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ABSTRACT:

Classification, and in particular semantic segmentation, plays a major role in remote sensing. In remote sensing, the classes usually
correspond to landcover or landuse types while the data elements are image pixels. The results are so-called semantically segmented
pixels describing the content of the data for each pixel. The identification of misclassified pixels is essential to perceive the overall
performance of the classification algorithm. In the case of semantic segmentation, it is typically done with ground truth labels.
However, such ground truth labels are rare and mostly reserved for training only. Especially deep learning approaches are data-
hungry algorithms requesting a lot of labeled examples. In this work, we explore the possibility of using Monte-Carlo dropout
for the identification of model-induced misclassifications. In particular, we obtain uncertainty measures from several inferences
induced by the Monte-Carlo dropout. Furthermore, we examine how Markov Random Field optimization can reduce the number of
misclassifications and facilitate their identification. The extent to which uncertainties provide information about misclassifications
is assessed. Our results allow detecting 51 % of the misclassifications using uncertainties. Application of Markov Random Field
optimization leads to a reduction of the percentage of misclassifications while detecting 0.4 % more misclassifications as without.

1. INTRODUCTION

1.1 Motivation

Deep Learning approaches have become extremely popular
in recent years for various tasks in the field of image ana-
lysis (Goodfellow et al., 2016). Such approaches are also state
of the art in semantic segmentation (Long et al., 2015; Ron-
neberger et al., 2015; Badrinarayanan et al., 2015). In this
context, the development of so-called convolutional neural net-
works for image analysis played a crucial role. They enable
efficient processing of large amounts of image data. In remote
sensing, especially through satellite imagery, a lot of large-scale
and, in some cases, very high-resolution image data is avail-
able. Semantic segmentation of aerial imagery helps, for ex-
ample, in agriculture and urban development by recognizing
land cover (Kampffmeyer et al., 2016), which constitutes our
main field of research. The quality of semantic segmentation
depends largely on the amount and quality of available labeled
data. Despite a large number of available images, there is usu-
ally a lack of reliable ground truth data necessary for super-
vised training. Especially in the case of convolutional neural
networks, where the number of parameters to be estimated is
extremely high, many authors (Tong et al., 2020; Marmanis et
al., 2016) rely on pre-training the network with slightly differ-
ent, but abundantly labeled data for the first couple of layers
and fine-tune it at the end with the labeled data at hand. How-
ever, this strategy has its limitations because the vast majority of
parameters to be determined is contained in the latter, e.g. fully
connected layers. Thus, many authors try to use the already
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classified data in a very reliable way as new training data (Wang
et al., 2017).

1.2 Previous work

Clearly, automatically generated land cover maps should be as
error-free as possible. However, ground truth data have been
used to detect errors so far. This ground truth data is with-
held from the training and reduces the amount of usable train-
ing data. The above examples show that we need additional
methods for good quality estimation of semantic segmenta-
tion and to discover the faulty results more easily. Determ-
ining a model uncertainty offers the chance to identify areas
of possible misclassification without ground truth data. How-
ever, such uncertainty information is not automatically avail-
able in neural networks (Kendall and Gal, 2017). Previous
works have already tackled the questions issued in this work,
namely how to measure the confidence of the CNN output and,
as a consequence, how to select reliable training data for deep-
learning-based methods. Some works combine the CNN clas-
sifier with additional measures which are supposed to make the
classification output more interpretable. For example, (Paper-
not and McDaniel, 2018) use the nearest neighbor classifier
right within the convolutional network in order to estimate the
nonconformity of a prediction in the training data. On the con-
trary, (Dong et al., 2019) apply random forests at the end of
the deep learning-based pipeline arguing that the importance of
these features is more easily tractable (e.g. using boot-strapping
techniques) in comparison to the black-box-like CNNs. Gener-
ally, the a-posteriori estimates (i.e., tree votes in the random
forest (RF) or probabilities in neural networks) can function as
indicators of classification uncertainty (Shadman Roodposhti et
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al., 2019). In this work, conclusions were drawn that while
correctly classified pixels belong to the low uncertainty areas,
most of the incorrectly predicted class labels are located inside
high-uncertainty areas with very few exceptions within low-
uncertainty regions. The authors of (Shadman Roodposhti et
al., 2019) reported a better correlation between accuracy and
entropy in deep learning techniques than for Random Forest.
Another quite frequently used technique to study the effect of
uncertainty in source data intrinsically is the Monte Carlo mod-
eling (Gal and Ghahramani, 2016), which allows determining
the uncertainty with additional effort only in inference. Vari-
ous measures of uncertainty from standard deviation to en-
tropy (Kampffmeyer et al., 2016; Kendall et al., 2015; Gal,
2016) were used already. The studies show that the largest un-
certainties occur at the class boundaries. An increasing overall
accuracy due to out-masked uncertain pixels leads to the as-
sumption that the misclassifications are also located in these
areas (Budde et al., 2020). To improve the quality of semantic
segmentation, especially at boundaries, several attempts have
been made to combine the advantages of neural networks and
Markov Random Fields (MRFs) (Chen et al., 2018; Liu et al.,
2018b; Liu et al., 2017; Zhang et al., 2018). The focus of
their investigation was to extend the training by a Conditional
or Markov Random Field. Hence the neural network handles
feature extraction and Conditional Random Fields handle the
use of context. However, this results in a significant slowdown
in both training and inference (Teichmann and Cipolla, 2018).
Analogously, (Paisitkriangkrai et al., 2015; Kampffmeyer et al.,
2016) used Conditional Random Fields for smoothing of deep
learning results.

Contribution: Encouraged by the positive findings of (Shad-
man Roodposhti et al., 2019) (see above) and other related
works on the correlation of accuracy and uncertainty, we in-
vestigate the smoothing effect of discrete optimization in the
form of MRF on the identification of misclassifications. Due to
the consideration of neighboring pixels, the smoothing property
should reduce misclassifications of individual pixels and sup-
port classification decisions using surrounding pixels. Lower
uncertainty is expected in homogeneous areas so that the iden-
tification of possible misclassifications should be facilitated.
The required uncertainties are to be determined by Monte-Carlo
dropout without additional training effort. By comparing two
different uncertainty measures, entropy and confidence, a suit-
able measure to identify misclassifications shall be found.

Notation: In the course of this article, we work with im-
age pixels (x, y, etc.), which are, of course, two-dimensional
vectors. The class labels are always denoted by s. For the
landcover classification task, sx = 1 means that x is a road
pixel, s = 2 is for buildings, whereby we occasionally drop
the subscripts, and so on. Hence, the probabilistic outputs of
the presented classifiers will be three-dimensional ones. In
the case of deep learning, one speaks about probability cubus
P = P (sx), whereby softmax is usually applied to the network
outputs for max-margin estimation. Contrarily, in the case of
MRF-based method, it is convenient to perform cost or energy
minimization and thus, refer to a cost cubus C = C(sx). As
will be explained later, the negative logarithm is the common
way to switch between the probability and cost cubus. The total
number of classes is denoted by S.

Organization: The following section 2 explains the methods.
The experimental setup is described in section 3. Section 4 con-
tains the results. The discussion and the conclusion are in sec-
tion 5 together with ideas for future research.

2. METHODS

2.1 Semantic segmentation with Monte-Carlo dropout

In this work, we evaluate the quality of a U-Net-based semantic
segmentation. U-Net was first introduced by (Ronneberger et
al., 2015). The original focused data sources were biomedical
images. Meanwhile, this network became a very popular net-
work architecture for semantic segmentation. Additional com-
ponents, such as batch normalization and dropout, can be incor-
porated into the original U-Net architecture. Dropout was de-
veloped as a regularization method to avoid overfitting (Hinton
et al., 2012). The idea is to simulate sub-networks by randomly
turning off individual neurons in the network, helping to incor-
porate the principle of ensemble learning. In the default case,
dropout is disabled for inference after training. In the case of
using Monte-Carlo dropout (Gal and Ghahramani, 2016), dro-
pout is still active during inference. Each time, the output from
the softmax function provides predicted pseudo-probabilities
for each pixel and class. The predicted probability P̄ (s) is ap-
proximated by averaging of these pseudo-probabilities and thus
from the softmax outputs (Gal, 2016):

P̄ (s) =
1

T

T∑
t=1

P t(s), (1)

where T is the number of Monte-Carlo samples and P t(s) de-
notes pseudo-probability of t-th sample voting for the class s.
The Monte-Carlo dropout has the advantage that no additional
parameters have to be determined during the training.

2.2 Optimization on Markov Random Field

Discrete optimization techniques are often used for depth maps
estimation or dense image matching tasks (Hirschmuller, 2007;
Bulatov et al., 2011). In this work, we use the smooth-
ness assumption that neighboring pixels in the landcover map
mostly have the same classes. This assumption as soft con-
straint (Schindler, 2012; Bulatov et al., 2019) yields the cost
function

C(s) =
∑
x

[
Cdt(sx) +

∑
x,y∈N

Csm(sx, sy)

]
→ min, (2)

whose efficient minimization (Szeliski et al., 2008) is required
(see next paragraph). In (2), Cdt denotes the cost cubus while
Csm is the system of smoothness values of neighbors, which are
defined by N . In the simplest case, N is the 4-neighborhood
of a pixel and Csm is the Potts model multiplied with a constant
scalar λ: Csm(sx, sy) = λmin(|sx − sy|, 1).

At first glance, any method described in (Szeliski et al., 2008)
can be applied to minimize the cost function (2). However, the
move-making methods are less suitable because they do not
provide the posteriori probability distribution needed to label
the reliably reconstructed pixels. Therefore, and also because
of the very simple smoothness prior, we extended the message
passing semi-global algorithm of (Hirschmuller, 2007) to out-
put not only the min-marginals but also the accumulated costs.
The minimum cost along the class dimension induce the pre-
dicted class for each pixel. Note that the scaling of the a-
posteriori cost cubus varies strongly from pixel to pixel, how-
ever, only the pixel-wise costs matter for successive computa-
tions.
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2.3 Uncertainty evaluation

The use of Monte-Carlo dropout allows different evaluations
to determine the uncertainty of the model (Gal, 2016). In this
case, two different measures are determined. One is the Shan-
non entropy (3) from the averaged pseudo-probabilities of mul-
tiple Monte-Carlo samples. The second one is the confidence
measure (4) from the cost cubus. The lowest confidence shows
maximum uncertainty and thus, possibly incorrectly classified
pixels:

H1 = − 1

log(S)

S∑
s=1

P̄ (s) log2

(
P̄ (s)

)
, (3)

where P̄ (s) is from (1). The confidence is computed according
to (Pollefeys et al., 2008). The reliable labels have a confidence
near to one while values near zero indicate high uncertainty. On
the contrary, for entropy, the highest uncertainty corresponds to
the values close to 1. Therefore, for a better comparison, the
complementary measure is computed as follows:

H2 = 1−

(
S∑

s=1

exp

(
− (C(s)− C(s∗))2

σ2

))−1

, (4)

where s∗ is the predicted by the U-Net or MRF output label (for
example, s∗x = arg maxs(P (sx)) and σ is empirically determ-
ined noise factor given by

σ = Q0.75 [C(s)− C(s∗)] , (5)

where Q0.75 is the 75 % quantile reflecting the fact that a-priori
values 75 % of all pixels have been obtained correctly and are
not supposed to be oversmoothed (Bulatov et al., 2011). Note
that C is the a-priori cost cubus. For each uncertainty meas-
ure, an uncertainty map is produced. From this, those areas
with the largest uncertainties can be extracted and compared
with the misclassifications. The extraction is performed using a
threshold value.

3. EXPERIMENTAL SETUP

3.1 Dataset

For the experiments we used the 2D semantic labeling Pots-
dam dataset1 (ISPRS WGII/4, n.d.). Eight of the 38 available
tiles, generally distributed over the entire area, were selected as
test data. In detail, these are the tiles with the denotation 2 12,
4 15, 5 11, 5 14, 6 11, 6 12, 6 14 and 7 9. The remaining 30
tiles were used in a ratio of 80 to 20 for training and validation.
This subdivision of the dataset allows to examine test data with
a wider varying – in comparison to the original contest – image
structures, like water bodies and large park areas. As input fea-
tures, all available channels are used. These are: RGB and NIR
multispectral true orthophotos and a normalized surface model.
The ground sampling distance is 5 cm. The ground truth data
contains six different label classes: impervious surface, build-
ing, low and high vegetation (less formally, tree and grass), as
well as vehicle and clutter.

3.2 Pipeline

Figure 1 shows the pipeline for the test data tiles. In the first
step, the trained U-Net is used. Each test data tile is predicted
1 http://www2.isprs.org/commissions/comm3/wg4/2d-sem-

label-potsdam.html

Figure 1. Pipeline for uncertainty evaluation from U-Net
predictions and after Markov Random Field optimization

20 times (T = 20). Due to Monte-Carlo dropout, this results
in 20 possibly different prediction values. In the second part,
these predictions are used to calculate aggregated cost cubes
by the MRF optimization. Uncertainties are determined both
after the U-Net predictions and after optimization. We compare
two different uncertainty metrics: entropy and confidence (sec-
tion 2.3). To evaluate the performance, the F1-score is used.

3.2.1 U-Net The used U-Net architecture contains zero-
padding and batch normalization. Dropout is used before the
fully connected layer with 50 % drop probability. For the first
convolution layer, 32 filters are used. The limited computing
power required a resolution reduction by the factor 2 compared
to the original data. Moreover, training took place on image
patches of the size 300×300 pixels. To the image patches, data
augmentation is added. The chosen data augmentation oper-
ations include flipping, multiple 90-degree rotations and nor-
mally distributed noise. A cross-entropy weighted with the
class frequency is chosen to be our loss function. In the test
phase, image patches of size 1500×1500 pixels were used.

3.2.2 MRF optimization The U-Net outputs pseudo-
probabilities from a softmax layer for each Monte-Carlo
sample. To process these with the MRF, a conversion to 16
bit integer cost is desirable in order to create data arrays tract-
able by the standard CPU even for relatively large images. The
probabilistic output is usually processed by negative logarithm
as follows

C = 2048 min

(
− log2(P )

min(log2(P ))
, 1

)
, (6)

whereby square brackets denote rounding, and the constant
211 = 2048 reflects the possible cost accumulation from the
characteristic paths of the semi-global optimization with the
smoothness parameter λ varying between 400 and 800. The
optimization from section 2.2 results in the a-posteriori distri-
bution cube for each Monte-Carlo sample. From this, both the
class prediction and the uncertainties can be derived.

3.2.3 Uncertainty evaluation For the uncertainty evalu-
ation, we use both entropy and confidence (section 2.3). To
evaluate entropy from aggregated costs, a re-conversion in
probabilities is necessary (6). In each resulting uncertainty
map, a specific percentage of the pixels with the highest un-
certainty values are marked as uncertain. The removing per-
centages vary from zero to 50 %. This labeling creates a binary
mask each time. Subsequently, the pixels marked as uncertain
are checked for correctness in classification with the available
ground truth data.
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Setting F1 value [%]
Impervious surface Building Low vegetation Tree Car Clutter OA

U-Net without Monte-Carlo dropout 87.7 90.3 79.7 72.1 65.7 23.8 82.6
U-Net with Monte-Carlo dropout 87.7 90.3 79.7 72.1 65.7 23.8 82.6
U-Net + MRF400 87.8 90.3 79.7 72.2 65.7 23.6 82.7
U-Net + MRF800 87.7 90.2 79.7 72.3 65.4 23.4 82.7

Table 1. F1 value [%] of semantic segmentation for the classes Impervious surface, building, low vegetation, tree, car and clutter.
Additionally, the overall accuracy (OA) is specified. Improvements by MRF-based methods are bold.Label image Label image Label image Label image 

Label image Label image Label image Label image 
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Figure 2. Image details of semantic segmentation. From left to right: ground truth, U-Net segmentation, MRF400 optimization,
MRF800 optimization.

4. RESULTS

With the results presented below, the first step is to investig-
ate the contribution of Monte Carlo sampling to semantic seg-
mentation. In a second step, the correlation between uncer-
tainty and misclassification is considered. Finally, we wish to
explore which of the two uncertainty measures presented here
has a higher correlation to the misclassifications. To quantify
a possible improvement by MRF optimization, the results are
presented both with and without MRF optimization.

4.1 Semantic Segmentation

The results of the semantic segmentation can be found in
Table 1. The highest and the lowest values of accuracy are
achieved by the building class and the clutter class, respectively.
We see that the accuracy is comparable to the earlier results of
the contest2, such as those of (Volpi and Tuia, 2016), and stay
slightly behind the newer methods, for example, (Liu et al.,
2018a), who increasingly considers context information from
different resolution levels via a self-cascaded network. How-
ever, it was not our purpose to optimize the classifier but to
investigate the added value that the Monte-Carlo dropouts and
Markov Random Fields can provide. Thus, it is possible to ap-
ply the presented methods to other networks as well. From
the results in Table 1, compared to a single prediction with

2 https://www2.isprs.org/commissions/comm2/wg4/results

/potsdam-2d-semantic-labeling/

the U-Net without Monte Carlo dropout, there is no improve-
ment in semantic segmentation from multiple predictions with
Monte Carlo dropout. For the MRF optimization, two different
smoothing parameters are tested. A more generous and a more
rigorous smoothing are denoted by MRF400 and by MRF800,
respectively. The quantitative results yielded only a small im-
provement for the tree class (Table 1). Instead, the accuracy
for the clutter class decreases. This clutter class occurs, among
other things, in the area of object edges. Due to smoothing,
these pixels tend to be assigned to the object or impervious sur-
face class. However, there are various effects shown in Fig-
ure 2. This example compares the ground truth with the pre-
dicted classes of the U-Net and the MRF optimization. The top
of Figure 2 illustrates an image detail of a park area. This ex-
ample shows the capability of the used U-Net. The U-Net is
able to classify small paths (Figure 3) which are not included in
the ground truth data (Figure 2 top left). This is one source of
deviations between our prediction and the ground truth, with the
former one corresponding to the reality. At the bottom of Fig-
ure 2, the image detail shows the effect of optimization. In the
area of the road intersection, the U-Net generates several mis-
classifications. Fortunately, the optimization process was able
to remove individual misclassifications. A larger accumulation
of incorrectly classified pixels cannot be completely removed.
However, increased smoothing can further reduce the amount
of such incorrect pixel accumulations.
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Figure 3. RGB image fragment around the park paths. The
image appears very dark because of the 16-bit representation of

color values.

Setting Percentage of misclassifications [%]
U-Net 17.37
MRF 400 17.34
MRF 800 17.34

Table 2. Percentage of misclassifications from test data semantic
segmentation.

4.2 Uncertainty maps

Before and after the MRF optimization, uncertainty maps are
calculated (section 3.2). With both uncertainty metrics H1

from (3) and H2 from (4), the calculations result in six un-
certainty maps (Figure 5). The example in Figure 5 illustrates
the positive effect of the MRF smoothing. With smoothing,
the homogeneous areas within an object are less uncertain than
without. Visually, this image detail shows no significant differ-
ences between MRF400 and MRF800. Also, in this image de-
tail, the entropy appears to have a lower sensitivity in the homo-
geneous areas after smoothing than the confidence. However,
the edges appear less clear in the entropy map. For example,
road markings are omitted as conspicuous pixels. For the use
of the uncertainty maps for the detection of misclassifications,
these maps are used as masks (section 3.2.3). The following
section 4.3 contains the results of the evaluation based on these
uncertainty masks.

4.3 Identification of misclassifications

The semantic segmentation from section 4.1 results in a per-
centage of misclassifications in Table 2. The percentage of
misclassifications in the whole test data is thus about 17 %.
Thereby, the percentage decreases by about 0.03 % when us-
ing the optimization. A change of 0.01 % corresponds to 7200
pixels. In practice, images differ from each other, and the per-
centage of misclassifications and the corresponding uncertainty
values vary strongly in the evaluation. Incorrect input data also
leads to false positive and true negative results. To find out
which percentage of pixels should be removed to increase the
accuracy, precision-recall curves are created (Figure 4). Re-
moving pixels due to their uncertainty increases correctness, but
at the expense of completeness. A compromise should be found
between the number of removed pixels and remaining misclas-
sifications. The left part of Figure 4 shows the evaluation for

Setting F1 [%]
incorrect correct

CNN Entropy 46.74 87.76
MRF400 Entropy 41.81 86.64
MRF800 Entropy 41.24 86.51
CNN Confidence 47.62 87.96
MRF400 Confidence 47.78 88.01
MRF800 Confidence 47.93 88.05

Table 3. F1 values for detection of misclassifications for 20%
threshold. As many pixels as possible should be ideally

classified correctly and certain at the same time (correct). All
uncertain pixels should be ideally misclassifications (incorrect).
Results corresponding to best configurations are marked in bold.

Setting Uncertainty metric [%]
Entropy Confidence

detection rate CNN 50.28 51.22
detection rate MRF400 45.01 51.44
detection rate MRF800 44.41 51.61

Table 4. Detection rate of misclassifications with H1 and H2

while 20 % of the pixels with highest uncertainty are removed.
Results corresponding to best configurations are marked in bold.

all classes. The right part of Figure 4 shows an example of
the results of a reduction to a binary classification of the class
building. In both cases, a significantly better performance ofH2

compared to H1 can be observed. Only at a threshold of about
20 %, a growing difference between the U-Net and the MRF
optimized results can be detected. For classes that are already
very well classified, such as buildings, the increase in accur-
acy converges at a significantly lower removing fraction than
for all classes. Since the threshold 20 % is a good compromise
between precision and recall, the results with this threshold are
considered in more detail below.

The F1-values from Table 3 show the correlation between the
uncertainty and the misclassifications with 20 % threshold. This
means: 20 % of the pixels are classified as uncertain and thus
are candidates for misclassification. In this case most of the
correct classified pixels are also labeled as certain (88.1 % with
H2). The ability to detect misclassifications is at most about
47.9 % with the MRF optimization and the complementary
confidence measure H2. There are still many uncertain pixels
that have been correctly classified. The relation between the
identified misclassifications and the included misclassifications
(Table 2) are shown in Table 4. At least 51.2 % of misclas-
sifications are detected using confidence. Stronger smoothing
increases this percentage to up to 51.6 %. Among the pixel
with high uncertainty, there are more misclassifications. From
both Table 3 and Table 4, it can be seen that less misclassific-
ations are detected using entropy. Using entropy, the best case
is achieved with 50.3 % correct identifications of misclassific-
ations with the U-Net without MRF (Table 4). However, when
looking at Figure 5, it is noticeable that the correctly classified
but as uncertain labeled pixels vary strongly for both uncer-
tainty measures. Some correctly classified areas that are con-
sidered certain by entropy are considered uncertain by confid-
ence and vice versa.

5. CONCLUSIONS

Uncertainty assessment techniques can provide an uncertainty
map as a spatial approximator of classification accuracy, which
can be used to locate and segregate unreliable pixel-level class
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Figure 4. Precision-recall curve for each of the configurations with different percentage of removed pixels [%]. Here, a percentage of
zero means that no pixels were removed due to uncertainty. Left: all classes are considered, right: only the binary classification

building - no building is considered.

allocations from reliable ones. This is the first important con-
clusion we can draw from our results, because especially in the
case of non-optimal configuration of the neural network, mis-
classifications can be detected by determining model uncertain-
ties. Secondly, smoothing by the MRF optimization reduces
the number of misclassifications. At the same time, the pro-
portion of misclassifications in the marked uncertain areas is
increasing. This is primarily due to lower uncertainty values of
correct classifications. Over the whole test data, the identific-
ation by means of the confidence seems to be more successful
than entropy. Additionally, this has the advantage because a re-
conversion into probabilities is not necessary. One direction for
future work could include finding a reasonable combination of
multiple uncertainty measures. The partly complementary sig-
natures on the second and fourth columns of Figure 5 offer the
possibility to reduce the number of pixels classified as correct
by U-Net but uncertain by either single measure. This can also
reduce the strong dependence on the choice of the threshold
value. The threshold affects the trade-off of detecting as many
misclassifications as possible and removing as few correct clas-
sifications as possible.

The Monte Carlo samples can be used for semantic segmenta-
tion as well as for determination of the uncertainty. However, an
increased extra time due to the multiple prediction of the data
during the inference phase has to be considered. A positive
effect of MRF optimization occurs mainly for single misclas-
sifications. In addition, a trade-off must be made between the
improvement from MRF optimization and the additional pro-
cessing effort. In particular, the MRF increases the processing
time by one minute for each image patch.

Nevertheless, only errors caused by the model can be found
with the Monte Carlo dropout method. Systematic gross er-
rors in the input data caused, for example, by incorrect height
values like in the Potsdam dataset, on contrary, remain undetec-
ted. Current semantic segmentation methods are also increas-
ingly outperforming the quality of the sometimes erroneous or
incomplete ground truth data. By comparing synthetically re-
constructed data with real input (Xia et al., 2020), these ground
truth differences could be deciphered in future studies.
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Figure 5. Uncertainty and detection maps for both image fragments of Figure 2. The entropy H1 from (3) and H2 from (4) for the
choices U-Net, MRF400 and MRF800 are shown in first and third columns, respectively. For detection maps (second and fourth

columns) uncertainty masks are compared with ground truth. A distinction is made between uncertain and certain pixels in
combination with correct and incorrect classification.
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