrics offer better results compared to classical
metrics, and especially deep learning approaches. But these
are very time consuming and they required a large dataset with
ground truth. Another difficulty is their ability to generalize
depending on the training dataset. For remote sensing images,
at the present time, there are few datasets (Bosch et al., 2016;
Bosch et al., 2019) and they focuses on urban areas. This can
be a limitation for the usage of these methods.

3. AMBIGUITY CONCEPT
3.1 Definition

In the (Scharstein and Szeliski, 2002) taxonomy, a stereo
matching pipeline is composed of the following steps:

1. matching cost computation;
2. cost (support) aggregation;
3. disparity computation / optimization; and

4. disparity refinement.

The matching cost computation stage consists in computing a
matching cost measure for a given pixel of the left image and
each possible disparity within the disparity range. Matching
cost measures set forms the cost curve for the given pixel. All
of the cost curves are gathered in the cost volume matrix. Dur-
ing the disparity computation step, the pixel of the right image,
for which the correlation score is the highest (or the lowest de-
pending on the matching cost measure chosen), is selected as
being the homologous pixel of the pixel from the left image.
The column difference between the peer points is called the dis-
parity.

The ambiguity notion, introduced in (Hu and Mordohai, 2012)
is based on the characteristics of the cost curve for a pixel (z, y).
Indeed, the ambiguity aims to quantify the difficulty to identify
the appropriate disparity to select. The more minima the curve
has, the more difficult it is to decide that a disparity value should
prevail over the others. The figure 1 shows non ambiguous and
ambiguous curve profiles.
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Figure 1. Cost curve profiles.

We propose a mathematical formulation for ambiguity:

Amb(w, Y, 77) = Ca'f‘d({d € [dminy dmaz]

ev(z,y, d) < min(ev(z,y.d) +n})
where cv(z, y, d) is the cost value at pixel (x, y) for disparity d
in disparity range [dmin,dmaz]. This is a local formulation,
since the neighborhood of a pixel is not taken into account.
The ambiguity is related to a vertical gap between cost curve
points. Figure 2 represents the methodology of the ambiguity
curve creation using equation 3. The figure 3 shows ambiguity
curve for non ambiguous and ambiguous profiles. The faster
the curve increases, the more it demonstrates the ambiguity of a
pixel. In the best cases, the curve should increase only for high
7 values, as for non ambiguous profile in figure 3.
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Figure 2. Methodology to compute ambiguity curve from cost
curve (left), Ambiguity curve (right).

3.2 Ambiguity integral metric

From the ambiguity curve, we derived a new confidence metric
to assess the quality of disparity map, called Ambiguity integral
measure. It is defined as the area under the ambiguity curve:

Armbin () = / Amb(z,y, n)dn 4

The more ambiguous a point is, the larger the ambiguity integral
measure. For implementation, the integral is discretized:

N

Ambint(z,y) = ZAmb(x, y, kdn)on 5)

k=0
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Figure 3. Ambiguity curve for ambiguous and non ambiguous
profiles.

The discretization step én must be smaller than the quantifica-
tion step of the similarity measure. This metric enables to keep
a reasonable computation time. It can be considered as the op-
posite of a confidence metric as defined by (Hu and Mordo-
hai, 2012) and can be normalized to keep values between [0, 1].
Consequently, a confidence metric can be derived with the fol-
lowing formula:

Coanmbint('T7 y) =1- Ambint (xv y) (6)

This metric is closed to the Probabilistic Measure (PRB)
defined by (Hu and Mordohai, 2012). But, PRB is limited to
a measure that reaches its minimum and maximum values.

4. EVALUATION

The quality of ambiguity integral metric is evaluated using the
ROC curve methodology described in 2. We compare this met-
ric with several confidence measures described in (Hu and Mor-
dohai, 2012; Poggi et al., 2017). We have chosen to include
measures with moderate computation time and robust enough
to be integrated in a space-industry image processing ground
segment. Therefore, machine learning-based confidence meas-
ures are excluded in the comparison. To study this metric, Pan-
dora', an open-source stereo matching framework (Cournet et
al., 2020), is used. Inspired by the (Scharstein and Szeliski,
2002) taxonomy, Pandora is a modular pipeline that allows to
configure pipeline steps by testing various algorithms. Pan-
dora is not only a tool dedicated for prototyping as it will be
included in the 3D reconstruction pipeline for the CO3D mis-
sion (Lebegue et al., 2020). For the evaluation, Pandora’s stereo
pipeline is described in figure 4.

4.1 Middlebury case

Figure 5 illustrates results on Middlebury Cones and shows that
ambiguity integral measure is a good confidence measure. In-
deed, the curve is located below the other confidence measure
curves. Moreover, we can mention that errors points are well
located to the right of the curve. This therefore implies that
the most ambiguous points are mainly the error points. Table 1
presents AUC value for confidence measures. The AUC value
for ambiguity integral measure is lesser than other confidence
measures and for this example, it is very close to the ideal con-
fidence value. In figure 6, we can notice that ambiguous areas

! https://github.com/CNES/Pandora
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Figure 4. Pandora’s stereo pipeline.

are located in occlusion areas. The figure 7 presents the histo-
gram of the distribution of ambiguity measure. The majority of
points have a low ambiguity integral value.

Evaluation of confidence measures
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Figure 5. ROC curve comparison for Middlebury Cones. Circle
colors correspond to error difference in pixels between ground
truth (Stereo matching pipeline with Census and SGM, threshold
at 3 pixels with ground truth).

Confidence measure AUC value
Ideal 1032.3
Ambiguity integral 1051.5
Left/Right difference 1652.8
Naive Peak Ratio 1823.5
Naive winner margin 1906.0
Left/Right consistency 1986.8
Naive maximum margin 2526.6
SGM number of paths 8107.6

Table 1. AUC comparison for Middlebury Cones case (Stereo
matching pipeline with Census and SGM, threshold at 3 pixels
with ground truth).

4.2 Influence of similarity measure used

In figure 8, we compare the results between matching costs
computed with Census and with MC-CNN (Zbontar and
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Figure 6. Ambiguity integral measure for Middlebury Cones
(Stereo matching pipeline with Census and SGM).
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Figure 7. Histogram of ambiguity integral measure for
Middlebury Cones (Stereo matching pipeline with Census and
SGM).

LeCun, 2015). We can notice that MC-CNN measure is less
ambiguous than Census. The use of SGM optimization has less
impact on AUC value for MC-CNN than it has for Census. This
is one limitation of the ambiguity integral measure: if the meas-
ure is itself very ambiguous, the metric is not able to well dis-
criminate pixels.

Influence of stereo matching pipeline
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Figure 8. ROC curve comparison for Middlebury Cones with
ambiguity integral measure for different stereo matching
pipelines (Threshold at 3 pixels with ground truth).

4.3 Remote sensing case

We apply the ambiguity integral measure on two remote sens-
ing cases: World-View 3 images of Buenos Aires (Argentina),

Pléiades images of Montpellier (France). Figure 9 presents
ROC comparison between confidence measures. Table 2 shows
comparison of AUC results for satellite images. As for the
Middlebury Cones case, ambiguity integral metric offers bet-
ter results than other confidence measures.

Evalution of confidence measure
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Figure 9. ROC curve comparison for Montpellier images.

5. APPLICATIONS

Ambiguity integral metric can be used to assess the quality of
the produced disparity map. But it can also be directly exploited
in the stereo matching pipeline to improve stereo matching per-
formances.

5.1 Improve SGM optimization

The objective of optimization step is to add a smoothness con-
straint on the cost volume. This constraint can result in the
minimization of energy:

E=FE4s+E; @)
where E; contains the local information of cost volume

Eq= Y cv(p,d(p)) ®)

p=(z,y)

and E; is the term that imposes the regularization and carry
the global information. Semi-Global Matching (SGM) method
is an algorithm that approximates global 2D smoothness con-
straint by combining 1D constraint along particular directions
(Hirschmuller, 2008). For one direction r, energy to minimize
is declined from equation 7:

L. =E4(p) + Es(p,r) )]
L.(p,d) =cv(p,d) + min(L.(p — r,d),
L(p—r,d—1)+ P,
L(p—r,d+1)+ P,

min Ly (p — 1,1) + Ps)
—mkinLr(p—r,k) (10)
where p is the pixel at position (z, y), r is the direction, and P;

and P, are constant penalties for disparity change respectively
of one and more. Then, the optimized cost volume is obtained
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C AUC value for AUC value for
onfidence measure B Aires i M Co
uenos Aires images ontpellier images

Ideal 84.8 284.1
Ambiguity integral 286.6 1346.3
Left/Right difference 418.3 1901.0
Naive Peak Ratio 410.8 1846.1
Naive winner margin 459.4 2239.8
Left/Right consistency 489.3 2009.6
Naive maximum margin 507.0 2187.5
SGM number of paths 1403.1 3671.9

Table 2. Confidence measure comparison on satellite images (Threshold at 3 pixels with ground truth).

by combining all directions.

S(p,d) =) Le(p, d) (11)

In this section, our goal is to reduce the impact of more ambigu-
ous pixels, through the usage of the new confidence measure in
optimization step. (Ho6llmann et al., 2020) has also presented
another methodology to take into account confidence measure
and geometrical constraints into SGM optimization.

Image pair .

L

Matching cost
computation

#

Optimization

#

Ambiguity
computation

Optimization

Disparity
computation

Figure 10. Pipeline with ambiguity integration in optimization
step.

5.1.1 Methodology In SGM, same weight is given to Eq4
and E; terms. But, some pixels might have a badly estimated
disparity and they might degrade the disparities on the neigh-
borhood after the optimization step. The idea is to identify non
ambiguous points in order to rely on them during the optimiza-
tion step. This can be done by weighting, by confidence meas-
ure, the influence of points in the SGM regularization in order
to reduce impact of ambiguous points. Consequently, depend-
ing on whether a pixel is more reliable than the previous pixel

along direction r, we might want to give more weight to Fg
than in E, or vice versa. In our approach, for one direction r,
equation 9 is derived as follow:

Le(p,d) = Eg*" (p,d) + E:(p, d) (12)
where ES°" is defined by:
Eg"(p,d) = Conf(p,d) x cv(p,d) (13)

and C'on f is the confidence measure set in equation 6. By mul-
tiplying E4 by confidence measure value, the influence of E
fluctuates. It enables, in extreme case where p is very confid-
ent and p — r is not, to avoid optimizing p by p — r. On the
contrary, in a case where p — r is very confident and p is not,
it allows to reduce the influence of E4 term against Fs term for
point p. Equation 10 becomes:

L™ (p.d) =Conf(p,d) x cu(p, d)
+ min(Le(p — r,d),
Le(p—r,d—1)+ P,
Le(p—r,d+ 1)+ Pi,
miin L.(p—r,i) + P)

— mkin L.(p—r,k) (14)

As shown in figure 10, the stereo pipeline optimization step is
modified to include confidence accordingly. A first pipeline is
executed to generate a confidence map. Then, the initial cost
volume and the confidence map are used to compute a new op-
timization step.

5.1.2 Evaluation The figure 11 presents the results of the
modified SGM algorithm. The method shows improvements on
area with constant disparity values. Nevertheless, the approach
adds errors at buildings borders where there are high dispar-
ity gaps. There is a degradation at disparity discontinuities,
because these are not confident areas. To work correctly, this
method still needs to rely on confident points. So, it can remove
correct areas if they are ambiguous. We can compare the use of
ambiguity with the use of high P, penalty. The method with
high P, penalty behaves like a majority vote. The most rep-
resented values are propagated and it is more difficult to move
from one disparity to another. It delays disparity jumps and
can sometimes eliminate some of them. On areas with mostly
wrong disparity or noise, the method can smooth disparities
with noise. On the contrary, optimization with confidence is
not influenced by the majority.

5.1.3 Conclusion Results are promising but have to be im-
proved especially at object borders, where there are dispar-
ity gaps that correspond to ambiguous areas. We could use a
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Figure 11. Usage of ambiguity in SGM Optimization.

segmentation to perform a piecewise optimization step. The
objective would be to use segmentation information in order
to cancel the historic along a direction and ease the disparity
change, where we cross a segment.

5.2 Disparity map denoising

There exist classical approaches to fill invalid pixels identified
as mismatch or occlusion (Hirschmuller, 2008; Zbontar and
LeCun, 2015). In (Hirschmuller, 2008), the principle is to de-
tect occlusions and mismatches during cross-check validation
and then, to use the median of the valid disparity value in each
direction to fill mismatches and second lowest value to fill oc-
clusions.

In last few years, denoising with neural network have been
proposed. Recent methods (Stucker and Schindler, 2020) use
encoder-decoder architectures for denoising like U-Net (Ron-
neberger et al., 2015).

More complex architectures have been proposed (Gidaris and
Komodakis, 2017). In this section, we propose to evaluate the
contribution of ambiguity in an encoder-decoder architecture
for denoising the disparity map. For this purpose, two encoder-
decoder neural networks are trained. The first one, in figure 12,
uses the left image and the noisy disparity map. The second, in
figure 13, adds the ambiguity information.

5.2.1 Architecture The purpose is to use ambiguity inform-
ation to easily locate noisy areas and preserve details in non am-
biguous areas (cf. figure 13). The network takes as input noisy
disparity map, left image and normalized ambiguity (in [0, 1]).
The residual disparity and ambiguity map are used at the end
of the network to guide the denoising. In ambiguous areas, out-
put disparity will be modified by the network. In unambiguous
areas, disparity will remain unchanged.

5.2.2 Dataset description We use two sets of input images:

e Selection of image pairs originated from Data Fusion Con-
test (DFC) dataset (Bosch et al., 2019) (World-View 3 im-
ages)

e Image pair on Montpellier (Pléiades images).

Noisy disparity maps are generated with the Pandora’s pipeline
shown in figure 14. Ground truth (GT) are generated with the
methodology described in (Cournet et al., 2020). One difficulty
is the temporal inconsistencies between lidar and images, espe-
cially with regard to trees. This time gap can impact the quality
of the neural network training.

5.2.3 Training For training, images are divided into patches
of size 256x256. The loss function used is L1 loss modified to
constraint the network to avoid adding errors:

Loss =|denoised — GT| * W
W= {1.25 if |denoised — GT'| > |noisy — GT|
|t

otherwise

First results have shown the advantage of combining both im-
age sets. With the same network architecture, results were dif-
ferent for both datasets. With the DFC dataset the denoising is
more aggressive. The disparity maps tend to be very smooth but
coarse errors are well fixed. With Montpellier dataset the de-
noising is lighter. Disparity maps are less smoothed and build-
ing edges are preserved. But large errors are not corrected. So,
each database has its own advantages and disadvantages. In or-
der to combine advantages, training is performed by merging
the datasets.

Moreover, as noisy disparity maps contain a lot of errors, neural
network will favor a smoothing on the whole image in or-
der to correct disparity changes. To avoid this effect, ground
truth patches are integrated during training: for 30% of batch
epoch the disparity map in input is replaced by the ground truth.
Thanks to this method, we can observe that the disparity map is
less smoothed: the buildings are less impacted by the denoising.
The training is stopped after 50 epochs.

% error | Average | Median o/ij)gg(t)r
points error error corrected
Noisy map 13.00 2.58 1.81
Denoised map
with classical 12.19 2.38 1.75 9.51
approach
Denoised maj
with U-net Pl 1504 5.29 1.65 29.15
Denoised map
with U-net 13.93 5.62 1.66 26.04
Ambiguity

Table 3. Comparison of denoising methods.

5.2.4 Results The figure 15 shows results on Buenos Aires.
This image does not belong to the training dataset. Con-
sequently, it demonstrates the ability of the neural network to
generalize. The addition of ambiguity gives suitable results,
better than original U-Net architecture. It allows to preserve
building edges, whereas without ambiguity building edges are
trimed. Compared to classical methods, disparity maps de-
noised with deep learning methods are smoother but details are
preserved. On figure 15, we can notice that errors introduced
with denoising using deep learning methods are mainly located
on trees. It derives from the training database where there exists
a time shift between images and lidar reference.

Table 3 presents the comparison between ground truth and de-
noised disparity map. Methods based on neural networks fill
more errors than classical approaches but they also produce
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Figure 12. Encoder-decoder architecture for denoising.
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polation cause cross validation does not detect all errors. The disadvant-
age of classical methods is that it uses SGM directions to locate
valid points. If the area is too large, the disparity used to fill
the mismatch or occlusion are too far from the pixel. And con-
sequently, a ground pixel might be filled with the disparity of a

building. Classical methods only work on small error areas.

]

Median filter

]

5.2.5 Conclusion The contribution of ambiguity allows to
improve denoising results compared to original U-net denoising
architecture. This architecture outperforms classical denoising
methods. A semantic segmentation may be useful to produce
statistics by classes. It also allows to perform a specific denois-
ing by classes.

Figure 14. Pandora’s pipeline.

more errors. Classical denoising methods fill less points be-
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6. CONCLUSIONS AND PERSPECTIVES

In this article, we have proposed a new confidence metric,
called Ambiguity integral metric. It is based on the ambiguity
concept of the cost curve profile, that characterizes the diffi-
culty in identifying the correct disparity to select. This metric
offers good performances to evaluate the quality of the dispar-
ity map, while keeping reasonable computation time in order to
be included in space-industry ground processing platform. The
implementation of this metric is available in Pandora.

Moreover, we demonstrate that this metric can be directly ex-
ploited in the stereo-matching pipeline to improve disparity es-
timation performance and therefore enhance 3D pipeline res-
ults. First, it can be introduced in the SGM optimization step.
This can be done by weighting, by this confidence measure, the
influence of points in the SGM regularization in order to reduce
impact of ambiguous points. Results are promising but have to
be improved especially at object borders, where there are dis-
parity gaps that correspond to ambiguous areas. Secondly, this
metric can be included in the disparity refinement step. We use
ambiguity as an input of a disparity refinement deep learning
architecture in order to easily locate noisy areas and preserve
details in non-ambiguous areas. The contribution of ambiguity
allows to improve the disparity refinement step performance.

Our work in progress include taking into account the neighbor-
hood of a pixel when computing its ambiguity. Also, as the am-
biguity only reflects on the probability of a given match to be
wrong, we plan on estimating the disparity error for ambiguous
points. This new metric would represent the risk associated on
a disparity choice for ambiguous points. The further the min-
ima are, the higher the risk is, because if the wrong point has
been selected then the error will be significant. By including
both ambiguity and risk concepts, we would be able to take into
account the whole information of the cost curve.
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