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ABSTRACT: 
 
In recent research, fully supervised Deep Learning (DL) techniques and large amounts of pointwise labels are employed to train a 
segmentation network to be applied to buildings’ point clouds. However, fine-labelled buildings’ point clouds are hard to find and 
manually annotating pointwise labels is time-consuming and expensive. Consequently, the application of fully supervised DL for 
semantic segmentation of buildings’ point clouds at LoD3 level is severely limited. To address this issue, we propose a novel label-
efficient DL network that obtains per-point semantic labels of LoD3 buildings’ point clouds with limited supervision. In general, it 
consists of two steps. The first step (Autoencoder - AE) is composed of a Dynamic Graph Convolutional Neural Network-based encoder 
and a folding-based decoder, designed to extract discriminative global and local features from input point clouds by reconstructing 
them without any label. The second step is semantic segmentation. By supplying a small amount of task-specific supervision, a 
segmentation network is proposed for semantically segmenting the encoded features acquired from the pre-trained AE. Experimentally, 
we evaluate our approach based on the ArCH dataset. Compared to the fully supervised DL methods, we find that our model achieved 
state-of-the-art results on the unseen scenes, with only 10% of labelled training data from fully supervised methods as input. 
 
 

1. INTRODUCTION 

In recent years, 3D buildings’ point cloud representation enables 
and promotes new applications in many fields such as Cultural 
Heritage preservation (Pierdicca et al., 2020), Construction 
Engineering (Ham, Golparvar-Fard, 2015), Emergency 
Decision-making (Fazeli et al., 2016), and Smart Cities (Hu et 
al., 2018). However, point clouds of buildings generally provide 
the representation of the entire building including only a few 
types of architectural elements with no semantic information, 
limiting the efficient exploitation in the abovementioned 
application domains (Czerniawski, Leite, 2020). Hence, it’s 
essential to investigate the methods of extracting semantic 
information from 3D buildings’ point clouds to acquire high 
Level-of-Details (LoDs) modelling, see Wang and Kim (2019). 
 
LiDAR data sets have become available at an even growing 
resolution and accuracy. Inspired by the success of deep neural 
networks (DNNs) used in Computer Vision to accomplish subset 
tasks (i.e., classification, detection and semantic segmentation), 
Deep Learning (DL) approaches have appeared in the last few 
years for understanding 3D point clouds (Cao et al., 2020). In the 
buildings’ point cloud domain, DL techniques also played an 
essential role in numerous applications, such as indoor (Wang et 
al., 2018), urban (Kumar et al., 2019) and buildings’ scenes 
(Huang et al., 2019) analysis. Even though important results were 
achieved, the existing DL approaches for 3D building point 
clouds are strongly supervised, and these methods have 
substantial demands for finely labelled data, see Meng et al. 
(2020). 
 
However, it is not feasible to create such an amount of labelled 
training data in many real-world problems. For example, to the 
best of our knowledge, only the Architectural Cultural Heritage 
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(ArCH) Data Set (Matrone et al., 2020a) is publicly available to 
provide pointwise annotations and support for generating high-
resolution LoD3 building models. Furthermore, billions of 
pointwise accurate labels are demanded to train a satisfactory 
segmentation network (Meng et al., 2020), which can be obtained 
from extremely time-consuming and expensive processes. For 
instance, only after the setup of the fine-labelled ArCH Data Set 
some studies addressed the application of DL into architectural 
semantic segmentation, see Matrone et al. (2020b) and Pierdicca 
et al. (2020).  
 
In Computer Vision, the hunger for fine-labelled pointwise 
training data problems is often tackled by using unsupervised 
methods. However, these approaches are mostly designed for 2D 
images, which are fundamentally different from unordered point 
clouds. Unlike 2D images that are projective observations from 
the built environment, 3D point clouds provide a metric 
reconstruction of the scenes without scale ambiguity (Han, 2021). 
Furthermore, the application of label-efficient unsupervised 
learning to downstream tasks in the 3D field is still limited to 
classification and segmentation tasks of small-scale point clouds. 
From a scientific viewpoint, the unsupervised DL-based 
buildings’ point clouds semantic segmentation is still an open 
issue, and current knowledge about it is deeply unsatisfactory. 
 
For the abovementioned reasons, we decided to put our efforts in 
developing an unsupervised DL method for buildings’ point 
clouds semantic segmentation. We explored the possibility of 
learning a point cloud segmentation network by only supplying 
limited task-specific labelled buildings’ point cloud. We relied 
on the state-of-the-art Dynamic Graph Convolutional Neural 
Network (DGCNN) and FoldingNet to learn point cloud features 
(Wang et al., 2019; Yang et al., 2018). We chose the Autoencoder 
(AE) architecture to simultaneously learn reconstruction and 
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discriminative features of the input 3D buildings’ point cloud. To 
achieve this, we leveraged the DGCNN as our encoder and 
decoder of FoldingNet as our decoder to acquire powerful 
embeddings without any labelled data. To this end, with limited 
labelled point cloud data, we designed three fully connected 
layers in the end-to-end segmentation network to achieve the 
downstream segmentation task. 
 
In particular, our new contributions can be summarized as 
follows:  
 

1. We propose an unsupervised AE network to learn 
powerful features from non-labelled building datasets; 
and 

2. We train an end-to-end segmentation network for the 
buildings’ segmentation task. The output of our model 
is a semantically enriched LoD3 3D building 
representation; and 

3. We experimentally demonstrate how to exploit limited 
labelled point clouds and the features learned from pre-
trained AE to segment the input data.  
 

 
2. RELATED WORK 

Laser scanning techniques are able to collect point clouds of 
buildings. At the same time, the massive amount of data requires 
a semantic interpretation at a high Level-of-Details (LoDs) in 
order to increase the exploitation of these data sets (Previtali et 
al., 2018; Griffiths, Böhm, 2019). While several types of fully 
supervised Deep Neural Networks (DNNs) are continuously 
developed and improved in 3D point clouds analysis tasks, fine-
grained labels are always required in model training processes. 
These include pointwise labels, shape class labels for semantic 
segmentation task, and part-segmentation task. Thus, DNNs’ 
application to LoD3 buildings’ point clouds has been limited. 
This question has sparked the interest about this problem. Several 
unsupervised approaches have emerged to tackle the scarcity of 
labelled data. 
 
In this section, the state-of-the-art methods to figure out the 
possibility of unsupervised DL methods applied to buildings’ 
point clouds is dealt with. As there are only a handful of papers 
that focus on DL techniques on buildings’ point cloud 
segmentation task, we will not limit our review on the application 
to this category of objects. We review these approaches from two 
aspects as follows: 
 

1. Fully supervised methods on 3D point clouds; and 
2. Label-efficient unsupervised methods on 3D point 

clouds.  
 
2.1 Fully Supervised Methods on 3D Point Clouds 

3D buildings’ point clouds generally represent complex 
geometric structures, where semantic content is not directly 
included. Therefore, semantic segmentation of it is still a 
challenging task. In traditional data-driven approaches (Forlani 
et al., 2006; Verma et al., 2006), points with some notions of 
similarity are clustered together to map point clouds into classes 
by constructing feature descriptors (e.g., verticality, planarity and 
elevation). In conventional model-fitting approaches (Haala et 
al., 1998; Maas, Vosselman, 1999; Chen et al., 2014), some 
geometric models are sought to detect specific objects, such as 
houses, roofs, trees, etc. Despite the impressive performances 
from these traditional approaches, models or geometric 
descriptors cannot interpret the complexity of real data. 

Moreover, conventional semantic segmentation approaches 
heavily rely on hand-crafted features, making the generalization 
difficult. Their efficient application to obtain high LoD models 
still remains quite challenging.  
 
Due to these reasons, the chance of using DNNs to effectively 
and automatically extract features in an end-to-end fashion, gives 
rise to the application of these promising methods for semantic 
segmentation of point clouds of 3D buildings. Based on DNN 
input data format, existing point clouds semantic segmentation 
methods can be grouped into direct and indirect methods. The 
latter usually first partition the 3D space into regular image 
representations (Su et al., 2015) or voxels (Wang et al., 2017) 
data structures, to take advantage of well-established 2D/3D DL 
networks for feature learning and semantic segmentation. 
However, due to point clouds’ inherent nature, transfer to another 
intermediate representation would result in quantization error and 
inefficiency, see Qi et al. (2017a). In contrast, direct methods do 
not introduce explicit information loss, as reported in Guo et al. 
(2020). In 2017, the pioneering direct method PointNet (Qi et al., 
2017a) was proposed. PointNet directly operates on point clouds, 
using the Multilayer Perceptron (MLP) to learn high-dimensional 
features for each point independently. Subsequently, pointwise 
features are stacked to a global feature. Since pointwise features 
are learned individually from each point in PointNet, the local 
context information between points is ignored. Dynamic Graph 
Convolutional Neural Network (DGCNN) improves the 
performance of segmentation by considering the relations 
between points in the local neighbourhood and by aggregating 
them into a global feature in the EdgeConv Module (Wang et al., 
2019), which can be plugged into existing architectures. Since 
current state-of-the-art methods have shown that aggregating 
local and global information may increase the network’s 
capabilities of capturing context information, our paper will 
exploit the feature extraction power of EdgeConv modules in our 
encoder, which directly consumes points and incorporates the 
local neighbour information obtained from the point cloud. 
 
DL techniques for 3D point cloud segmentation have been 
successfully applied in recent years, while the development in the 
built environment domain has just started to be explored. A 
limited number of studies use DL methods to segment buildings’ 
point clouds into the category to which each point belongs to. 
Compared to the improvement of DL methods in indoor scenes, 
the segmentation methods of high LoD buildings’ point clouds 
are still at the initial stage of development. Most existing studies 
focus on LoD1 (Chen et al., 2014; Zhang, Zhang, 2017; Zhang, 
2018; Griffiths, Böhm, 2019; Huang et al., 2019), LoD2 (Hensel, 
2019; Jarząbek-Rychard, Borkowski, 2016), or one category of 
building’s element (Axelsson et al., 2018).  
 
Moreover, it is noteworthy to mention that only the ArCH Data 
Set (Matrone et al., 2020a) with pointwise annotations is made 
publicly available. The lack of semantic segmentation labels 
indicates the challenge for human beings to provide pointwise 
labels. Thus, there are also just a handful of DL-based research 
in higher LoD (e.g., LoD3 and superior) segmentation tasks. 
Pierdicca et al. (2020) proposed to employ DGCNN for the point 
cloud segmentation task applied on the ArCH Data Set. By 
adding radiometric (HSV value) and Normal features, they 
further improved the performance of segmentation. Their work 
showed the potential offered by DL techniques for the 
segmentation task. By fusing spectral information and hand-
crafted geometric features, DGCNN-Mod+3Dfeat (Matrone et 
al., 2020b) combines the positive aspects and advantages of 
machine learning and DL for semantic segmentation of point 
clouds in the field of Cultural Heritage. But 3D features in 
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DGCNN-Mod+3Dfeat are hand-designed and extracted by 
machine learning methods, so this solution is out of our 
consideration. 
 
Even though the intensive efforts to improve buildings’ point 
clouds segmentation performance, (1) most existing algorithms 
are insufficient to model details and are associated with a heavy 
workload, which meets current requirements in the development 
phase; (2) existing methods mostly used both 3D coordinates and 
hand-crafted features (i.e., geometric features) as their input to 
enhance the performance; (3) most of the existing DL-based 
approaches for 3D point cloud analysis are strongly supervised 
and rely on massive amounts of labelled 3D data. 
 
2.2 Label-Efficient Methods on 3D Point Clouds 

Unsupervised learning refers to learning methods without using 
any human-annotated labels. Since the scarcity of fine-labelled 
point clouds data sets, unsupervised learning methods are 
designed to exploit the inherent and underlying information in 
large unlabelled data, which may dramatically decrease the need 
for labelled training data. Several unsupervised methods (e.g., 
GAN, AE) applied to 3D point clouds are reported in the 
literature, partly due to the common criticism that in a DNN a 
huge amount of labelled data is required for training. The 
research of unsupervised AE methods on 3D point cloud data is 
a relatively new research topic. Existing literature is mostly very 
recent, as far as we know, there is no unsupervised AE model for 
buildings’ point clouds segmentation task to date. Therefore, our 
review of the label-efficient unsupervised AE approach will not 
be limited to the built environment domain in this section. 
 
2.2.1 Autoencoder (AE): An AE was trained to learn a 
compressed representation by faithfully reconstructing input 
original image/point cloud. In FoldingNet (Yang et al., 2018), the 
authors adopted the idea of the folding-based decoder to deform 
a canonical 2D grid onto the underlying 3D object surface of a 
point cloud. Built upon the fully supervised PPFNet (Deng et al., 
2018a) and FoldingNet, in PPF-FoldNet (Deng, 2018b) the 
authors improved their earlier solution by involving more 
features in their network in an unsupervised fashion. 3D-
PointCapsNet (Zhao, 2019) employed a dynamic routing scheme 
to extract discriminative representation while considering the 
geometric relations between parts. BAE-NET (Chen et al., 2019) 
proposed a branched AE network trained with a shape co-
segmentation task.  
 
However, most of these existing 3D point cloud unsupervised AE 
methods are trained by using simple 3D objects, and none of them 
applied to the semantic segmentation of architectural objects. 
Overall, learning to automatically generate powerful 
representation from uneven point clouds, especially buildings’ 
point clouds with complex geometric structures, still poses a 
challenge. To address these issues, in this paper we propose an 
improved AE approach to benefit from the ability to learn 
features without labelled data. 
 
 

3. METHOD 

In FoldingNet, an AE is utilized to reconstruct input point cloud, 
whilst discriminative representations are learned without any 
labelled data. Inspired by this, our label-efficient method aims to: 
(1) construct an AE network for extracting features without any 
labelled data; (2) with just a few labelled data, we train a 

segmentation network for the high-resolution LoD3 buildings’ 
point cloud semantic segmentation. Specifically, we proposed an 
AE network that may learn representations without any label by 
a dynamically updated graph-based encoder and folding-based 
decoder. Thus, we may reduce the need for large amounts of 
labels. Instead of the encoder in FoldingNet, we employ the 
EdgeConv layers in DGCNN to exploit local geometric structures 
and generate discriminative representations. Then, we use the 
learned representations as input to our downstream task. In 
general, the proposed network architecture consists of three 
components: a DGCNN-based encoder, a folding-based decoder, 
and a segmentation network. The input of the encoder is N 
coordinates (x,y,z) of buildings’ points, and outputs are 
discriminative features, which are also the input of both decoder 
and the segmentation network. The outcome is a matrix of size 
(m, 3) representing the reconstructed point cloud and per-point 
classification scores (m, n_classes) for decoder and segmentation 
network, respectively. The architecture of our improved AE is 
illustrated in Figure 1, and the segmentation network is shown in 
Figure 2. 
 
3.1 DGCNN-based Encoder 

Both encoders of FoldingNet and DGCNN use graph-based 
layers to extract the local geometric information in point’s 
neighbourhood and a max-pooling layer to aggregate 
information. The local features of FoldingNet are computed as 
follows: 
 ℎ!(𝑥" , 𝑥#) 	= 	ℎ!(𝑥#−𝑥"),                                (1) 
 
In this edge function, 𝑥" is the central point belonging to Point 
Set 𝑋 = {𝑥$, . . . , 𝑥%} 	⊆ ℝ&, 𝑥# is the local neighbours around the 
central point 𝑥"  and ℎ! is implemented by a fully connected 
multi-perceptron layer, which includes learnable parameters. 
FoldingNet obtains the local information by encoding 𝑥# − 𝑥" 
edge features. Then the learned local information aggregated by 
a local max-pooling operation on the constructed graphs 𝐺 =
(𝑉, 𝐸), where 𝑉 = {1, . . . , 𝑁} and 𝐸 ⊆ 𝑉 × 𝑉 are the vertices and 
the edges, respectively, and N is the number of vertices. On the 
other side, the operation on the constructed graph 𝐺 of DGCNN 
is EdgeConv operation, which may extract both local geometric 
and global shape information from the constructed graph. Firstly, 
the EdgeConv layer computes an edge feature set of size k for 
each input point clouds through asymmetric edge function: 
 
 ℎ!(𝑥" , 𝑥#) 	= 	ℎ!(𝑥" , 𝑥#−𝑥"),                          (2) 
 
In this edge function, EdgeConv captures the global shape by 
encoding the coordinates of 𝑥", then obtains the local information 
by encoding 𝑥# − 𝑥". The output feature is aggregated by edge 
features from each connected vertex and itself in the constructed 
graph. Thus, EdgeConv can explicitly combine the global shape 
structure information with local neighbourhoods' information. 
 
Furthermore, in FoldingNet, they construct the graph by 
computing pairwise distances using initial input point 
coordinates. Hence their graph 𝐺  is fixed. In contrast, we 
calculate the pairwise distance in feature space at each layer and 
choose the nearest k points per each central point, and then we 
dynamically construct 𝐺' = (𝑉' , 𝐸')  at layer 𝑙 . The receptive 
field becomes larger while such dynamic graph updates in each 
layer, and local information around central points and global 
information in different receptive fields are aggregated and 
stacked in the last layer before the max-pooling layer. 
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Figure 1. The architecture of our 3D Autoencoder (AE) network, consisting of a DGCNN-based encoder module (top) and a folding-

based decoder module (bottom). The AE learns a discriminative representation “codeword” by reconstructing it to 3D surface and 
training with Chamfer Distance loss. The outputs of three EdgeConv layers and codeword from pre-trained AE will be further 

concatenated and used in our semantic segmentation network. 
 

 
Figure 2. The architecture of the semantic segmentation network. The network takes the outputs of pre-trained AE as input. It is 

trained to output pointwise segmentation scores of building point clouds by simply shared Multilayer Perceptron (MLP). 
 
 
The procedure for producing feature representations in DGCNN-
based encoder is visualized in Figure 1. We remove the encoder 
of FoldingNet and replace it with three EdgeConv layers in 
DGCNN segmentation architecture. The outputs of the three 
EdgeConv layers are concatenated and then passed to a feature-
wise max-pooling layer to produce a 𝐶()* -dimensional 
“codeword” 𝜃. The outcomes of three EdgeConv layers and the  
“codeword” 𝜃 are stored in the pretrained AE model, which will 
be the basis for our segmentation network. 
 
3.2 Folding-based Decoder 

We use the “codeword” output from the DGCNN-based encoder 
and a 2D grid as input to our decoder. A folding-based decoder 
is then utilized to reconstruct input “codeword” with a 2D grid to 
3D point clouds by two successive folding operations.  
 
The folding-based decoder in our AE network is adopted from 
FoldingNet’s decoder that contains two successive folding 
operations. The first one folds the 2D manifold into 3D space, 
and the second one operates inside the 3D space. As shown in 
Figure 1, we have modified the decoder of FoldingNet to make it 
usable with different sizes of input “codeword” 𝜃  (512-
dimensional and 1024-dimensional) instead of a fixed size 512-

dimensional representation in FoldingNet. Before feeding the 
“codeword” into the folding-based decoder, we replicate the 
“codeword” 𝜃 m times and concatenate the replicated (m, 𝐶()*) 
matrix with an (m, 2) matrix, which contains the m grid points 
(𝑈) on a square centred at the origin. As each row of 𝑈 is a 2D 
grid point, we define the 𝑖-th row of 𝑈 as 𝑢". Thus, the 𝑖-th row 
of the input matrix to the folding operation is [𝑢" , 𝐶] after above 
concatenation. The following two folding operations essentially 
form a universal 2D-to-3D mapping by two successive 
Multilayer Perceptron (MLP). The MLPs are applied in parallel 
to each row of the input matrix. We denote the 𝑖-th row of the 
output matrix as 𝑓([𝑢" , 𝐶]) , where 𝑓  is approximated by the 
MLPs which can be tuned by the input “codeword” and learn a 
“force” to reconstruct the input into arbitrary point cloud 
surfaces. During the training process, we use Chamfer distance 
(Fan et al., 2017) as our reconstruction loss, which measures the 
similarity of the reconstructed point cloud and the input point 
cloud. With the DGCNN-based encoder and folding-based 
decoder, we learn a set of powerful and separable features and 
pass these learned features into our downstream semantic 
segmentation task. 
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3.3 Semantic Segmentation Network Architecture  

We created a semantic segmentation network to semantically 
segment buildings’ point clouds. The goal here is to assign a 
semantic label to each of the points given an input point cloud. 
Hence, we treat this semantic segmentation as a per-point 
classification task. The output of the pre-trained encoder is a 
𝐶()*-dimensional representation (“codeword”) and three stacked 
edge features, which are learned from non-labelled buildings’ 
point clouds. We replicate the codeword N times and concatenate 
it with the outputs of three EdgeConv layers in the pre-trained 
AE. A standard 3-layer shared MLP with a cross-entropy loss is 
then employed as our semantic segmentation classifier after the 
above concatenation. Considering the features obtained by the 
proposed AE are already distinctive, we chose this simplest MLP 
for segmentation of the building point cloud. This semantic 
segmentation network is trained independently from the 
proposed AE. The procedure for acquiring per-point 
classification scores in the semantic segmentation network is 
illustrated in Figure 2. 
 
 

4. EXPERIMENTS 

4.1 Dataset 

We have qualitatively and quantitatively evaluated our method 
on the Architectural Cultural Heritage (ArCH) Data Set. In the 
state-of-the-art, the most used data sets to train unsupervised 
learning are: ModelNet40 (Wu et al., 2015) with more than 100k 
CAD models of objects from 40 different categories for 
classification tasks; ShapeNetPart (Chang et al., 2015) data set 
with 31,693 meshes classified into 16 common classes (i.e., 
plane, table, chair, etc.); each shape has 2-5 parts for part-
segmentation tasks. However, none of them can be used for 
buildings’ point cloud segmentation. Other outdoor data sets used 
in this task, such as Semantic3D (Hackel et al., 2017) and 
Oakland (Munoz et al., 2009) features LoD1 or LoD2 for the 
architectural elements.  
 
A building in LoD3 has detailed surface structures such as walls, 
roof, and potentially openings (doors and windows). To date, 
there are still no published data sets focusing on urban buildings’ 
point clouds with a sufficient level of details such as LoD3. The 
components of historical architectural heritage including detailed 
roof, façade structures, openings, and some unique structures 
such as vaults, which are similar to but more complicated than 
contemporary buildings. Networks trained on this kind of data 
sets are easy to generalize to other building scenes. So, we chose 
an immovable cultural assets data set with fine per-point labels, 
named ArCH Data Set, to evaluate our method. It consists of 15 
indoor and outdoor labelled scenes, including churches, chapels, 
cloisters and porticoes.  
 
Our primary motivation to study unsupervised classification 
problems is that the number of training data is limited. To test the 
performance when the number of unlabelled and labelled data is 
small, we select three small scenes (namely, “SMV_1”, 
“SMV_24”, “SMV_28”) from the 15 labelled scenes as the 
training data in both unsupervised AE training and supervised 
segmentation training stages. The training data in our experiment 
is only 10% of state-of-the-art (Pierdicca et al., 2020), who use 
all scenes as training data. Then we follow the settings adopted 
by Pierdicca et al. (2020) that removed the “others” category, 
selected two scenes (“A_SMG_portico” - Scene_A and 
“B_SMV_ chapel_27to35” - Scene_B) as our test data. The 
scenes used in our experiments are acquired by both terrestrial 

laser scanners (i.e., a FARO Focus 3D X 120/130 and a Riegl 
VZ-400) and Structure-from-Motion photogrammetry 
(Barazzetti et al., 2009) based on drone images (Fugazza et al., 
2018). A DJI Phantom UAV platform equipped with a SONY 
Ilce 5100L were used for data acquisition. 
 
4.2 Implementation Details 

We choose 1𝑚 × 1𝑚 area as the block size for splitting each 
building scene into blocks to train. Prior to training, the input 
point clouds are aligned to a common reference frame. In 
addition, for training convenience, the points in each block are 
sampled into a uniform number of 8,192 points. During training, 
we have randomly sampled n (2,048 or 4,096) points in each 
block on-the-fly. To train our AE network, we have employed 
ADAM (Kingma, Ba, 2015) as an optimizer with an initial 
learning rate 0.001, batch size 16, and weight decay 10−6 with 
250 epochs. The setting of hidden layers in our encoder is the 
same as DGCNN, but we have removed the layers after the max-
pooling layer. The architecture of the encoder incorporates the 
following steps: 
 

1. Three EdgeConv layers to extract local and global 
geometric features. The EdgeConv layers take a tensor 
of shape n × f as input, then acquire edge features for 
each point by applying an MLP with the number of 
layer neurons defined as {𝑎$, 𝑎+, . . . , 𝑎%}. The number 
of nearest neighbours k is set as 20 at every EdgeConv 
layer; and 

2. Features generated in three EdgeConv layers are 
concatenated to aggregate features in different 
receptive fields; and  

3. The dimension of the MLP layer before the last max-
pooling layer is set as 𝐶()* (512 or 1,024) to globally 
aggregate a 1D global descriptor “codeword” 𝜃.  

 
In our graph-based decoder, we have used two consecutive 3-
layer MLPs to warp a fixed 2D grid into point cloud surfaces. 
Before feeding the “codeword” into the folding-based decoder, 
we have replicated the “codeword” m times and concatenated the 
replicated (m,	𝐶()*) matrix with an (m, 2) matrix. According to 
the input point cloud size (2,048 or 4,096), m is set as 2,025 or 
4,096. Then the sizes of two 3-layer Shared MLPs is (𝐶()*+ 2, 
𝐶()* , 3) and (𝐶()*+3, 𝐶()* , 3), and implemented by six 1-D 
convolutional layers, each followed by a ReLU layer. The output 
is the reconstructed point cloud with size (m, 3). 
 
Similarly, in the semantic segmentation network, we have also 
used ADAM as our optimizer (learning rate 0.01, batch size 16, 
250 training epochs). According to the dimension of 𝐶()*, our 
shared MLPs is (𝐶()* + 64 + 64 +
64, 512, 256, 128, 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠)  with layer output sizes 
( 512, 256, 128, 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ) on each point. The evaluation 
metrics of overall point accuracy (OA) and mean Intersection-
over-Union (mIoU) are calculated on the ArCH data set. The 
method has been implemented using PyTorch. All experiments 
have been conducted on an NVIDIA Tesla T4 GPU. 
 
4.3 Results 

If the features obtained by the proposed AE are already 
distinctive, the required number of labelled data in semantic 
segmentation network training process should be small. In this 
section, to demonstrate this intuitive statement, we report our 
experiment’s results on the ArCH Data Set. We evaluate our 
model on two unseen scenes (“Scene_A” and “Scene_B”) for 
testing. In Table 1, the overall performances are reported and 
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compared with state-of-the-art (SOTA) methods, which are 
retrieved from Pierdicca et al. (2020): PointNet (Qi et al., 2017a), 
PointNet++ (Qi et al., 2017b), PCNN (Atzmon et al., 2018) and 
DGCNN (Matrone et al., 2020b) with 10 scenes, and DGCNN 
(Pierdicca et al., 2020) with 15 scenes as training data. 
 

Networks Train 
Scenes 

Test 
Scene 

Evaluation 
Matrix 

   mIoU OA 
PointNet  10 scenes Scene_B 0.114 0.307 
PointNet++ 10 scenes Scene_B 0.121 0.441 
PCNN  10 scenes Scene_B 0.260 0.635 
DGCNN  10 scenes Scene_B 0.290 0.74 
DGCNN 15 scenes Scene_B 0.353 0.752 
DGCNN 15 scenes Scene_A 0.376 0.784 
DGCNN 3 scenes Scene_B 0.163 0.362 
DGCNN 3 scenes Scene_A 0.243 0.499 
Ours 3 scenes Scene_B 0.408 0.666 
Ours 3 scenes Scene_A 0.463 0.773 

 
Table 1. Our results vs prior works on Architectural Cultural 

Heritage (ArCH) Data Set. OA and mIoU denote overall 
accuracy and mean Intersection-over-Union, respectively. Our 
method performs the best on mIoU with only 3 scenes (about 

10% of 10 scenes).  
 

With only about 10% of training data with respect to SOTA 
methods in both AE and segmentation network training stages, 
our model achieves the best results on the ArCH Data Set with 
the same training strategy (only input x, y, z coordinates). In 
particular, the test mIoU on Scene A is 0.463, which overcomes 
the previous SOTA (0.376). The mIoU on Scene B is 0.408, 
which also outperforms the 0.353 of SOTA. The overall point 
accuracy (OA) is the ratio between the amount of properly 
classified points and the total number of points in the two scenes.  
mIoU takes the false alarms and different categories into 
consideration, which is more informative. We also compare our 
results on Scene_A and Scene_B with respect to SOTA methods 
when training on the same subset (3 scenes). As shown in Table 
1, the results of “ours” method also outperform the SOTA 
methods. 
 
The results of per-class quantitative evaluations on Scene_B of 
ArCH Data Set are provided in Table 2. We can see that the 
proposed model performs better than other competitive methods 
in many classes. The semantic segmentation qualitative result is 
shown in Figure 3. Our network is able to output smooth 
predictions. 
 
 

 
 

Figure 3. Qualitative results for semantic segmentation. The top 
row is the ground truth, and the second row is the prediction 
result of “Scene_A”. The bottom row is the ground truth and 

output semantic segmentation result of “Scene_B”. Same scenes 
are displayed in the same camera viewpoint. 

 
4.4 Ablation Study 

In this section, we validate our design choices by control 
experiments. We also show the effects of choices of our 
network’s hyperparameters. 
 
4.4.1 Effectiveness of DGCNN-based Encoder: In Table 3, 
we show the positive effects of our proposed DGCNN-based 
encoder. Compared to FoldingNet, the performance of DGCNN-
based encoder has a 7% boost while using one scene in the 
training stage, and a 14% improvement while three scenes in the 
training stage, testing on Scene_B. 
 

Setting Training Scene OA 
FoldingNet 1 scene 0.425 
FoldingNet 3 scenes 0.420 
DGCNN 1 scene 0.493 
DGCNN 3 scenes 0.561 

 
Table 3. The varying encoders tested on ArCH Data Set 

Scene_B. OA denotes overall accuracy. 1 scene (“SMV_24”) 
and 3 scenes (“SMV_1”, “SMV_24”, “SMV_28”) in ‘Training 
Scenes’ column mean we use only 1 scene or 3 scenes in both 

AE training stage and segmentation network training stage 
(training without using any data augmentation). 

 

Method mIoU Arch Column Molding Floor Door-
Window Wall Stair Vault Roof 

PointNet 0.114 0.000 0.000 0.001 0.294 0.000 0.411 0.000 0.337 0.094 
PointNet++ 0.121 0.000 0.000 0.002 0.009 0.000 0.514 0.000 0.074 0.608 
PCNN 0.260 0.072 0.062 0.198 0.482 0.004 0.581 0.082 0.468 0.658 
DGCNN 0.290 0.060 0.064 0.142 0.470 0.006 0.603 0.290 0.520 0.845 
Ours 0.408 0.880 0.243 0.117 0.471 0.005 0.676 0.035 0.577 0.659 

 
Table 2. Our per-class IoU and class-averaged mIoU results on Scene_B vs prior works on ArCH data set. Each column 

represents the IoU of the category it belongs. Our method performs better than others in many classes with only 3 scenes (about 
10% of 10 scenes). 
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4.4.2 Comparison with Different Dimensions of 
Codeword: We use 512-dimensional codeword and 1,024-
dimensional codeword as control experiments to compare the 
segmentation result of buildings’ point clouds. In Table 4, we 
show the effects of different codeword dimensions, test on 
Scene_A. The input point cloud size is fixed in 2,048 in the AE 
training stage, and we set two input point size (2,048 and 4,096) 
in the segmentation training stage.  
 
As shown in Table 4, the model performs better when the 
dimension of the codeword is 512, regardless of whether the 
input point size is 2,048 or 4,096 in the segmentation network. 
 

Dims seg_n_points OA 
512 2,048 0.747 
1,024 2,048 0.722 
512 4,096 0.773 
1,024 4,096 0.694 

Table 4. The varying number of dimensions for output 
codeword learned from AE. 512 and 1,024 in column “Dims” 

denotes 512-dimensional codeword and 1,024-dimensional 
codeword, respectively. “seg_n_points” denotes the input point 
size in the segmentation network training stage. Input point size 

in the AE training stage is 2,048. 
 
 

5. CONCLUSIONS 

In this study, we have presented an effective label-efficient 
unsupervised network for LoD3 buildings' point clouds semantic 
segmentation. The results of our experiments provide support 
that our proposed Autoencoder architecture may learn powerful 
representations from unlabelled data, and these representations 
can be further used in downstream tasks. Furthermore, our 
network supplies a unified approach for the segmentation task of 
building point clouds while obtaining on equal or better results 
w.r.t. the state of the arts on the basis of only 10% training data 
from the ArCH dataset. We experimentally demonstrated the 
effectiveness of the DGCNN-based encoder. We also provided 
detailed ablation studies to validate our design choices. 
 
However, our network has the following limitations: (1) In the 
data pre-processing stage, the block size and the sampling 
number of points in each block is fixed. Thus, network was 
training on a small region of building scenes, and the 
performance would be degraded, resulting in wrong 
segmentation; (2) some details of our implementation could also 
be extended to improve efficiency, e.g., incorporating RGB, laser 
intensity (if available – see Scaioni et al. 2018) and normal 
information on one side, and by increasing the unlabelled training 
data in the unsupervised AE training stage on the other.  
 
In future work, we plan to improve the model’s performance by 
breaking through the input point size and incorporating more 
features of the input buildings’ point cloud. 
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