
TOWARDS LEARNING LOW-LIGHT INDOOR SEMANTIC SEGMENTATION WITH
ILLUMINATION-INVARIANT FEATURES

N. Zhang1,∗, F. Nex1, N. Kerle1, G. Vosselman1

1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
(n.zhang, f.nex, n.kerle, george.vosselman)@utwente.nl

Commission II, WG II/5

KEY WORDS: Semantic Segmentation, Dataset, Low-light, Image Decomposition, Deep Learning, Scene Understanding.

ABSTRACT:

Semantic segmentation models are often affected by illumination changes, and fail to predict correct labels. Although there has
been a lot of research on indoor semantic segmentation, it has not been studied in low-light environments. In this paper we propose
a new framework, LISU, for Low-light Indoor Scene Understanding. We first decompose the low-light images into reflectance
and illumination components, and then jointly learn reflectance restoration and semantic segmentation. To train and evaluate the
proposed framework, we propose a new data set, namely LLRGBD, which consists of a large synthetic low-light indoor data
set (LLRGBD-synthetic) and a small real data set (LLRGBD-real). The experimental results show that the illumination-invariant
features effectively improve the performance of semantic segmentation. Compared with the baseline model, the mIoU of the
proposed LISU framework has increased by 11.5%. In addition, pre-training on our synthetic data set increases the mIoU by 7.2%.
Our data sets and models are available on our project website.

1. INTRODUCTION

Indoor semantic segmentation is a fundamental computer vis-
ion task, which assigns a semantic label to each pixel in an
indoor scene image. In recent years, convolutional neural net-
works (CNNs) have made remarkable achievements in indoor
semantic segmentation. However, most of the research focuses
on the segmentation of normal-light scenes, while scene under-
standing in low-light indoor scenes is practical but has not been
investigated much. When robots or first responders perform
search tasks and use a light source to illuminate a dark room,
the lack of illumination will make the colors and textures of the
same objects look different when views change. The illumin-
ation variances reduce the robustness of CNN-based methods
and yield inaccurate segmentation. It is nearly impossible to
build a sufficiently large data set to cover all illumination set-
tings and train a robust CNN on it to learn complete represent-
ations of illumination changes. To overcome the negative influ-
ence of illumination changes on semantic segmentation, some
research work in the field of autonomous driving pre-processed
RGB images and transform them into illumination-invariant im-
ages based on spectral response (Alshammari et al., 2018, Mad-
dern et al., 2014, Upcroft et al., 2014). However, these trans-
formation methods are sensitive to the saturation of images, so
they are not always effective (Upcroft et al., 2014).

This paper attempts to fill the gap of indoor semantic seg-
mentation under low-light, and explores to take advantage of
illumination-invariant features to improve the segmentation ac-
curacy. Inspired by some intrinsic image decomposition meth-
ods based on Retinex theory (Land and McCann, 1971), an im-
age I can be factorized as the product of a reflectance mapR(I)
and an illumination map S(I):

I = R(I) · S(I). (1)
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Figure 1. Compared with the direct segmentation of low-light
images (a), our approach (b) seeks clues from

illumination-invariant features.

The reflectance component is beneficial to segmentation task
because it represents the intrinsic property of a scene and shows
the original colors of objects that are not affected by illumina-
tion. As shown in Figure 1, we propose a novel framework
dubbed LISU, which segments low-light indoor scenes by em-
bedding illumination-invariant features into the segmentation
branch. We decompose paired low/normal-light images of the
same scene into reflectance and illumination components in an
unsupervised manner. Then, we feed the decomposed compon-
ents of the low-light image into a simple encoder-decoder net-
work. This network has two separate decoders, learning reflect-
ance restoration and semantic segmentation, respectively. The
features from each task’s decoder are linked to the decoder of
the other task, so as to enable tighter joint learning of two tasks.
Our contributions can be summarized as follows:

• We propose a novel framework which exploits the
illumination-invariant features for robust low-light indoor
semantic segmentation. As far as we know, we are
the first to propose an end-to-end (without any pre/post-
processing) trainable framework for semantic segmenta-
tion in low-light indoor scenes.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-427-2021 | © Author(s) 2021. CC BY 4.0 License.

 
427



|←    shared encoder   →|

Image Decomposition Reflectance Restoration &

Semantic Segmentation

LISU-decomp

LISU-joint

Output

Encoder feature maps

LISU-joint

𝐼𝑙  

𝐼𝑛  

𝑅(𝐼𝑛) 𝑅(𝐼𝑙) 

𝑆(𝐼𝑛) 𝑆(𝐼𝑙) 

𝑅 (𝐼𝑙) 

Segmentation

Reflectance feature maps

Feature maps copied from encoders

Semantic feature maps

Feature maps copied from decoders

Input

Figure 2. The cascade architecture of our LISU network, which consists of LISU-decomp and LISU-joint. LISU-decomp learns the
decomposition of each input image, and LISU-joint jointly learns the reflectance restoration and semantic segmentation.

• Since there is no available data set for low-light indoor
scene understanding, we collect and annotate a large syn-
thetic data set and a small real data set to train and evaluate
our method. For each scene in the data sets, two different
illumination settings are deployed. Besides, the corres-
ponding segmentation maps and depth maps are provided.

• The experimental results show the effectiveness of intro-
ducing illumination-invariant features to the low-light se-
mantic segmentation task. Our data sets and models are
available on our project website1.

The remainder of the article is organized as follows. Section
2 introduces the architecture and loss functions of our LISU
framework. Section 3 presents the details of the data sets. Sec-
tion 4 elaborates on the experimental results and discussion.
Section 5 concludes the paper.

2. LISU: A FRAMEWORK FOR LOW-LIGHT
INDOOR SCENE UNDERSTANDING

The upper part of Figure 2 shows our LISU framework for
Low-light Indoor Scene Understanding. It consists of two sub-
networks: LISU-decomp and LISU-joint. The former is re-
sponsible for decomposing an image into reflectance and illu-
mination components. The second sub-network receives the re-
flectance map and illumination map of the the low-light image
output by LISU-decomp and performs joint learning of reflect-
ance restoration and semantic segmentation. Our framework
needs paired low/normal-lights for training, while only low-
light images are needed at the inference stage. Next, we will
introduce the detailed structures and loss functions of the two
sub-networks.

1 https://noahzn.netlify.app/project/low-light-indoor-scene-
understanding/

2.1 LISU-decomp: Intrinsic Image Decomposition

Our decomposition network is shown in the upper left (green
box) of Figure 2. The long skip connection (gray arrows) con-
catenates the features from the encoder to corresponding de-
coder layers and enables the network to preserve low-level in-
formation and generate sharper result. Similar network struc-
tures have been used for intrinsic image decomposition (Dai
et al., 2016, Rematas et al., 2016) and semantic segment-
ation (Ronneberger et al., 2015, Wu et al., 2018). Since
the ground-truth of the reflectance map and illumination map
of real images are not available, we adopt the unsupervised
method proposed in (Zhang et al., 2019) and suppose that we
have paired images of the same scene taken under low-light and
normal-light conditions [Il, In]. We use the same network to
decompose these two images into a reflectance map and an il-
lumination map, namely [R(Il), S(Il)] and [R(In), S(In)], re-
spectively. According to Eq. 1, the first part of our reconstruc-
tion loss can be defined as:

Lrecon1 = ‖Il−R(Il) ·S(Il)‖1+‖In−R(In) ·S(In)‖1, (2)

where ‖ · ‖1 denotes the l1 norm. Ideally, the reflectance maps
of two images should be equal. Therefore, we can reconstruct
the low-light image using the reflectance map of the normal-
light image and the illumination map of the low-light image,
and vice versa. We construct another part of reconstruction loss
as follows:
Lrecon2 = ‖Il−R(In) ·S(Il)‖1+‖In−R(Il) ·S(In)‖1. (3)

Following Retinex-based methods (Guo et al., 2016, Handa et
al., 2016, Land and McCann, 1971), we use the maximum val-
ues of RGB channels of input as an initial estimation of the
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illumination map:

Linit = ‖S(Il)− max
c∈{R,G,B}

Icl ‖1 + ‖S(In)− max
c∈{R,G,B}

Icn‖1.

(4)
We also use a loss to constrain the smoothness of the illumina-
tion map. Our structure-aware smoothness loss is defined as:

Lsmooth =‖∇S(Il) · exp(−λg∇Il)‖1
+ ‖∇S(In) · exp(−λg∇In)‖1,

(5)

where ∇ represents for the first-order derivative in both hori-
zontal and vertical directions. λg is a weight term to ensure
piece-wise smooth, and it is set to 10 as in (Wei et al., 2018).
Unlike (Wei et al., 2018) that used reflectance maps to weight
the function, we look for clues from the original low-light im-
ages to weight the loss function. The reason is that the quality
of the reflectance map generated at this stage is noisy and not
reliable to guide the decomposition of illumination map. Our
final loss function for the decomposition network is:

Ldecomp = Lrecon1+λ1Lrecon2+λ2Linit+λ3Lsmooth, (6)

where λ1, λ2 and λ3 are weight factors.

2.2 LISU-joint: joint learning of reflectance restoration
and semantic segmentation

We tend to use the output of LISU-decomp to train our segment-
ation network as the reflectance maps are not affected by illu-
mination. However, the reflectance maps obtained by decom-
posing low-light images have serious degradation, and they can
be further restored using the corresponding reflectance maps of
normal-light images (Zhang et al., 2019). Therefore, we extend
the single task segmentation network to jointly learn reflectance
restoration.

The proposed joint learning network LISU-joint shown in the
lower part (blue box) of Figure 2 is also a U-shaped network
similar to our decomposition network, but with deeper convo-
lutional layers for the encoder. The five-layer encoder takes
the reflectance map and illumination map of a low-light im-
age output by LISU-decomp as input and learns shared features.
Then, two distinct decoders learn reflectance restoration and se-
mantic segmentation, respectively. We enhance the correlation
between two tasks by linking the features (light blue arrows)
from two decoders together. As the training goes on, the se-
mantic segmentation task benefits from the gradually restored
illumination-invariant features. At the same time, the segment-
ation branch also provides semantic information to the restor-
ation branch, and promotes it to produce better restoration at
boundaries. Following (Zhang et al., 2019) the loss function for
reflectance restoration is defined as:

Lrestore =‖R(Il)−R(In)‖22 − SSIM(R(Il), R(In))

+ ‖∇R(Il)−∇R(In)‖22,
(7)

where R(Il) is the restored reflectance map, and ‖ · ‖22 de-
notes the l2 reconstruction loss (MSE). SSIM(·, ·) measures
the structural similarity (Wang et al., 2004) of two reflectance
maps. The last term makes the restored reflectance map have
textures close to the reference. For the semantic segmentation
task, we use cross-entropy as loss function:

Lce = − 1

n

∑
i

∑
c∈M

log(pci ), (8)

where pci denotes the probability of a pixel i being predicted as
class c. M is the semantic category. The combined objective
function for LISU-joint is:

Ljoint = Lrestore + Lce. (9)

3. NEW DATA SETS OF LOW-LIGHT INDOOR
SCENES

In this section we introduce the synthetic and real data sets,
namely LLRGBD-synthetic and LLRGBD-real, which are used
for understanding low-light indoor scenes. Figure 3 shows
some sample images in our data sets.

3.1 LLRGBD-synthetic

We render realistic image pairs using a modified version of
Opposite Renderer (McCormac et al., 2017, Pedersen, 2013),
which is an open-source renderer based on the Nvidia OptiX
ray tracing engine. For each rendering, the engine selects one
layout from a total of 57 layouts, and randomly places relev-
ant 3D objects from ShapeNet repository (Chang et al., 2015)
into the scene. Then the camera moves in the scene to generate
random collision-free trajectories. We maintain a high-quality
texture library to realize photorealistic rendering of scenes. In
order to simulate an LED light source in the dark, we modify
the source code of the renderer and installed a white light source
on the camera. The engine uses z-buffer of OpenGL to render
the depth map, and we get the 13-class (Couprie et al., 2013)
labels by simple object-class matching process.

We render 29K × 2 images at 640×480 resolution, and each
rendering takes 2-3 minutes on a Nvidia Titan XP GPU. This
data set is divided into training set and test set according to the
ratio of 90%-10%.

3.2 LLRGBD-real

This data set consists of 515 pairs of real low-light and normal-
light images of indoor scenes, including offices, bedrooms,
bathrooms, kitchens, and living rooms. These image pairs are
taken with a fixed Intel RealSense D435i camera, which is an
advanced RGB-D camera usually used as SLAM sensor. Un-
like those methods that collected image pairs by changing shut-
ter speed and ISO (Chen et al., 2018a, Guo et al., 2016, Wei et
al., 2018), when capturing low-light images, we ensure that the
scenes are completely dark and we only use one point light as
illumination. The color temperature of this light is 5500±200K
and the illuminance is about 800 lm. The purpose of using a
light instead of controlling the camera parameters is that we
aim to focus on real exploration missions with a light as illu-
mination in dark indoor environments. Then the white lights
in the room are turned on and we take these pictures as normal-
light images. We capture the images at 640×480 resolution, and
we use 13 categories defined in (Couprie et al., 2013) to label
our data set. This data set is divided into 415 image pairs for
training and 100 for testing. Corresponding depth map of each
scene is collected by the infrared sensor of RealSense D435i
and aligned to the RGB images. We further refine these depth
maps using the colorization method proposed in (Levin et al.,
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(a) low-light image (b) normal-light image (c) semantic label (d) depth map(a) low-light image (b) normal-light image (c) semantic label (d) depth map

(a) low-light image (b) normal-light image (c) semantic label (d) depth map(a) low-light image (b) normal-light image (c) semantic label (d) depth map (e) low-light image (f) normal-light image (g) semantic label (h) depth map(e) low-light image (f) normal-light image (g) semantic label (h) depth map

Figure 3. Sample images from the proposed LLRGBD data sets. The images in the first row are synthetic, and the second row shows
some real images.

2004). Although depth maps are not used in this paper, we still
release them as a part of our data set. Researchers can use this
data set to study other scene understanding tasks, such as depth
estimation of low-light indoor scenes.

4. EXPERIMENTS AND EVALUATION

4.1 Metrics

We evaluate segmentation with three metrics: 1) pixel accur-
acy (PixAcc.), which calculates the percentage of correctly
classified pixels; 2) mean accuracy (mAcc.), which takes
the average of all the pixel accuracy over all the classes; 3)
mean Intersection over Union (mIoU). IoU is the intersection
between the classified pixels and the true labels divided by the
union between the classified pixels and the true labels. mIoU
takes the average of all the IoUs over all classes.

4.2 Implementation details

We use PyTorch to implement our network, and train the mod-
els on a Nvidia Titan XP GPU with batch size 12. We use
Adam solver with (β1, β2) = (0.95, 0.999) as the optimizer.
The initial learning rate is 0.001 and it is scheduled with poly-
nomial decay with power p = 0.9. When training on LLRGBD-
synthetic, the total number of epochs is set to 50, while when
training on LLRGBD-real, it is set to 200. All the training im-
ages and labels are down-sampled to 320 × 240, and no data
augmentation is applied. The influence of the weights on the
results is studied in the Experiment II of section 4.5, and we
finally set λ1 = 0.01, λ2 = 0.1 and λ3 = 0.5 because this com-
bination of weights achieves the best segmentation accuracy.

4.3 Evaluation of the baseline model for low-light images
segmentation.

We first evaluate the segmentation branch of our LISU-joint,
which serves as the baseline model in this paper. It is the bot-
tom part of LISU-joint shown in Figure 2, and contains only
the gray encoder features, the yellow decoder features and the
red features from the encoder. We call the baseline model
LISU-seg. In this experiment we directly use the original low-
light images to train the segmentation models. Table 1 shows
the results of our baseline model LISU-seg, and the other two
encoder-decoder models, SegNet (Badrinarayanan et al., 2017)
and U-Net (Ronneberger et al., 2015). We report the results
trained on LLRGBD-synthetic and LLRGBD-real respectively,
and our LISU-seg performs best on both data sets. SegNet does
not perform well because the pixel values of low-light images

are very small, and the use of max pooling loses a lot of in-
formation. Although U-Net also uses max pooling layers to re-
duce the sizes of feature maps, the U-shaped structure that uses
long-skip connections helps to maintain shallow convolutional
features. LISU-seg has a structure similar to U-Net, but it has
less encoder features and we avoid to use max pooling.

Data set Method PixAcc. mAcc. mIoU

LLRGBD-
synthetic

SegNet 73.4 33.0 25.6
U-Net 77.8 43.1 33.2

LISU-seg 82.3 49.0 39.5

LLRGBD-
real

SegNet 42.8 34.2 22.4
U-Net 54.6 47.4 32.8

LISU-seg 59.0 50.0 36.1

Table 1. Comparison of accuracy of direct segmentation of
low-light images.

4.4 Evaluation of segmentation using degraded reflect-
ance maps

In this experiment we explore if segmenting the reflectance
maps of low-light images can achieve better results than using
original low-light images. However, the ground-truth of reflect-
ance is not available. Therefore, we first train our decompos-
ition network LISU-decomp with paired low/normal-light im-
ages, and then feed the output three-channel reflectance map
of the low-light images to the segmentation networks. We still
train and evaluate three segmentation networks on the proposed
data sets. Table 2 shows the results and we can find that the ac-
curacy of all three segmentation models on both synthetic and
real data sets has increased. It is worth noting that the reflect-
ance maps used in the training come from our decomposition
network, and these reflectance maps degrade very much. But
they are still helpful to semantic segmentation.

Data set Method PixAcc. mAcc. mIoU

LLRGBD-
synthetic

SegNet 80.3 45.1 35.9
U-Net 78.7 45.5 35.6

LISU-seg 82.5 49.9 40.3

LLRGBD-
real

SegNet 48.2 36.8 26.2
U-Net 59.3 52.1 38.1

LISU-seg 60.1 52.6 38.9

Table 2. Comparison of segmentation accuracy of degraded
reflectance maps.

4.5 Evaluation of LISU for low-light images segmentation

Experiment I: In this experiment we evaluate the segmenta-
tion accuracy of LISU, which contains the joint learning net-
work LISU-joint. The results in Table 3 show that the pro-
posed joint learning network outperforms the baseline model
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on two data sets. Especially on LLRGBD-real data set, there is
a great improvement (for mIoU 47.6 versus 36.1). The training
of segmentation task on the small data set derives benefit from
the illumination-invariant features. The effectiveness of LISU
is also reflected in LLRGBD-synthetic (for mIoU 43.4 versus
39.5). Since this synthetic data set contains sequential images,
the network has a better chance to learn the representations of
same objects under illumination variations. The strategy of joint
learning further improves the learning ability of the network.

Data set Method PixAcc. mAcc. mIoU
LLRGBD-
synthetic

LISU-seg 82.3 49.0 39.5
LISU 84.5 52.3 43.4

LLRGBD-
real

LISU-seg 59.0 50.0 36.1
LISU 67.3 61.2 47.6

Table 3. Evaluation of LISU. We copy the results of the baseline
model LISU-seg from Table 1 for clear comparison.

Experiment II: In our method, LISU-decomp is very important
because it provides the input of LISU-joint. In this experiment
we evaluate the influence of weights in Eq. 6 on segmentation
accuracy. The results in Table 4 show that when we fix λ2 and
λ3, a larger λ1 generates worse segmentation. The first com-
bination of weights is chosen (λ1 = 0.01, λ2 = 0.1, λ3 = 0.5)
because it has the highest mIoU and mean accuracy.

No. Weights of Eq. 6 LISU
λ1 λ2 λ3 PixAcc. mAcc. mIoU

1 0.01 0.1 0.5 67.3 61.2 47.6
2 0.1 0.1 0.5 65.7 58.9 45.8
3 0.5 0.1 0.5 64.1 55.8 42.3
4 0.01 0.5 0.5 65.0 57.9 44.6
5 0.01 0.01 0.5 68.7 60.0 47.5
6 0.01 0.01 0.1 67.1 59.7 47.1
7 0.01 0.01 0.01 65.2 55.9 43.1

Table 4. Study of the influence of weights of Eq. 6 on
segmentation. The best and the second best results are

highlighted in bold and underlined.

4.6 Evaluation of the effectiveness of pre-training on syn-
thetic data

In this experiment we explore if a model pre-trained on our
synthetic data set can further improve the segmentation per-
formance on small-scale real data. We first train LISU for 50
epochs on LLRGBD-synthetic, and then fine-tune the model
on LLRGBD-real by freezing the encoders of LISU-decomp
and LISU-joint. Compared with LISU without pre-training, the
mIoU shown in Table 5 increases by 7.2% (54.8 versus 47.6).

Data set Method PixAcc. mAcc. mIoU
LLRGBD-

real
LISU

(pre-trained) 72.3 68.2 54.8

Table 5. Evaluation of the effectiveness of pre-training on
LLRGBD-synthetic.

4.7 Segmentation with modified DeepLab v3+

Since our LISU-joint uses simple encoder-decoder structure as
segmentation network, in principle it can be replaced by any
network with a similar structure. In order to further verify the
superiority of joint learning of semantic segmentation and re-
flectance restoration in low-light indoor scene segmentation,

DeepLab v3+

Input Segmentation Restored Reflectance

Spatial Pyramid Pooling

Figure 4. A modified DeepLab v3+ that jointly learns to restore
reflectance.

Method PixAcc. mAcc. mIoU
DLv3p (Chen et al., 2018b) 54.9 46.9 33.4

DLv3p-joint 68.4 62.0 49.2

Table 6. Comparison of segmentation accuracy using DeepLab
v3+ and its variants.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5. Qualitative results on LLRGBD-real. (a) is the input
low-light images, and (b) shows the corresponding normal-light

images; (c): DLv3p (Chen et al., 2018b); (d): LISU-seg; (e)
LISU; (f) LISU (pre-trained on LLRGBD-synthetic); (g)

Ground-truth.

we evaluate our approach with the state-of-the-art DeepLab
v3+ (Chen et al., 2018b) (DLv3p) as shown in Figure 4. The
structure in the yellow box is the original DLv3p (without green
feature maps), and it consists of an encoder (ResNet50 back-
bone (He et al., 2016)) and an decoder. We modify its original
structure by adding an extra decoder to restore the reflectance
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(DLv3p-joint), and we remove the dropout layers for this de-
coder. The features from two decoders are concatenated to-
gether (yellow and green feature maps). We use original low-
light images from LLRGBD-real to train DLv3p. And for the
modified structure, the input comes from the output of LISU-
decomp. We encountered overfitting problems when directly
training DLv3p on LLRGBD-real. Thus, we adopted early
stopping, and the results are shown in the first row of Table
6. The introduction of joint learning makes the training more
stable. Note that only one layer in the decoders participates
in feature exchange, which once again proves the effectiveness
of our approach. We show qualitative results in Figure 5. Al-
though we do not need normal-light images when inferring the
model, we still show them here because some low-light images
are too dark to be seen clearly.

5. CONCLUSION

In this paper, we present a novel end-to-end trainable CNN
framework that takes advantage of the illumination-invariant
features for low-light indoor scene segmentation. We also
present a new data set for understanding low-light indoor
scenes. The experimental results on both synthetic and real data
sets show the effectiveness of our approach.

ACKNOWLEDGEMENTS

This project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme and the
Korean Government under Grant Agreement No 833435. Con-
tent reflects only the authors’ view and European Commission
is not responsible for any use that may be made of the informa-
tion it contains.

REFERENCES

Alshammari, N., Akcay, S., Breckon, T. P., 2018. On the impact
of illumination-invariant image pre-transformation for contem-
porary automotive semantic scene understanding. Intelligent
Vehicles Symposium.

Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. Segnet: A
deep convolutional encoder-decoder architecture for image seg-
mentation. IEEE TPAMI, 39(12), 2481–2495.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang,
Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J.,
Yi, L., Yu, F., 2015. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012.

Chen, C., Chen, Q., Xu, J., Koltun, V., 2018a. Learning to see
in the dark. CVPR.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.,
2018b. Encoder-decoder with atrous separable convolution for
semantic image segmentation. ECCV.

Couprie, C., Farabet, C., Najman, L., LeCun, Y., 2013. Indoor
semantic segmentation using depth information. ICLR.

Dai, J., He, K., Sun, J., 2016. Instance-aware semantic segment-
ation via multi-task network cascades. CVPR.

Guo, X., Li, Y., Ling, H., 2016. LIME: Low-light image en-
hancement via illumination map estimation. IEEE TIP, 26(2),
982–993.

Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S.,
Cipolla, R., 2016. Understanding real world indoor scenes with
synthetic data. CVPR.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learn-
ing for image recognition. CVPR.

Land, E. H., McCann, J. J., 1971. Lightness and retinex theory.
Josa, 61(1), 1–11.

Levin, A., Lischinski, D., Weiss, Y., 2004. Colorization using
optimization. SIGGRAPH.

Maddern, W., Stewart, A., McManus, C., Upcroft, B.,
Churchill, W., Newman, P., 2014. Illumination invariant ima-
ging: Applications in robust vision-based localisation, mapping
and classification for autonomous vehicles. ICRA.

McCormac, J., Handa, A., Leutenegger, S., Davison, A. J.,
2017. Scenenet rgb-d: Can 5m synthetic images beat generic
imagenet pre-training on indoor segmentation? ICCV.

Pedersen, S. A., 2013. Progressive photon mapping on gpus.
Master’s thesis, Institutt for datateknikk og informasjons-
vitenskap.

Rematas, K., Ritschel, T., Fritz, M., Gavves, E., Tuytelaars, T.,
2016. Deep reflectance maps. CVPR.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolu-
tional networks for biomedical image segmentation. MICCAI.

Upcroft, B., McManus, C., Churchill, W., Maddern, W., New-
man, P., 2014. Lighting invariant urban street classification.
ICRA.

Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P., 2004.
Image quality assessment: from error visibility to structural
similarity. IEEE TIP, 13(4), 600–612.

Wei, C., Wang, W., Yang, W., Liu, J., 2018. Deep retinex de-
composition for low-light enhancement. BMVC.

Wu, B., Wan, A., Yue, X., Keutzer, K., 2018. Squeezeseg:
Convolutional neural nets with recurrent crf for real-time road-
object segmentation from 3d lidar point cloud. ICRA.

Zhang, Y., Zhang, J., Guo, X., 2019. Kindling the darkness: A
practical low-light image enhancer. ACM MM.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-427-2021 | © Author(s) 2021. CC BY 4.0 License.

 
432




