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ABSTRACT: 
Mesh models generated by multi view stereo (MVS) algorithms often fail to represent in an adequate manner the sharp, natural edge 
details of the scene. The harsh depth discontinuities of edge regions are eventually a challenging task for dense reconstruction, while 
vertex displacement during mesh refinement frequently leads to smoothed edges that do not coincide with the fine details of the scene. 
Meanwhile, 3D edges have been used for scene representation, particularly man-made built environments, which are dominated by 
regular planar and linear structures. Indeed, 3D edge detection and matching are commonly exploited either to constrain camera pose 
estimation, or to generate an abstract representation of the most salient parts of the scene, and even to support mesh reconstruction. In 
this work, we attempt to jointly use 3D edge extraction and MVS mesh generation to promote edge detail preservation in the final 
result. Salient 3D edges of the scene are reconstructed with state-of-the-art algorithms and integrated in the dense point cloud to be 
further used in order to support the mesh triangulation step. Experimental results on benchmark dataset sequences using metric and 
appearance-based measures are performed in order to evaluate our hypothesis. 
 
 

1. INTRODUCTION 

For a given set of images with known orientation parameters 
(poses), typically as the output of the SfM, multiview stereo 
methods (MVS) generate a 3D dense point cloud, a triangulated 
mesh or a volume. Among the various MVS methods for dense 
reconstruction, depth map merging methods are commonly used 
in photogrammetry because of their accuracy and scalability. 
Semi-global matching (Hirschmuller, 2007) and PatchMatch 
(Bleyer et al., 2011) are within the most widespread methods for 
depth estimation and dense cloud generation due to their 
robustness, even though also learning methods have lately been 
popular (Huang et al., 2018). Mesh representations, on the other 
hand, can be either generated as part of the photogrammetric 
workflow or as a standalone task (Nocerino et al., 2020). The first 
method keeps the photometric consistency criterion active also 
while wrapping the surface and providing thus a more refined 
mesh, while the second generates the optimal surface mesh out 
of a (typically dense) point cloud using i.e. Delaunay 
Triangulation or Poisson Surface Reconstruction (Kazhdan et al., 
2006). 
Although such algorithms are mature enough with impressive 
results, several challenges still exist towards the complete, 
accurate and detail-preserving 3D reconstruction of scenes. 
Inadequate image network setups, challenging objects such as 
textureless or reflective surfaces, occlusions, as well as harsh 
depth discontinuities may affect the quality of the final 
reconstruction and the level of preserved details. Crease edges on 
3D meshes often do not coincide with natural edges on the object 
surface. Traditional photogrammetric techniques used vector 
constraints, the so-called breaklines, to tackle such depth 
discontinuities and imply geometric constraints during DSM 
generation (Briese, 2004). 
Similar to corner points, edges have been used to support various 
photogrammetric and computer vision tasks such as image 
matching (Wang et al., 2009; Wang et al., 2021), camera 
localization (Hirose and Saito, 2012; Salaün et al., 2017; Miraldo 
et al., 2018), abstract 3D scene representation (Hofer et al., 2015; 
2017), meshing sparse clouds (Bódis-Szomorú et al., 2015; 

Sugiura et al., 2015) as well as modelling and simplifying the 
scene (Langlois et al., 2019; Chen et al., 2020; Li and Nan, 2021).  
 
1.1. Aim of the paper 
 
3D edges are usually invariant to significant illumination changes 
and a robust representation of the most salient parts of the scene. 
In this study, we investigate whether edges can potentially 
support detail-preserving MVS reconstruction and generate 
visually coherent results. Out of the plethora of MVS mesh 
reconstruction methods, we consider triangulated meshes by 3D 
point clouds coming from depth map fusion. The scope of this 
article is bifold: first, two state of the art methods for 3D edge 
reconstruction are adopted and experimentally compared in terms 
of performance, usability and practical limitations. Then, we 
propose an approach for integrating the extracted 3D edge 
information into the MVS pipeline towards detailed and sharp 
feature preserving mesh reconstruction and evaluate the potential 
and the limitations of the method. 
 

2. RELATED WORK 

The presented work leverages edge constraints in the MVS 
reconstruction procedure, hence the respective literature is 
reviewed. 
 
Multiple view stereo: MVS algorithms (Furukawa and Ponce, 
2009) generate a complete 3D representation of the scene starting 
from known camera poses. Generally, methods can be point 
cloud-based, volume-based and mesh-based. Point cloud-based 
methods use photo-consistency metrics like the Sum of Squared 
Differences (SSD) or the Normalized Cross-Correlation (NCC) 
to estimate the depth of the scene pixels and generate dense 3D 
point clouds (Shen et al., 2013; Schönberger et al., 2016). Such 
point clouds can be further converted into triangulated meshes 
using iso-surface extraction e.g. with Poisson (Kazhdan et al., 
2006) or Delaunay Triangulation and graph-cut methods (Labatut 
et al., 2007). Volume-based methods (Curless and Levoy, 1996) 
discretize the space into voxels or tetrahedra and calculate a 3D 
volume from which the optimal surface will be extracted using
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Figure 1. Two examples of extracted 3D edges: Line3D++ (b), EdgeGraph3D - standard output (c) and EdgeGraph3D - isolated 
edge points (d). Line3D++ generates line segments, whereas EdgeGraph3D by default generates points along the edges fused with 
the input sparse point cloud. 

e.g. graph-cuts (Vogiatzis et al., 2007) or the signed distance 
function (Newcombe et al., 2011; Werner et al., 2014). Surfaces 
are produced from volumetric representations using Poisson 
triangulation (Kazhdan et al., 2006) or the marching-cubes 
algorithm (Lorensen and Cline, 1987).  Mesh-based methods (Vu 
et al., 2012) use the photo-consistency metrics to refine (i.e. 
remesh) an existing initial mesh, generated with volume-based 
methods or point cloud-based methods accompanied with mesh 
extraction. 
In photogrammetry, typically meshes are generated by 
triangulating dense point clouds coming from depth map fusion 
methods. Point clouds are converted to meshed surfaces with 
Poisson triangulation (Kazhdan et al., 2006) or Delaunay 
Triangulation (Tola et al., 2012; Jancosek and Pajdla, 2014). 
Delaunay Triangulation is commonly preferred since it adapts to 
point density and is, thus, more scalable. The final mesh is 
defined as the boundary between empty and full tetrahedra, 
typically formulated as a graph-cut problem.  
 
Edge extraction: Traditionally, line segments have been 
extensively used in the 2D space with simple gradient-based 
detectors like Sobel (Sobel, 1972) and LoG (Marr, 1980), to most 
sophisticated solutions as Canny (Canny, 1986), Rothwell 
(Rothwell et al., 1995), Edison (Meer and Georgescu, 2001) and 
the linear segment detector LSD (von Gioi et al., 2010). Edge 
detection directly in the 3D space has also been revised in the 
literature. Weinmann et al. (2015) classified edges along with 
corners and planes using features based on eigenvalues in 3D 
point clouds. Hackel et al. (2016) used eigenvalues and Markov 
Random Fields (MRF) to create wireframe models. Jain et al. 
(2010) extracted 3D lines under an optimization formulation, 
minimizing the reprojection error of the segment end-points and 
enabled reconstruction under challenging lighting conditions.  
 
3D reconstruction and linear segments: Line segments have 
been used in image registration tasks in photogrammetry already 
for a long time (Baillard et al., 1999). In the latest years, linear 
segment matching has been used in pairwise image matching 
(Wang et al., 2009; Zhang and Koch, 2014), as well as in SfM 
(Bertoli and Sturm, 2006; Micusik and Wildenauer, 2018) and 
SLAM algorithms (Hirose and Saito, 2012; Salaün et al., 2017; 
Zhou et al., 2019) for pose estimation and mapping or 3D 
reconstruction purposes (Remondino and Zhang, 2006). At the 
same time, matched linear segments are coupled with the SfM 
results as a less computational expensive alternative to the MVS 
reconstruction as in (Hofer et al., 2015; 2017). Sugiura et al. 

(2015) performed 2D line matching and reconstructed a so-called 
3D “line cloud”, and used these edges to extract the mesh using 
a tetrahedra-carving method. Romanoni and Matteucci (2015) 
used 3D points belonging to edges and carved a 3D Delaunay 
Triangulation of sparse points. Bódis-Szomorú et al. (2015) 
proposed an approach for large scale urban reconstruction for 
edge preserving mesh reconstruction enforcing the Delaunay 
Triangulation using CDT (Botsch et al., 2010) on a 2D base 
mesh. Bignoli et al. (2018) presented an approach to detect both 
straight and curved edges and support thus the reconstruction of 
3D meshes from sparse point clouds. Other approaches combine 
primitives for regular parts of the scene and meshes for the 
irregular ones (Lafarge et al., 2010). 
In this study, we consider the combination of edges and 3D 
reconstruction in a different fashion, as edge information is 
integrated in the dense point clouds to support and potentially 
generate more detail-preserving mesh models. 
 
 

3. METHODOLOGY 

3.1 3D Edge extraction 
 
We consider two different state-of-the-art 3D edge extraction 
methods (Figure 1), namely Line3D++ (Hofer et al., 2016) and 
EdgeGraph3D (Bignoli et al., 2018) and discuss their results and 
efficiency.  
 
Edge extraction with Line3D++: Line3D++ (Hofer, 2016) 
detects and matches 2D line segments across the images and 
reprojects them in the 3D space, generating an abstract 3D 
representation of the salient parts of the scene. In more detail, 
camera poses and the respective sparse point cloud are given as 
input, obtained by conventional Structure from Motion pipelines 
like COLMAP (Schönberger et al., 2016a) or OpenMVG 
(Moulon et al., 2016). Epipolar guidance is used to establish 
correspondences between linear segments detected on the 
images. The LSD line segment detector (von Gioi et al., 2008) is 
used to obtain the line segments. The best hypothesis for the 3D 
position is selected and overlapping segments from different 
views are clustered together using graph-clustering to generate a 
3D line-cloud. The reconstructed lines can potentially optimize 
also the SfM result using Ceres solver (Agarwal et al., 2021). The 
quality of the resulting 3D line cloud depends on several 
parameters (Figure 2). First, it was proven experimentally that the 
denser our image network is (higher overlap), the more numerous 
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the 3D lines are. However, the accuracy of the reconstructed 3D 
lines, naturally, depends on the accuracy of the SfM pose 
estimation and the reprojection error. Also, detected 2D edges are 
prone to outliers due to noise in local gradients and occlusions. 
Thus, inevitably, some edges fail to reconstruct and duplicates or 
wrongly reprojected lines are also present. These erroneous 
reconstructed lines may not affect the abstract representation of 
the scene alone (Hofer et al., 2016), yet may introduce a 
significant error in the meshing step. 
 

   
 

Figure 2. Line3D++ performance examples for DTU-006 dataset 
using different visibility threshold values (v=5,8,11 images) and 
pixel error p=1. The stricter the visibility threshold, the fewer the 
reconstructed lines in 3D (respectively 2486, 1428, and 860 line 
segments). 
 
Edge extraction with EdgeGraph3D: EdgeGraph3D algorithm 
(Bignoli et al., 2018) uses a-priori detected edges coming from 
standard edge detection algorithms along with the SfM output, 
i.e. camera poses and sparse point cloud to subsequently project 
the salient edges in 3D. In contrast with Line3D++, 
EdgeGraph3D is able to match and reconstruct not only linear 
edges, but also curved ones in the form of 3D polylines (Figure 
3). This is made possible with the use of calculated 2D edge 
graphs for each image. Practically, to every pixel centre 
belonging to an edge, a node is assigned. Adjacent edge-pixel 
nodes are connected in polylines generating the 2D edge graphs. 
Based on these graphs along with the SfM data and the epipolar 
constraints, potential edge correspondences are defined, and 
further validated and reconstructed in 3D on top of the SfM 
points. In our experiments, we use the Edison algorithm (Meer 
and Georgescu, 2001) for 2D edge detection. We extended the 
functionality of the algorithm to export directly edge points and 
their visibility information without the SfM data.  
 

   
 

Figure 3. 2D edges generated with Edison edge detection 
algorithm and given as input to EdgeGraph3D (left), and their 
respective matched segments using EdgeGraph3D (right).  
 
Our first experiments showed that both algorithms are rather 
sensitive to the accuracy of the pose estimation and thus often 
reconstruct noisy 3D lines or edge points. One important 
parameter that needs to be taken into account in order to optimize 
the 3D edge reconstruction is the visibility threshold N, i.e. from 
how many images a line or point needs to be visible, in order to 
be candidate to be reconstructed in 3D. For both algorithms by 
default the threshold is defined v=3, yet in our experiments we 
tuned the visibility threshold according to the dataset overlap (see 
Section 4 for more details). For instance, as shown in Figure 1, 
for the same visibility threshold (v=3) in Line3D++, in DTU-006, 
much more edge lines are reconstructed in comparison with 

Fountain-P11 due to the large overlap of this specific dataset. 
Another essential factor is the maximum accepted pixel error p 
for the same line or point across multiple images. By default, this 
error is 2.5 pixels in Line3D++ (see Section 4 for more details), 
while in EdgeGraph3D a slightly different approach is adopted 
with outlier removal based on visibility filtering, with a threshold 
error of 2.25 pixels. 
In EdgeGraph3D, points describing an edge do not strictly lie on 
the exact edge, but rather form a point cloud of irregular 
distribution and noise around the edge that can be useful for 
abstract scene representation. Line3D++ on the other hand, 
generates a clear line cloud and also has the advantage of 
computational efficiency. Thus, it was preferred over 
EdgeGraph3D although the latter detected both linear and curved 
segments (Figure 1). 
 
3.2. Edge-aware mesh reconstruction 
 
Our method uses dense point clouds and edge information in a 
joint fashion to support the edge-aware mesh reconstruction 
inspired by Bignoli et al. (2018) and Bódis-Szomorú et al. (2015). 
Our intuition is that the usage of such edge information, aligned 
with natural depth discontinuities, may support the meshing 
algorithms in such a way to highlight well-defined natural 
geometric edges while preserving details and avoiding over-
smoothing. In contrast to most approaches, we do not integrate 
the edge points with the SfM sparse cloud, but rather leverage 
them into the MVS pipeline. We consider edge information 
priorly extracted with Line3D++, as our approach is based on 
regularly spaced points along the edges and the output of 
EdgeGraph3D didn't fulfil this requirement. 
 
Line Sampling: Line3D++ extracts linear segments as vectors 
and outputs information about their start and end points’ 
coordinates in 3D and 2D, along with the visibility information. 
In our method, we interpolate linearly 3D points along the edges 
in equal space intervals, based on the average spacing of the input 
dense cloud (Figure 4). Keeping a regular point spacing will 
benefit the generation of triangles of similar edge length and face 
area around the region in the mesh reconstruction step. 
 

        
 

Figure 4. The dense point cloud (left), Line3D++ reconstructed 
3D edges (middle) and the respective edge points (right) sampled 
linearly along them. 
 
Integration to MVS: 3D edge points and their respective 
visibility information are integrated into the dense point cloud 
generated by the PatchMatch MVS algorithm (Bleyer et al., 
2011; Shen, 2013) as implemented in the OpenMVS library 
(Cernea, 2021). Hence, we generate a final dense cloud merging 
the dense cloud points coming from the depth map fusion plus 
the 3D points along the edges. In order to eliminate the noise and 
the effects of potential errors, we filter out dense cloud points 
within a buffer of m times the average spacing before meshing, 
depending on the dataset. Mesh reconstruction is performed 
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using Delaunay tetrahedralization as implemented in OpenMVS 
and built upon the CGAL library (2021). 
Iterative consistency checks are made for every point of the input 
cloud and finally the surface is extracted using a graph-cut 
method. Since such methods produce inevitably a significant 
amount of non-manifold vertices, an essential post processing 
step follows to repair the local topology of the mesh.  Using the 
VCG library (2021) as integrated in OpenMVS, standard spike 
and spurious removal, hole filling and mesh smoothing is 
performed. Vertex repositioning follows, applied only to vertices 
belonging to edges, in order to keep the original position of the 
edge points. 
The mesh reconstruction implemented in OpenMVS was 
preferred over others, as it has been proven robust enough in 
previous works (Nocerino et al., 2020). In our experiments 
though, we do not perform the final mesh refinement minimizing 
the photometric error based on point visibility, but rather focus 
on the standard mesh reconstruction. 
 
 

4. EXPERIMENTS AND EVALUATION 

4.1 Datasets 
 
We perform our experiments on benchmark datasets for which 
ground truth (GT) 3D information is provided. In particular: 
Fountain-P11 (Strecha et al., 2008): 11 high resolution images 
(3072 x 2048 pixel) with known camera poses from the EPFL 
benchmark. GT 3D mesh is provided for evaluation, as a result 
of a laser scanning acquisition. 
ETH3D-Façade (Schöps et al., 2017): 76 high resolution (6048 
x 4032 pixel) sequence from the ETH benchmark. GT point cloud 
acquired with laser scanning is available for evaluation.  
DTU-006 (Aanaes et al., 2014): 49 medium resolution images 
(1600 x 1200) of known poses from the DTU benchmark under 
seven varying illumination conditions. For our experiments we 
used the middle exposure images. GT point clouds for evaluation 
are acquired with a structure light scanner. 
 
4.2 Parameter settings 
 
Line3D++ pixel error and minimum visibility threshold were 
tuned appropriately for each dataset, taking into consideration 
criteria as overlap between images, image resolution, pixel size 
and level of fine details that need to be reconstructed. 
Specifically, p = 2.5 was chosen for all datasets and v = 3,5,7 for 
Fountain-P11, ETH3D-Facade and DTU-006, respectively. For 
dense reconstruction, images were resized to max 3200 pixels 
and during the mesh reconstruction no decimation was 
performed. For the dense point filtering, we used m = 1.5,2,3 
times the average spacing for Fountain-P11, ETH3D-Facade and 
DTU-006, taking into consideration the image resolution and 
noise of every sequence. 
 
4.3 Evaluation Metrics 
 
The literature on the geometric quality of meshes and preserved 
edges is quite weak, despite for industrial meshing (Stimpson et 
al., 2007). In our experiments, appearance-based metrics were 
chosen for the evaluation since our approach aims to add fine 
edge details in the final mesh reconstruction. More particularly, 
we use geometric features based on the combination of the 
eigenvalues 𝜆! ≥ 𝜆" ≥ 𝜆# ≥ 0 of the covariance tensor 
computed within a local neighbourhood of a point, as used by 
(Weinmann et al., 2015; Hackel at al., 2016) as implemented in 
CloudCompare (2021). More particularly, the metrics that were 
experimentally found to be of significance for highlighting the 

fine details, were surface variation and normal change rate. Local 
surface variation is defined as: 
 

𝐶$ =	
𝜆#

(𝜆! +	𝜆" +	𝜆#)
. 

 
Similar to surface variation, normal change rate represents the 
curvature variation within a local neighbourhood radius. This 
kernel size k was decided taking into consideration the density of 
the vertices. Results are shown as colour maps to highlight the 
high frequency details and noise (Figure 6-7-8). 
Using the proposed approach, more evident details are observed 
in the qualitative comparison of the mesh models, especially 
where accurate 3D edges were reconstructed (Figure 5). 
Inevitably, potential errors in edge reconstruction may add some 
noisy triangles, hence a more robust 3D edge reconstruction and 
refinement step may be needed. However, RMS error to the GT 
model is similar between the standard mesh and the mesh 
generated using our approach (Table 1). But using the 
appearance-based metrics, we observe more evident fine details 
using the proposed approach. 
 

Dataset  RMS (mm) 

Fountain-P11 with edges 10.761 
standard 10.756 

ETH3D-Facade with edges 16.440 
standard 16.415 

DTU-006 with edges 0.313 
standard 0.309 

Table 1. RMS errors for the three datasets. 
 
 

5. CONCLUSIONS 

An ideally reconstructed mesh in MVS scenarios should be 
smooth but also detail-preserving, especially around the natural 
crease edges. In this paper we presented an approach to leverage 
edge information in the standard MVS mesh reconstruction 
pipeline. Edges are detected and reconstructed in 3D using the 
approach of Hofer et al. (2016) enwrapped in the Line3D++ 
algorithm, while the performance and usability of EdgeGraph3D 
is also evaluated for our dense MVS scenarios. This presented 
edge-enhancing MVS methodology provide for more detailed-
preserving meshes based on the appearance-based metrics used 
for the evaluation. Among the potential limitations of the method 
we address that the quality of the reconstructed mesh highly 
depends on the accuracy of the extracted 3D edges. 
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Figure 5.  GT mesh and clouds with overlaid 3D edges in red (left) standard MVS mesh (centre) mesh with edge details (right). 
Fountain-P11 (upper row), ETH3D-Facade (middle row), DTU-006 (lower row). 
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Figure 6. Fountain-P11: surface variation and normal change rate for GT (left), standard mesh (centre), mesh with edges (right). 
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Figure 7. ETH3D-Façade: surface variation and normal change rate for GT (left), standard mesh (centre), mesh with edges (right). 
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Figure 8. DTU-006: surface variation and normal change rate for GT (left), standard mesh (centre), mesh with edges (right). 
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