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ABSTRACT:

Stereo dense matching is a fundamental task for 3D scene reconstruction. Recently, deep learning based methods have proven
effective on some benchmark datasets, for example Middlebury and KITTI stereo. However, it is not easy to find a training dataset
for aerial photogrammetry. Generating ground truth data for real scenes is a challenging task. In the photogrammetry community,
many evaluation methods use digital surface models (DSM) to generate the ground truth disparity for the stereo pairs, but in this
case interpolation may bring errors in the estimated disparity. In this paper, we publish a stereo dense matching dataset based
on ISPRS Vaihingen dataset, and use it to evaluate some traditional and deep learning based methods. The evaluation shows that
learning-based methods outperform traditional methods significantly when the fine tuning is done on a similar landscape. The
benchmark also investigates the impact of the base to height ratio on the performance of the evaluated methods. The dataset can be
found in https://github.com/whuwuteng/benchmark ISPRS2021.

1. INTRODUCTION

Dense matching is a traditional topic in 3D reconstruction,
which can be performed in stereo (with only two views)
(Scharstein, Szeliski, 2002) or multi-view stereo (MVS)
(Jensen et al., 2014). In this paper, we focus on stereo dense
matching in the specific case of epipolar stereo pairs (where
expected correspondences are on the same lines of the two im-
ages) as most of the recent deep learning approaches are lim-
ited to this simple configuration. The recent successes of deep
learning based dense matching methods in the computer vision
community (Laga et al., 2020) raise the question of their ap-
plicability in the geospatial context. This paper will investigate
this question by comparing traditional and machine learning es-
pecially deep learning dense matching techniques on geospatial
data.

1.1 Traditional methods

Traditional dense matching methods (Hirschmuller, 2005) are
usually decomposed into four steps: hand-crafted features com-
putation, feature matching across images (i.e., the cost volume),
cost aggregation and disparity refinement. They can be di-
vided into local and global methods. Local methods mainly
take into consideration the local features (hand-crafted feature)
(Hirschmuller, Scharstein, 2007) or a local region (Tombari et
al., 2008). The global methods mainly add an optimization
based cost aggregation step, based on dynamic programming
(Van Meerbergen et al., 2002), belief propagation (Sun et al.,
2003) or Graphcut optimization (Boykov, Kolmogorov, 2004).
Semi global matching (SGM) is a reference method combin-
ing mutual information and dynamic programming optimiza-
tion on several directions (Hirschmuller, 2005). A GPU vari-
ant of SGM (Hernandez-Juarez et al., 2016) on the full image
scale is also evaluated in this paper, as well as a Graphcut based
method using plane constraints (Taniai et al., 2017). Graphcut
based methods are slower than SGM which is often considered
∗ Corresponding author

to offer the best balance between efficiency and accuracy (Beth-
mann, Luhmann, 2015).

1.2 Learning based methods

Traditional machine learning base methods have been proposed
to address the problem of dense matching. Support vector ma-
chine can be used to learn a linear discriminant function (Li,
Huttenlocher, 2008). Because features have their pros and cons,
a random forest (RF) can be used to fuse several feature types,
e.g. census, normalized cross-correlation (NCC), zero-mean
sum of Absolute Differences (SAD), SAD of Sobel feature
(Batsos et al., 2018). After feature fusion, a traditional opti-
mization is used to obtain the final result.

With development of deep learning, some steps of the tradi-
tional methods can be replaced by deep learning counterparts
(Laga et al., 2020). For instance, 2D convolutional neural net-
works (CNN) prove effective in feature extraction (Žbontar, Le-
Cun, 2016). In order to make CNN efficient, feature similarity
calculation can be treated as a multi-class classification (Luo
et al., 2016). After feature similarity calculation, traditional
optimization is used to obtain the final result. SGM-Net uses
a CNN network to provide learned penalties for SGM (Seki,
Pollefeys, 2017). GC-Net uses a 3D CNN based network as
cost aggregation (Kendall et al., 2017). Pyramid Stereo Match-
ing network uses spatial pyramid pooling and 3D CNN (Chang,
Chen, 2018). High resolution stereo network uses upscaling
in the 2D CNN network, so that the 3D cost volume does not
need to be down-scaled (Yang et al., 2019a). To address the
high memory consumption for high-resolution image matching,
a recent method (Duggal et al., 2019) proposes to prune the 3D
cost volume with a differential patch match method. CNN and
conditional random fields (CRF) can be combined into a hybrid
CNN-CRF model which is more effective than fully-connected
CRFs (Kendall et al., 2017). While these methods were de-
veloped by the computer vision community on indoor or out-
door dataset, we tested them on the ISPRS Vaihingen dataset
(Knöbelreiter et al., 2018), and we used Lidar data to gen-
erate ground truth disparity maps for training and evaluation.
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This paper evaluates the state-of-the-art deep learning based
dense matching approaches for which a public implementation
is available.

1.3 Benchmark data

Table 1 lists some benchmarks for stereo dense matching on
real scenes proposed by the robotics and computer vision com-
munities. Some are popular and widely used: the indoor Mid-
dlebury dataset (Scharstein et al., 2014); the KITTI datasets in
two versions, KITTI 2012 (Geiger et al., 2012) and KITTI 2015
(Mayer et al., 2016); or the ETH3D dataset containing stereo
pairs (Schops et al., 2017). Using advanced computer graph-
ics, some virtual datasets have also been generated (Yang et
al., 2019a; Mayer et al., 2016). The strong ongoing research
activity on autonomous driving has also resulted in several ded-
icated datasets such as Drivingstereo or AppolloScape (Yang et
al., 2019b; Huang et al., 2019).

In aerial photogrammetry, benchmark datasets focus mainly on
MVS dense matching (Cavegn et al., 2014). For satellite im-
agery, IARPA dataset is widely used for image dense match-
ing evaluation (Bosch et al., 2016), the traditional evaluation
method depends on DSM (Bosch et al., 2019), but the pipeline
contains other steps, for example, point cloud fusion and DSM
generation (Cournet et al., 2020). These steps can influence
the accuracy. A recent satellite image stereo benchmark from
LiDAR DSM (Patil et al., 2019) uses IARPA dataset. At the
same time, for high density LiDAR, when generating the DSM,
points on the walls are ignored.

Generating ground truth data from real scenes is challenging.
To avoid errors introduced by grid interpolation or point cloud
fusion and keep the points on walls, we propose a method to
generate sparse disparity ground truth for training deep learning
architectures. Then, we evaluate both traditional and learning
based methods on the proposed benchmark.

1.4 Overview

The paper is structured as follows: Benchmark data generation
is described in Section 2. Evaluations are provided in Section 3.
Finally, conclusions are drawn and the perspectives are pro-
posed in Section 4.

2. GROUND TRUTH DATA GENERATION

In this paper, we use the Vaihingen dataset from the ISPRS 3D
reconstruction benchmark which provides a good registration
of oriented images and LiDAR point clouds. The dataset is
composed of 20 images with a depth of 11 bits and the ground
sample distance (GSD) of 8 cm. The median LiDAR point den-
sity is 6.7 points/m2 (Rottensteiner et al., 2012). From this
data, epipolar stereo image pairs and the corresponding dispar-
ity maps are generated in four steps: data preprocessing, epipo-
lar image generation, point cloud projection, and benchmark
data production.

2.1 Data preprocessing

The Vaihingen dataset contains the images and their orientation
parameters, plus a LiDAR point cloud. First, we convert the
orientation files into the open source MicMac format (Pierrot-
Deseilligny et al., 2014) on which our workflow is based. As the
images can only capture the apparent surface we keep only the
first LiDAR echo. Moreover, we remove isolated points based
on the point cloud density using a grid filtering approach (Cho
et al., 2004).

2.2 Epipolar image generation

The first step of our process is to create epipolar image pairs
from input image pairs with sufficient footprint overlap. Coarse
image footprints are obtained using an approximate height of
the scene and the Computational Geometry Algorithms Library
(CGAL) (Flötotto, 2020) is used to compute their intersections.
Only image pairs with an intersection area above half the image
footprint are considered for epipolar rectification, which was
also done using the MicMac library. The corresponding orien-
tation parameter files are generated in order to allow the direct
projection of 3D points into the rectified images.

2.3 Point cloud projection

The ground truth disparity maps used for both training and eval-
uation are computed from the LiDAR point cloud. The perspec-
tive projection model is used to project the 3D point cloud into
image plane. The disparity d is defined in Equation (1).

d = xl − xr (1)

where xl and xr are the projection coordinate on x axis in the
image plane after projecting the 3D point cloud to the left and
right images.

Because the point cloud is sparse, it is difficult to predict the oc-
clusions which can be important (Bevilacqua et al., 2017). An
example of occlusion (in the left image) is shown in Figure 1.
Some points from the ground area should be removed as they
are occluded by the roof.

According to the epipolar geometry, the disparity is related to
the depth of object (Jain et al., 1995), in Equation (2), z is the
depth, b is base line length, f is the focal length, d is the dispar-
ity. The disparity is inversely proportional to the depth.

z =
b · f
d

(2)

For the aerial images, the disparity is related to the elevation,
such that ground points have a larger disparity than points on
the roof. Similarly as (Biasutti et al., 2019), we use a filter-
ing based on the density to remove occluded points: if the dif-
ference between the disparity and its median is larger than a
threshold, then the point is removed. This filter removes the
occluded points quite effectively, as shown in Figure 2.

2.4 Benchmark data production

After the disparity map generation, the benchmark dataset is
split into a training and testing sets. In our experiment, we
split the dataset according to the LiDAR point cloud area, as
shown in Figure 3. Similarly to the KITTI dataset, the fi-
nal data are 1024x1024 cropped images with 8bit depth color
band, and the disparity images are stored on 16bits with the
disparity value scaled by 256. After cropping the left im-
age, the offset of the right image is set to the average dis-
parity in this area in order to avoid too large disparity val-
ues. If the footprint of a cropped image intersects the train-
ing area, it is attributed to the training dataset, otherwise to
the testing dataset. An example is shown in Figure 4. Us-
ing this procedure, our training set contains 585 image pairs
while the testing set has 507 image pairs. In the training dataset
there are 337 stereo pairs along the flight strip (along-strip),
1 The IARPA dataset was published in 2016.
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Data Year Scene Stereo number Disparity density Citation
Middlebury V2 2003-2006 indoor 32 dense (Scharstein, Szeliski, 2003)
Middlebury V3 2014 indoor 33 dense (Scharstein et al., 2014)

ETH3D 2017 indoor + outdoor 47 dense (Schops et al., 2017)
KITII2012 2012 outdoor(driving) 389 sparse (Geiger et al., 2012)
KITTI2015 2015 outdoor(driving) 1600 sparse (Mayer et al., 2016)

Drivingstereo 2019 outdoor(driving) 182188 sparse (Yang et al., 2019b)
ApolloScape 2019 outdoor(driving) 5165 sparse (Huang et al., 2019)

SatStereo 20191 satellite 72 dense (Patil et al., 2019)
DFC2019 2019 satellite 8634 dense (Bosch et al., 2019)

Ours – aerial 1092 sparse –

Table 1. Benchmark datasets for disparity estimation. Stereo number is the total number of stereo pairs used for both training and
testing.

(a) Lidar point occluded in an image

(b) LiDAR points projected in the image

Figure 1. Occlusion in projection.

and 248 stereo pairs are across the flight strip (across-strip).
In the testing dataset there are 323 stereo pairs along-strip and
184 across-strip, and they will be used to evaluate the impact
of the base to height ratio (B/H) as the B/H is different in
these two settings. More detailed information can be found in
https://github.com/whuwuteng/benchmark ISPRS2021.

3. EVALUATION

After generating the epipolar image pairs and the corresponding
ground truth disparity images from LiDAR, we evaluate several
traditional and learning based methods on this dataset:

1. MICMAC: A variant of SGM implemented in MicMac
(Pierrot-Deseilligny, Paparoditis, 2006), using NCC as

(a) Disparity without occluded
points filtering shown after nearest
interpolation.

(b) Disparity with occluded points
filtering shown after nearest inter-
polation

Figure 2. Occlusion removal.

similarity feature, the code is written in C++ (micmacIGN,
2020).

2. SGM (GPU): A variant of SGM based on GPU
(Hernandez-Juarez et al., 2016), using census as similarity
feature, the code is based on C++ and CUDA (Hernandez-
Juarez, 2020).

3. GraphCuts: A Graphcut based method (Taniai et al.,
2017), using intensity and gradient consistencies, and us-
ing plane as a constraint, the code is written in C++
(Taniai, 2020).

4. CBMV: A coalesced bidirectional matching volume based
method (Batsos et al., 2018) using a random forest (RF) to
fuse the features, followed by dynamic programming op-
timization (CBMV (SGM)) or Graphcut (CBMV (Graph-
Cuts)) which has the same implementation with Graph-
Cuts. The code is based on C++, CUDA (SGM implemen-
tation) and Python (Batsos, 2020).

5. DeepFeature: A deep learning network is used to obtain
the features, then optimize with dynamic programming
(Luo et al., 2016), the code is based on C++, CUDA (SGM
implementation) and Lua torch (Luo, 2020).

6. PSM net: A pyramid stereo matching network using a spa-
tial pyramid pooling and a 3D CNN to train an end-to-end
model (Chang, Chen, 2018). The code is based on Pytorch
(Chang, 2020).

7. HRS net: A high resolution stereo network structure im-
proving the accuracy without downscaling the cost volume
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Figure 3. Training and testing area on Vahingen.

(Yang et al., 2019a). The code is based on Pytorch (Yang,
2020).

8. DeepPruner: A 3D cost volume is pruned with a differen-
tial patch match method to avoid a full cost volume cal-
culation and evaluation (Duggal et al., 2019). The code is
based on Pytorch (UberResearch, 2020).

3.1 Experimental setup

The disparity search range is an important parameter for stereo
dense matching. Some methods do not need this parameter, i.e.,
MICMAC and DeepPruner. In SGM(GPU), the range is set to
128 and is dictated by the implementation. For other methods,
it is set to 192.

For machine learning based methods, the training data and
hyper-parameters impact significantly the results. For the Ran-
dom Forest based method CBMV, 54 epipolar pairs are used for
training. For deep learning based methods, all the training data
is used. For the evaluation, all the testing data is used for all
methods.

In our experiments, we compare deep learning methods pre-
trained on the KITTI dataset and fine tuned on our Vahingen
ground truth disparity. We found that batch size has a strong
impact on the memory requirements and on the accuracy, as
shown in Table 2 for PSM net. We decided to use the default
batch size proposed in the implementation: 12 for PSM net, 28
for HRS net and 16 for DeepPruner. For the fine-tuning experi-
ments on Vaihingen dataset, we did the same for the number of
epochs: 20 for DeepFeature, 500 for PSM net, 700 for HRS net
and 900 for DeepPruner.

Table 2. Influence of the batch for PSM net.

Method Batch size Accuracy[%]
<2-pixel <3-pixel <5-pixel

PSM net 3 81.988 87.022 91.501
12 84.065 88.324 92.395

3.2 Pixel error

In stereo dense matching evaluation, the pixel error (error be-
tween the estimated disparity and the ground truth) is an impor-
tant metric to analyze the performance. In our experiment, we

(a) Left image (b) Right image

(c) Disparity map

Figure 4. An example of the dataset. In Figure 4(c), pixels with
valid disparity values are displayed in bright.

compute the 2, 3 and 5-pixel error. Accuracy is the percentage
of positive pixels in valid pixels within the ground truth.

Table 3. Evaluation of methods on testing data. For SGM(GPU),
only evaluate disparity smaller than 128, for other methods max-
imum disparity is 192.

Method Accuracy[%]
<2-pixel <3-pixel <5-pixel

MICMAC 67.169 74.283 81.429
SGM(GPU) 71.564 78.539 84.799
GraphCuts 71.704 76.404 80.951

CBMV(SGM) 74.941 80.540 85.342
CBMV(GraphCuts) 76.387 82.229 87.227

DeepFeature 78.265 83.982 88.878
PSM net 84.065 88.324 92.395
HRS net 79.135 85.243 91.238

DeepPruner 83.568 87.893 92.223

As shown in Table 3, the result shows that machine learn-
ing based methods have a significantly better performance
than traditional methods. While slower, Graphcut optimization
achieves better results than dynamic programming. PSM net
has the best result among all tested deep learning methods.

As for the deep learning methods, the data used for learning
highly influences the results. A comparison between the results
obtained with a pretrained model and with a model finetuned on
our learning set is provided in Table 4. This experiment shows
that the dependency of deep learning methods on the training
data depends on the method. Comparing to DeepFeature which
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(a) Building area (b) Tree area

Figure 5. Two examples of the testing data: building area and tree
area.

is a hybrid method, end-to-end methods depend more on the
training data.

Table 4. Evaluation of deep learning based methods on fine tune
dataset.

Method
Training Accuracy[%]

data <2- <3- <5-
pixel pixel pixel

DeepFeature(Pre) KITTI2015 70.888 78.918 82.921
DeepFeature Vaihingen 78.265 83.982 88.878
PSM net(Pre) KITTI2015 38.532 62.589 80.801
PSM net Vaihingen 84.065 88.324 92.395
HRS net(Pre) KITTI2015 69.009 78.462 86.692
HRS net Vaihingen 79.135 85.243 91.238
DeepPruner(Pre) KITTI(full) 52.278 63.242 73.407
DeepPruner Vaihingen 83.568 87.893 92.223

In our experiments, we found that the base height ratio B/H of
the epipolar stereo pairs also influences the result, as shown in
Table 5. Images along-strip are usually used for dense match-
ing because they have a large overlap and small B/H . Images
across-strip have a larger B/H which can increase the inter-
section accuracy, but leads to more errors because of a larger
perspective distortion and more occlusions (Tola et al., 2008).

Table 5. Base height ratio for the testing dataset.

image type base height ratio(B/H)
minimum maximum average

along-strip 0.225 0.231 0.229
across-strip 0.380 0.390 0.385

In order to investigate the effect of the B/H , we experimented
two different trainings of the model: using all the training
dataset and only the along-strip images. As shown in Table 6,
the result in across-strip is not as good as along-strip. For
the along-strip based training, the dataset size is smaller than
the all-based training, but there is no big difference on the re-
sults of along-strip testing data. This means that the along-strip
images are sufficient for the fine-tuning. However, using im-
ages across-strip to fine-tune can improve the performance on
across-strip pairs. Especially, the 1-pixel error can be improved
significantly for all the methods.

3.3 Error analysis

Pixel error is a statistical metric. When the scene is com-
plex, errors can show different patterns on buildings (man-made

structure), ground, vegetation and so on. To visualize this, in
Figure 5 we provide the error maps on different scenes. Be-
cause the ground truth is sparse, the error maps are interpolated
with the nearest point in order to facilitate the interpretation.
The disparity map is visualized using an ambient occlusion
shading implemented in MicMac as shown in Figure 6. Fig-
ures 6(p) and 6(r) demonstrate that the Graphcut based methods
are smooth on building’s roofs. Figures 6(k) to 6(m) demon-
strate that the deep learning based methods perform well on
building’s boundary (disparity discontinuity).

DeepPruner proves to have the second best result among these
methods, but the pre-trained result is poor as shown in Fig-
ure 7(i), which means that DeepPruner is highly dependent on
the training dataset. Because there is a plane constraint in the
GraphCuts method, the result are not satisfactory on trees, as
shown in Figure 7(c).

4. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new stereo benchmark dataset
adapted to deep learning and evaluate some existing traditional
and learning based methods on this dataset. Experiments show
that:

• Learning based methods perform better than traditional
methods.

• Fine-tuning deep learning architectures by transfer learn-
ing on a specific dataset improves the results significantly.

• Along-strip images and across-strip images should be con-
sidered in training.

Our future work will focus on extending the benchmark to satel-
lite images, but also studying how training on different scenes
and sensor types affect the performance of learning-based meth-
ods.
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