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ABSTRACT: 

 

In this paper we present the semantic SLAM method based on a bundle of deep convolutional neural networks. It provides real-time 

dense semantic scene reconstruction for the autonomous driving system of an off-road robotic vehicle. Most state-of-the-art neural 

networks require large computing resources that go beyond the capabilities of many robotic platforms. We propose an architecture for 

3D semantic scene reconstruction on top of the recent progress in computer vision by integrating SuperPoint, SuperGlue, Bi3D, 

DeepLabV3+, RTM3D and additional module with pre-processing, inference and postprocessing operations performed on GPU. We 

also updated our simulated dataset for semantic segmentation and added disparity images. 

 

1. INTRODUCTION  

The task of determining the proper position of a robotic platform 

is closely related to calculating the coordinates of objects in the 

surrounding space. The navigation task is to find the position of 

the vehicle in relation to the 3D scene model (sparse or dense). 

Usually, navigation and mapping tasks are solved simultaneously 

using Simultaneous Localization And Mapping (SLAM) 

algorithms (R. Mur-Artal et al., 2017; J. Engel et al., 2018; Engel 

et al., 2018; C. Forster et al., 2014; T. Qin et al., 2018; B. 

Vishnyakov et al., 2020b). 

 

In the last few years, there has been significant progress in solving 

the data association problem through matching, optical flow 

calculation, scene reconstruction and segmentation using Deep 

Convolutional Neural Networks (DCNN).  

 

During the last few decades, a number of methods for identifying, 

matching, and analyzing image key points have been introduced. 

Currently, both relatively simple methods based on image 

gradients and more complex methods of feature analysis using 

deep convolutional neural networks are widely used. Mapping 

feature points using neural networks allows us to achieve a more 

reliable solution, because feature points, calculated using 

standard methods, group mostly on high contrast objects, such as 

grass, buildings and trees. Algorithms based on DCNN are 

trained to detect feature points more wisely, and we get a more 

uniform distribution of feature points in the image as a result. 

 

Sparse 3D reconstruction can be achieved during SLAM process 

by calculation and tracking of feature points with inertial sensor 

prediction. For dense reconstruction you can use a standard 

mapping pipeline with any classic (H. Hirschmuller, 2005; J. Sun 
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et. al, 2003; V. Kolmogorov et. al, 2001) or DCNN (X. Cheng et. 

al, 2020; A. Badki et. al, 2020) stereo disparity map calculation 

method. Neural network stereo disparity is characterized by 

pretty accurate values for the entire image. In our work, we tried 

to combine the latest machine learning approaches with state-of-

the-art photogrammetry methods. 

 

Finally, there is a problem of making a 3D dense point cloud 

semantic, so an autonomous platform can distinguish the 

obstacles. Moreover, if it goes to off-road conditions, grass or tiny 

bush higher than clearance looks like an impassable obstacle in 

the point cloud. Marking every pixel in a point cloud with a 

semantic class label leads to a next level of scene understanding 

for the autonomous vehicle, changing the passability map. 

 

Feature point detection and descriptor extraction was performed 

using the SuperPoint architecture (D. DeTone et al., 2018), which 

is a fully convolutional neural network. Unlike other neural 

network approaches, SuperPoint takes an image as an input and 

jointly detects interest points and extracts their descriptors in one 

pass. This model is trained on different datasets using projective 

transformations, which allowed authors to obtain state-of-the-art 

quality assessment results compared to SIFT (D. G. Lowe et al., 

2004), ORB (E. Rublee et al., 2011) and other classic methods. 

This approach can be widely used to solve such problems as 

SLAM, Structure from Motion (SfM), Multi-view Stereo, etc. 

 

Another step in SLAM process is feature point matching. We 

propose a modified SuperGlue architecture (P. -E. Sarlin et al., 

2020), which takes interest points and descriptors from two 

images as an input. This architecture is based on a graph neural 

network with attention units that increase the receptive field of 

the descriptors and ensure their cross-interaction. SuperGlue 
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outperforms other approaches in the task of feature point 

matching on pairs of images in complex indoor and outdoor 

environments. SuperPoint and SuperGlue can be integrated into 

modern visual odometry systems. 

 

Two neural network architectures were considered to build a 

dense reconstruction. In (X. Cheng et. al, 2020), a model designed 

with Neural Architecture Search (NAS) (B. Zoph et al., 2016) 

algorithm was proposed to construct a dense reconstruction of a 

scene using stereo matching. NAS has already been applied to 

various computational tasks such as classification, detection and 

semantic segmentation. The basic idea of NAS is simple, namely 

to find the optimal architecture it is necessary to allow the 

network to be able to tweak operation parameters (for example, 

convolutions with different kernel sizes), thus better adapt the 

model to the task. However, so far NAS has not been applied to 

the dense reconstruction problem. This is partly due to the fact 

that modern human-designed stereo matching networks already 

have a huge number of parameters, thus the direct application of 

NAS to such massive neural networks is an extremely 

computationally expensive task. However, extensive experiments 

have shown that this network obtained using NAS outperforms 

many modern methods of building dense reconstruction in terms 

of accuracy in the KITTI Stereo 2015 tests (M. Menze, 2015). 

 

However, for some applications, such as autonomous vehicles, it 

may be useful to trade off accuracy for lower latency. In (A. 

Badki et al., 2020), a Bi3D method was presented, which 

estimates the depth using binary classifications. Unlike classic 

neural network depth extraction methods, which determine the 

depth value of each pixel, this approach, based on binary 

classification, allows to calculate a dense disparity map – 

determine the pixels closer or farther than the D value. This 

property is a powerful mechanism for balancing accuracy and 

latency. Bi3D can detect objects closer than D value in just a few 

dozens of milliseconds, or estimate depth with quantization, 

where inference time depends linearly on the number of 

quantization levels. Bi3D can also produce full range depth 

estimation and provide quality state-of-the-art neural network 

methods for dense stereo reconstruction. 

 

Semantic segmentation is a pixel-by-pixel classification of an 

image, it gives a detailed view on the shape of objects in it. In 

recent years we can see an increasing number of applications of 

semantic segmentation, such as autonomous vehicles, robotic 

systems and virtual reality for which an understanding of the 

scene is necessary. Image semantic segmentation is crucially 

important for the automatic control system of modern 

autonomous vehicles.  An accurate understanding of the 

surrounding scene is important for navigation and decision-

making by control system of robotic autonomous platform. 

 

3D object detection is an essential component of scene perception 

by autonomous vehicle. Currently, most 3D object detectors 

heavily rely on LIDAR data for obtaining accurate depth 

information. The 3D detection can be divided into two groups by 

the type of data: LiDAR and image-based methods (Y. Wang et 

al., 2018; P. Li et al., 2020). LiDAR-based systems can provide 

accuracy and reliable point cloud of object surfaces in 3D scene. 

Therefore, most of the recent 3D object detection use LiDAR data 

to obtain the state-of-the-art results. However, LiDAR system has 

some disadvantages: its price, unsustainability to rainy 

conditions, etc. In (P. Li et al., 2020) authors proposed a model 

for monocular 3D objects detection using only RGB images, 

called RTM3D. Authors designed a fully convolutional model to 

predict object key points, dimensions, and orientation. This 

model only requires RGB images without additional data such as 

instance segmentation, disparity image or pseudo-lidar data (Y. 

Wang et al., 2018). Nevertheless, experiments on the KITTI 3D 

detection dataset indicate that the RTM3D surpasses many 

previous state-of-the-art methods in both efficiency and accuracy 

by a large margin. 

 

In this paper we propose a method for solving the problem of 

visual-inertial dense stereo odometry and SLAM using a hybrid 

approach based on the advantages of machine learning methods 

for data association and standard photogrammetry methods for 

self-position calculation. We implement the indirect semantic 

SLAM method, where two pre-trained neural networks are used 

to compare feature points and calculate a dense reconstruction. 

Using semantic segmentation, we set each pixel in a point cloud 

an obstacle class label. The proposed approach allows us to 

achieve a much better quality of spatial position determination 

and semantic dense reconstruction compared to the classical 

methods. 

  

2. METHOD  

In this paper, we propose a method for computing odometry and 

dense reconstruction based on our own implementation of the 

SLAM method, which is an improved version of classic 

algorithms (C. Forster et al., 2014; R. Mur-Artal et al., 2017; B. 

Vishnyakov et al., 2020a) in terms of accuracy, speed, and 

robustness. Our method of dense stereo reconstruction is based 

on the neural extraction of point features and computation of 

disparity by means of deep neural networks. 

 

We used SuperPoint neural network architecture for interest 

points detection and descriptors extraction and by using 

SuperGlue neural network for singular point matching.  

Moreover, we collected and annotated our city and off-road 

dataset presented in (B. Vishnyakov et al., 2020b) for SuperPoint 

algorithm training. In particular, we calculated feature points and 

descriptors, then iteratively found and removed all outliers, and 

then the model was finetuned. Thus, we were able to significantly 

improve the quality of the algorithm in outdoor city and off-road 

scenes. 

 

For feature point matching we trained the SuperGlue neural 

network architecture on our annotated dataset. For training we 

used image pairs from left and right cameras of the stereo pair 

with different (but close) frame timestamps. It made our method 

much more robust to the environment changes and raised the 

overall matching quality by gaining the ability to find the 

corresponding feature points in different parts of images. 

 

Result images of the proposed approaches demonstrated in 

(Figures 1 and 2), matching score of white points is less than 

threshold, matching score of red points is greater than threshold. 
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Figure 1. The result of the algorithm for interest points 

detection and descriptors extraction. 

 

Figure 2. The result of the algorithm for matching interest 

points. 

For dense scene reconstruction we used Bi3D algorithm, based 

on the data from the stereo pair. The algorithm receives rectified 

images as an input, and outputs dense disparity. We calculate 

depth from disparity using camera calibration parameters (Figure 

3). We run this algorithm once or twice per second during the 

SLAM procedure to get dense scene reconstruction while moving 

the vehicle. 

 

 

Figure 3. The result of the dense stereo reconstruction 

algorithm. 

The main drawback of the algorithm that generates dense 

disparity is that any sharp edges on the disparity map (for 

example, object contours) are being smoothed (Figure 4 (a)). This 

creates significant errors on such edges, causing noisy trails to 

appear in corresponding regions of the point cloud. To lower the 

noise, we processed the disparity map (treated as a grayscale 

image in this context) with the following steps: use 

morphological dilation in the disparity map, find edges on the 

initial disparity map using Canny algorithm with high thresholds, 

use dilation again with lower radius to turn these edges into the 

thick lines and then fill the corresponding regions on the disparity 

map with data from the dilated map image. This algorithm 

effectively thickens the border of any object, turning continuous 

transition into a sharp edge (Figure 4 (b)). 

 

(a) 

 

(b) 

Figure 4. The result of the dense stereo reconstruction  

algorithm (a), result after postprocessing (b). 

For semantic segmentation we used our algorithm presented in (I. 

Sgibnev et al., 2020). This algorithm is based on the lightweight 

architectures as a backbone for real-time solution of semantic 

segmentation problem for autonomous vehicle. Moreover, we 

replaced DeepLabV3 (L.-C. Chen et al., 2017) decoder by 

DeepLabV3+ (L.-C. Chen et al., 2018) decoder and retrained it 

on our dataset, which improved accuracy of the scene 

segmentation by 1.9% mIoU. 

To make our dense point cloud semantic we use a rectified image 

from the left camera as an input to the semantic segmentation 

algorithm. While calculating depth we use information about 

pixel class for scene reconstruction (Figure 5). 

 

Figure 5. The result of the semantic segmentation and dense 

stereo reconstruction algorithm. 

 

Figure 6. The result of the 3D detection algorithm. 

RTM3D is a single-stage convolutional neural network for an 

accurate and efficient 3D object detection using only monocular 

image. This model focuses on 3D object detection for 

autonomous driving systems. Inspired by CenterNet (K. Duan, et 

al., 2019), this model is a fully convolutional architecture to 

predict 9 key points (8 vertexes and the central point of a 3D 

bounding box) (Figure 6). A simple and efficient architecture 

combines the strengths of both CNN and perspective geometry, 

and also achieves real-time 3D object detection using only 

monocular RGB images.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-399-2021 | © Author(s) 2021. CC BY 4.0 License.

 
401



 

Figure 7. Scheme of constructing 3D semantic scene. 

Using SuperPoint, SuperGlue, Bi3D, DeepLabV3+ and RTM3D 

we can build a semantic three-dimensional model which one of 

the key elements of an autonomous robotic vehicle. The SLAM 

component allows you to get an odometry and dense point cloud. 

The imposition of semantic segmentation and bounding boxes on 

dense point cloud gives us the class of each point. 

Those algorithms, running in parallel (Figure 7), provide a real-

time semantic, dense, and dynamic 3D-model of a scene. Using 

this model, artificial intelligence algorithms, running on an off-

road autonomous robotic vehicle, can adjust the patency map and 

correct the optimal path. 

 

 

Figure 8. Visual odometry and 3D semantic scene. 

 

3. DATASET 

Moreover, we upgrade our simulated dataset consisting of 

3,500,000 images.  

We used our own software package based on Unreal Engine 4 

graphics engine that provides a large set of tools for realistic 3D 

modelling (Figure 9). 
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(a) 

 

(b) 

 

(c) 

Figure 9. Input images from our datasets (a), semantic segmentation masks (b), depth mask (c).

 

4. IMPLEMENTATION 

The peculiarity of the implementation of our method is the 

adaptive use of computing resources. All of the neural network 

models were converted to NVIDIA TensorRT format, which 

significantly reduced inference time and allowed these models to 

run in real time.  

 

We compared implementation of these models using NVIDIA 

TensorRT and PyTorch libraries. NVIDIA TensorRT versions 

requires about thrice less time to process in comparison with 

PyTorch. You can find performance test results (including 

preprocessing and postprocessing operations) in Table 1. 

 

Method  Input size Time(ms) 

on 

PyTorch 

Time(ms) on 

TensorRT 

(fp16) 

SuperPoint 1024×1024 43 12 

SuperGlue  1024×1024 54 20 

Bi3D 384×1248 370 125  

DeepLabV3+ 384×1248 85 27 

RTM3D 384×1248 97 40 

 

Table 1. Inference time models on PyTorch and NVIDIA 

TensorRT. 

 

 

Inference time in Table 1 was measured on an industrial PC 

having Intel Core i7 gen7 and Nvidia Geforce RTX 2080 

onboard. 

Interest point detection and matching, depth calculation, 

semantic segmentation and 3D object detection algorithms can 

be run in parallel. Eventually, we get less than 150ms per pair of 

frames from left and right cameras, which is about 7 FPS. 

 

5. CONCLUSIONS AND FUTURE WORK 

Analyzing the results, we can conclude that using deep neural 

networks for the SLAM problem and dense stereo semantic 

reconstruction allows to achieve better results in terms of 

reliability, accuracy of the solution and scene understanding. 

In near future we want to apply our lidar and camera calibration 

approach, described in (B. Vishnyakov et al., 2020b), to our 

dense scene reconstruction method. We are quite sure that fusion 

of lidar data and depth map can improve the precision of 

calculated distance to obstacles. 

Also, we are going to modify the Bi3D architecture to decrease 

its computational costs. We will use depth loss instead of 

disparity loss for a dense scene reconstruction model, which may 

help to solve problems of sharp edges. 
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