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ABSTRACT:

In many countries digital maps are generally created and provided by Cadastre, Land Registry or National Mapping Agencies.
These maps must be accurate and well maintained. However, in most cases, the update process of these maps is still done by hand,
often using satellite or aerial imagery. Supporting this process via automatic change detection based on traditional classification
algorithms is difficult due to the high level of noise in the data, such as introduced by temporary changes (e.g. cars being parked).
This paper describes a method to detect changes between two time steps using 2.5D data and to transfer these insights to a digital
map. For every polygon in the map, several attributes are collected from the input data, which are used to train a machine-learning
model based on gradient boosting. A case study in Haarlem, in the Netherlands, was conducted to test the performance of this
proposed approach. Results show that this methodology can recognize a substantial amount of changes and can support — and
speed up — the manual updating process.

1. INTRODUCTION

Up-to-date digital maps are required for many applications in
academia, government and industry, and they are thus produced
and offered by many companies and governments worldwide.
In order to keep these maps as up to date as possible, the pro-
viders of these maps face two main problems:

1. areas, especially cities, are in constant change with some-
times drastic effects; and

2. digital maps are static and can only display a snapshot of
an area at a certain time.

Keeping these maps updated is vital so that they remain useful.
However, this update process is still mostly done by manual
workforce offered by specialized companies. Existing maps are
compared with aerial images and used to change the digital map
accordingly. This process is a tedious work, can take long time
and some changes are not detected by the operators.

A significant step for automating this update process would be
to integrate automatic change detection methods. These meth-
ods could highlight parts of the map that need further invest-
igation and therefore speed up map updating. However, even
though classical change detection algorithms for remote sens-
ing and computer vision are able to detect differences between
images, they have multiple problems. First, often it takes a
substantial amount of time to compute the change detection for
the complete map area. Second, these classical algorithms can-
not handle well noise and temporary changes. Lastly, applying
these algorithms requires advanced knowledge from many dif-
ferent fields of computer vision and remote sensing.

A possible solution to this problem can be the use of machine
learning (ML) algorithms, which are used with great success in

many problems regarding geographical data. Once the training
of these algorithms is complete, they have a very high execution
speed and are generally more accurate than their classical coun-
terparts. Furthermore, only the same input data that are used for
the manual updating process are needed for ML algorithms.

The goal of this paper is to find out to what extent change detec-
tion can be automated using gradient boosting, focusing on XG-
Boost. The research was conducted as part of a master thesis,
which was done in cooperation with the company Readar1. The
full thesis report is available at the online repository of TU Delft
Library2.

2. BACKGROUND

2.1 Change detection

Change detection is a common topic in remote sensing and
Geographic Information Systems (GIS) and is used in many
applications for academia and industry. Many different tech-
niques have been developed for different use cases. See Ban
and Yousif (2016) or Lu et al. (2004) for an overview.

In general terms, change detection can be separated in pixel-
based and object-based methods (İlsever and Ünsalan, 2012;
Taubenböck et al., 2012; Shi et al., 2012). The latter method is
the one used in this paper, using polygons as objects.

The latest trend in change detection is the usage of ML using
a variety of techniques. A rather up-to-date overview is given
by Vignesh et al. (2019) and Shi et al. (2020a). An example
of successful change detection using XGBoost—which is also

1 https://readar.com/
2 http://resolver.tudelft.nl/uuid:9a84292f-ae1c-4d39-8

a8e-a0cd0c133130
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used in this paper—is given by Abdullah et al. (2019), in which
features from different years were processed to analyse changes
in land cover.

When looking at the literature, two things can be noticed:

• In many cases the focus is set on a certain type of ob-
ject, such as buildings (Matikainen et al., 2010), veget-
ation (Meeragandhi et al., 2015) or streets (Zhang and
Couloigner, 2004). These are easier cases to handle, since
the shared attributes of a single type allow for easier detec-
tion.

• Many change detection methods, especially for land cover
changes, are often relying on additional data, like multi-
spectral imagery or Radar/Lidar (Shi et al., 2020b; Kranz
et al., 2017; Matikainen et al., 2010). In comparison to
RGB imagery, these data are not always available or ex-
pensive to purchase.

This paper documents the attempts to overcome both of these
shortcomings.

2.2 Gradient boosting

Gradient boosting is the machine-learning technique used for
change detection in this paper. It combines multiple weak
learners into a strong prediction model suited for both classi-
fication and regression problems. A weak learner (also called a
feature in the context of Gradient boosting) is a single attribute
of an object. In this case, an object is one polygon of the map;
whereas one example of feature could be the average red value
of all pixels of this specific polygon. In gradient boosting, these
features are used to build decision trees.

A decision tree is a directed graph that depicts every possible
outcome of a question/decision based on the value of certain
features. A simple example of a decision tree would be a clas-
sifier which attempts to classify a set of candidates into those
that like computer games and those that do not (without ask-
ing this specific question). One feature, like the gender of the
candidates (with the assumption that males tend to like com-
puter games and females tend not to), could already give a first
estimation but would lead to many incorrectly classified candid-
ates. Including more features (age, study degree, Internet usage
times) can improve the results.

Boosting is a process to generate decision trees automatically
from the available features using a sample of objects where the
correct classification is known. Figure 1 exemplifies this pro-
cess in simplified way: Trees are created iteratively to classify
the values in the left plot with the available features being the x-
and y-position. The trees in gradient boosting are created using
both the features that give the best distinction between desired
outcome and a random selection of features. After many itera-
tions, many of these trees are combined into random forests and
refined, with each iteration improving the result of the change
detection.

Together, these random forests create a progressive model for
classification or regression. In gradient boosting, these models
are also regularized using a random differentiable loss function.
An advantage of this method is its automatic handling of miss-
ing values and its fast execution time. For a more extensive
explanation of gradient boosting and its uses, please refer to
Natekin and Knoll (2013), Bentéjac et al. (2021) or Biau et al.
(2018).

Figure 1. Functionality of Gradient boosting. © Zhang et al.
(2018).

3. METHODOLOGY

This paper uses the XGBoost library developed by Chen and
Guestrin (2016). It is a framework available for Python that im-
plements gradient boosting. It has important advantages for this
project, among which a very fast execution time, low resource
usage and a built-in mechanism against overfitting, i.e. a situ-
ation in which the model is too closely related to the example
data and cannot predict other data well.

3.1 Input data

Three different types of input data are required for change de-
tection using our XGBoost-based approach:

• One digital map containing correctly categorized poly-
gons, i.e. into buildings, waterways or vegetation. The
more accurate the categorization, the better the final pre-
diction.

• Two aerial images, one taken at a time that corresponds
(roughly) to the information in the digital map; and one
taken at the time where the changes should be detected.
The higher the resolution, the more meaningful informa-
tion can be extracted using the features, and the more ac-
curate the final change detection will be.

• Two point clouds, also corresponding to the digital map
and to the changes. They can be derived directly from aer-
ial images using photogrammetry or based on Lidar.

3.2 What are changes?

Based on the requirements for automatic map updates and the
capabilities of XGBoost, we consider a change as an object (i.e.
polygon) that has clear differences between its two correspond-
ing aerial images or point clouds, even if its class is the same,
e.g. when an old building is replaced by a new one.

However, there are two important clarifications to be made:
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• These differences must be permanent. Temporary or sea-
sonal differences are therefore not considered as changes.

• Construction sites are considered as changes only if a
change in appearance or a change in height can be found.
Otherwise the training of the model is more difficult or
even impossible.

3.3 Steps in methodology

The proposed approach consists of three different main pro-
cessing steps, which are described in the following sections.
They are:

Data preparation The input data is cleaned and prepared.

Feature extraction The features describing a change are ob-
tained.

Training The machine learning model is created based on the
features.

3.4 Data preparation

The exact preparation steps required depend on the input data,
but these generally involve: accurately georeferencing the aerial
images and point clouds, cleaning the digital map into a planar
partition of polygons (Arroyo Ohori et al., 2012), and (manu-
ally) checking the correct classification of the polygons.

3.5 Feature extraction

An object corresponds to a polygon in the digital map, and is
linked to specific subsets of the two aerial images and two point
clouds via its geographical coordinates. All pixels and points
that are located inside a polygon are used as the input to extract
features, which are then computed for each polygon and for
each time.

As described in the input data in Section 3.1, only the polygons
of one time step (those in the input map, from now on referred
to as old) are known. The polygons for the other time step (from
now on referred to as new) would be part of the new map and
are not known. Because of this, in order to get the features for
old and new, the aerial images and point clouds from old and
new are used, but only the polygons from old are used for the
geometries (see Figure 2). All features therefore are related to
the polygons from the old time step. Only if there is a change
inside a polygon from the old time step, this is detected.

Figure 2. Components used in the feature extraction step

There are many possible features that can be extracted. This
depends on the available data and the desired classification. In

general, we have found that the use of four categories of fea-
tures provides good results3:

Colour-related features Colour features describe the aerial
images by means of RGB values in a polygon. They are
easy to derive but very susceptible to small changes. Nor-
mal statistical functions like max, min, avg are applied to
the data.

Height-features Height features are derived from the point
cloud directly and contain the 3D information of the area.
Next to height, aspect and slope can be created from the
point cloud. Again, statistical functions are applied.

Polygon features Attributes from the polygon itself, like size
or shape are used to extract features. Also the original cat-
egory derived from the input map falls under this category.

Progressive features This term describes features in which the
feature value is not directly derived from the input source,
but must be processed first. This includes classical al-
gorithms from computer vision, like Haralick Texture fea-
tures, Fourier transform, Canny edge detection and Local
binary patterns, as well as operations from GIS, such as
shadow calculation.

3.6 Training

With the data from the available features, the ML-based model
is trained. For this, the data from both time steps are merged,
any qualitative (i.e. non-numeric) features are encoded, and the
information of whether a polygon is changing between the time
steps is added. For example, the latter information can be en-
coded as yes (1) and no (0).

Figure 3. Workflow for tuning and training of the model.
© SciKit-Learn

The training of the model follows the best practices as can be
seen in Figure 3:

1. Cross-validation is used to extract the best hyper paramet-
ers for the data;

2. The data is split into training and test sets;

3. The model is trained with the training data and the best
hyper parameters;

4. The model is validated with the test set.
3 For a more extended list of features please see the underlying MSc.

thesis
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Cross-validation is a process in which the whole test dataset is
split in k folds. Every evaluation is done k times, each time a
model is trained using k − 1 folds and the last fold is used as
validation data. This is done for different combinations of hyper
parameters. Every evaluation is checked for its performance
and the results of all evaluations are averaged. Afterwards, it is
possible to check which set of hyper parameters gave the best
results. This process is done mainly to prevent overfitting.

To make a selection between training and test sets, a percentage
of the complete dataset is taken randomly. This selection is
done for each category separately in order to keep the same
distribution of classes in both sets.

3.7 Output and evaluation

The output of the model is a percentage value of how likely it
is that a polygon changes between the two time steps.

Furthermore, the complete model must be evaluated to determ-
ine how successfully the model can classify unknown results
and is therefore also a measurement of how useful the model
will be for future tasks. For this evaluation, two approaches are
selected.

A first evaluation is done with a confusion matrix (CM). The ad-
vantage of the CM is the easy visualization of the performance
of the model, however the performance of the model is depend-
ent of the threshold (the probability of change that is used to
separate a change from a no-change).

Second, evaluations are done with curves that can bypass the
problem of setting an initial threshold as all possible threshold
values from 0 to 1 are displayed. Two curves described by
Brownlee (2018) are used:

Precision-Recall curve As the name suggests, it plots the pre-
cision of a classifier with its recall. For this curve, only the
correct prediction of the true target values are important.
The closer the curve to the upper right corner, the better
the model is at classifying the positive results correctly.

ROC Curve This curve, also known as Receiver operating
characteristic (ROC)-curve, shows the trade-off between
the True-Positive rate (TPR), also known as sensitivity,
and False- Positive rate (FPR), also known as inverted spe-
cificity, with the former on the y-axis and the latter on the
x-axis. The TPR tells what proportion of positive labelled
entries are correctly labelled, the FPR tells the proportion
of negative labelled entries that were incorrectly labelled.
Furthermore, the AUC (area under curve) is displayed, a
value describing how much area of the plot is located un-
der the curve and which can be used to compare different
curves.

4. EXPERIMENT

The methodology was implemented with the algorithms de-
veloped in Python and the visualization done in QGIS.

4.1 Study area and data

An area in the municipality of Haarlem, the Netherlands, was
chosen as case study. In this area a good selection of different
surface textures can be found, such as a traditional inner city

core with small houses, residential areas with gardens, business
and industrial areas, waterways and some agricultural areas.

Both digital map and aerial images are available for the con-
secutive years of 2017 and 2018. However, the digital map for
2018 will only be used for the validation of the test set.

Based on the change criteria specified in Section 3.2, a total
number of 1378 polygons that are changing between 2017 and
2018 can be found. Compared to the total number of polygons,
only 0.85% of the polygons are changing. Table 1 shows the
exact distribution of changes. The group classification of the
polygons is important for the later evaluation of the model.

Class Group Changes (% of class)

Building building 464 (0.57)
Road section street 323 (0.99)
Building installation building 4 (0.26)
Other structures building 4 (0.27)
Water water 6 (0.29)
Vegetation surface 271 (2.12)
Bare area surface 186 (0.03)
Supporting Water water 6 (0.2)
Supporting Road sections street 114 (1.6)

Table 1. Changes per class

The input data for this use case has the following specifications:

• The BGT (Basisregistratie Grootschalige Topografie) is
used as a digital map. It consists of categorized polygons
in a resolution of up to 20cm.

• The aerial images are part of the stereo10-dataset from
the company Cyclomedia. It contains contains true-ortho
imagery in a resolution of 10cm. Images are taken in the
leafless seasons of early spring and late autumn and with
no present disturbances like clouds. A maximum visibility
is therefore assured.

• The point cloud is created with 3D photogrammetry from
the aerial imagery. It was created by Readar using an in-
ternally developed approach. Complementary to the de-
fault algorithms used for 3D photogrammetry, ML tech-
niques are used to improve the results. For some parts that
are occluded on the aerial images, no height information is
available. However, in comparison to the total area, these
parts are negligible.

4.2 Data Preparation

A grid approach, using the average height as the height of a cell,
is used to create a DSM. To simplify the feature extraction, the
cell size and extent of the DSM is identical to the cell size and
extent of the aerial image. Afterwards QGIS is used to calculate
the slope and the aspect from the DSM.

To support the manual change detection in order to have the
complete dataset for training, the whole research area was
tiled temporary in squares of 250×250m and each tile was
checked individually for existing changes and labeled equival-
ently. Polygons with a surface area of less than 2m2 are not con-
sidered for change detection. Their size is too small to extract
meaningful information and ensure a successful classification
of changes.
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4.3 Feature Extraction

The following features were extracted from the input data:

• Category of a polygon
• Statistical information for RGB and HSV values
• Statistical information for height, slope and aspect
• Percentage of shadow pixels in a polygon based on Bhat-

tacharya et al. (2019)
• Haralick Texture features based on Coelho (2013)
• Local binary patterns
• Fourier transform
• Bhattacharyya distance based on Choi and Lee (2003)
• Percentages of canny edge pixels based on He et al. (2017)

The feature extraction was done by using diverse Python librar-
ies. The following libraries were used:

NumPy Calculating the statistical features for colour &
height and calculation of Bhattacharyya distance

Pandas Data storage and communication with XGBoost
SciPy Extraction of computer vision features and evalu-

ation of the model
SkiKit Calculation of Haralick Texture features
OpenCV Calculation of Local binary patterns, Fourier trans-

form & Canny edge

4.4 Training

For the split between training and test sets, a ratio of 80:20 per
class was chosen, resulting in 129.142 entries in the training set
and 32.285 entries in the test set.

Tuning of the hyper-parameters was done with k-cross-folding,
with k = 5. To prevent overfitting, early stopping rounds was
set to 10. Table 2 describes the parameter values after tuning
which delivered the best results4:

Parameter Initial value
objective binary:logistic

eval metric aucpr
learning rate 0.3
max depth 7

min child weight 3
gamma 0.0

colsample bytree 0.8
subsample 0.9

scale pos weight 10.78
reg alpha 1e-5

n estimators 394

Table 2. Overview of tuning parameters with initial values

Tweaking the parameters only results in small changes in the
end result. However, two parameters are important for a suc-
cessful change detection. The maximum depth of a decision
tree should be at least seven, as otherwise the complexity of
the model is too low to distinguish between temporary and
permanent changes. Furthermore, it is very important that a
higher weight is given to positive examples (i.e. changes) (with
scale pos weight). Otherwise, the majority of polygons, which
likely have no change, can influence the results (e.g. by classi-
fying everything as not changed).

4 For an exact description of the parameters, the reader is referred to ht

tps://xgboost.readthedocs.io/en/latest/parameter.html

The actual training of the model is simple: an XGBoost model
with the tuned parameters is created as a Python object. After-
wards, the training data (both the features and the target values)
are given to the model and the training can start.

5. RESULTS

Figure 4 shows how the outcome of the model could be presen-
ted to a person responsible for updating the map. The more blue
a polygon is, the more likely a change has occurred between the
two time steps. Instead of considering the whole area, the focus
can be set directly on interesting areas. Note that in this im-
age, only the subset of polygons that are part of the test set are
shown.

Figure 4. Example view for the operator

Figure 5 shows both examples for a detected and for an undetec-
ted change detection. The left images are from the old time
step, the right images are from the new time step. In both cases,
a change has occurred between both time steps. The reason for
the detection failure is that the difference between both images
is too small: a patch of sand in the old time step was replaced by
concrete with some sandy parts in the new time step. This res-
ults in very similar feature attributes and thus the change fails
to be automatically recognized.

In the following sections, the curves and confusion matrix of
the results of the case study are shown. The evaluations were
created using the Python library SKLearn.

5.1 Confusion matrices

As can be seen in Table 3, the results are very dependent on the
threshold which is used to separate changes from no changes.

Threshold TN FP FN TP
90% 32 006 3 160 116
50% 31 996 13 128 148
10% 31 931 78 89 187
1% 31 600 409 63 213

0.1% 30 248 1761 22 254

Table 3. Results for confusion matrix based on different
thresholds

For some object types, changes can be detected more easily than
for others. To highlight this, Table 4 shows the CM for different
BGT-groups. As the highest number of TP were found with the
threshold of 0.001, the threshold for these matrices is likewise
set to this value.
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Figure 5. Examples of successful (top) and unsuccessful
(bottom) change detection

BGT-group TN FP FN TP
building 16 478 215 5 90

street 6932 585 8 80
surface 5846 585 8 83
water 992 17 1 1

Table 4. Results for confusion matrix based on different groups

5.2 Curves

Figure 6 displays the PR-curve with the precision and recall for
different thresholds in orange. The blue line shows the preci-
sion of a classifier with no skill and is related to the percentage
of changes in the dataset. In this model the highest threshold is
on the left and the lowest on the right.

• Up to a threshold of 60%, the precision is close to 1, mean-
ing almost no FP are detected but there are a large number
of FN.

• From a threshold of 60% to a threshold to 40%, the preci-
sion stays relatively flat, that means while gaining a smal-
ler amount of FN, the number of FP is only rising slowly.

• From a threshold of 40% to 20%, the precision is falling
more than the recall is rising, hence the number of detected
FP is rising more quickly than the number of detected TP.

• From a threshold of 20% to 0%, the numbers of FP and TP
are balanced.

The second curve (Figure 7) displays the ROC-Curve with
the inverted FPR (x-axis) and the TPR (y-axis) for different
thresholds. The blue line represents the condition where TPR
equals FPR. Going right on the x-axis means to lower the
threshold and find more FP. The following can be noted for
this curve:

Figure 6. Precision-Recall curve

Figure 7. ROC curve

• At an FPR around 0, the line rises quickly to a TPR of 0.7,
that means 70% of the changes can be identified with very
few FP.

• Until an FPR of 0.05 the curve is very steep, so with a
small increase in the number of FP many TP can be found.

• From an FPR of 0.05 to 0.4 the curve is rising less, so small
increases in the number of FP only give small increases in
the number of TP.

• Over an FPR of 0.4 the number of FP is rapidly increasing
while the number TP is almost not increasing.

5.3 Baseline

A common approach in ML is to apply simple algorithms to
the data in order to have a point of comparison to the more ad-
vanced algorithms. These algorithms are referred to as baseline
predictions. For this case study, logistic regression and isolation
forest (usually taken as outlier detection and used here as there
is only a very small number of changes) are taken as baselines.

Type Acc. Prec. Recall F1-Score ROC-AUC PR-AUC
Log. Reg. 0.651 0.0198 0.8225 0.0387 0.8199 0.0783
Iso. For 0.8497 0.0252 0.3007 0.0466 0.6003 0.0146

Table 5. Results for baseline models
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It can be seen that the algorithm developed and presented here
outperforms the baseline predictions across all evaluation cri-
teria.

6. CONCLUSIONS

In our case study, when distinguishing between changes and
non-changes, the method can determine with absolute certainty
that a change has not occurred for a majority of cases. For
99% of the entries the probability of it being a change is below
1%. On the other hand, when classifying changes, the model
is less clear as represented by a higher spread of probabilities
for changes. Approximately the same number of changes have
a high probability of being a change as the same number of
changes having a low probability of being a change. An ex-
planation for this observation could be the different amount of
training data available for both classes. For non-changes, much
more training data is available and the model can better learn
which details matter. For changes on the other hand, less train-
ing data is available. It is sufficient to establish a detection,
however not enough to recognize the details for every kind of
change.

When looking at the CM divided in different classes, it can be
noticed that changes concerning buildings can be distinguished
better. Even though there are slightly more FN (caused by
not detecting changes in buildings in which only the surface
changed, for example new solar panels) the number of FP is
lower. That could be explained by the fact that in this group the
influence of height differences are particularly relevant. Streets
and surfaces on the other hand have a higher number of FP.
Temporary changes can mostly be found in this group, leading
to the high numbers. Change detection for waterways tends
to be the most difficult. However, considering the fact that
changes of areas of water are rare, this problem is deemed less
important.

The curves show that the model is very certain about classifying
around 50% of the changes, which have a very high probability
of being a change (left part of PR-Curve). The precision is very
high, but as only half of the changes are classified, the recall is
not very good. To get almost all changes (recall over 95%), the
precision is going down to 10%, that means 90% of all classi-
fied changes are FP. However, considering the small number of
recognized changes (true and false) compared to the total num-
ber of polygons, even the classification with a low precision can
be accepted as helpful.

It can be emphasized that change detection using XGBoost
is possible and can be semi-automated to support the manual
change detection. As can be seen in Table 3, depending on the
threshold, a large number of changes can be found. With the re-
commended threshold of 0.01, around 80% of the changes can
be found by checking only 5% of all polygons manually.

Under the assumption that change detection is still done manu-
ally in a Geographic information system (GIS) by comparing
aerial images, and the assumption that polygons in close dis-
tance to the TP are also in the range of visual perception, the
results look even more promising. Around 95% of all changes
are located in a maximum distance of 10m around the polygons
classified as TP.

However, the biggest challenge is detecting polygons that
change without an accompanying change in height. These are

difficult to recognize and cannot be found at close distance to
other changes. To detect these changes, manual checking is
still required. In conclusion, this algorithm is suitable for the
pre-selection of polygons in which a change is more likely and
should be used for this. It is not recommended to rely on it as
the only change detection tool.

Regarding the evaluation results, currently the verification of
the model is done with a small subset of the same dataset.
Even though many measures are taken against overfitting and
the model works properly, further tests on different datasets are
needed to ensure that the model is working properly.

6.1 Recommendations

If the data is likely to have errors (for example spikes in the
point cloud data), it is better to use percentiles instead of ab-
solute values as features. Instead of describing the values of
outliers, this is then more likely to describe the real character-
istics of the data.

An easy way to get more features with a better model for change
detection is to not only use the features, but also calculate the
difference between features (avg height for time step 1, avg
height for time step 2, difference between time step 1 and time
step 2). This allows a more direct inclusion of the information
of how big the change between two features is, instead of dedu-
cing it from the two values, which results in a better model.

6.2 Future Work

The quality of ML algorithms greatly depends on the data avail-
able. Examples are needed to derive rules and improve the
results. More training data can therefore improve the results.
Having more data means that more different situations in which
changes are occurring can be considered. An increased num-
ber of positive results (changes) would be especially helpful, as
most datasets are very imbalanced with only a fraction being
changes.

An integration of deep learning methods could help improve
the quality. It could either be used to get many new features
as an additional input for an XGBoost-related algorithm (for
example with ResNet) and improve the results of the XGBoost-
based change detection. Another approach would be to replace
the complete XGBoost change detection with deep learning as
done by de Jong and Bosman (2019) with a change detection
for satellite images. The network should then be able to learn
autonomously which attributes of the input data are important
and learn to classify changes. However, in comparison to XG-
Boost, this approach needs advanced GPU-based machines, a
lot more processing/debugging time and it would be a complete
black box to the user (in the sense that neither the features nor
their importance are known).
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A comparative analysis of gradient boosting algorithms.
Artificial Intelligence Review, 54(3), 1937–1967.
http://link.springer.com/10.1007/s10462-020-09896-5.

Bhattacharya, S., Braun, C., Leopold, U., 2019. A Novel 2.5D
Shadow Calculation Algorithm for Urban Environment:. Pro-
ceedings of the 5th International Conference on Geographical
Information Systems Theory, Applications and Management,
SCITEPRESS - Science and Technology Publications, 274–
281.

Biau, G., Cadre, B., Rouvı̀ère, L., 2018. Accelerated Gradient
Boosting. https://arxiv.org/abs/1803.02042v1.

Brownlee, J., 2018. How to Use ROC Curves and Precision-
Recall Curves for Classification in Python. Available at https:
//machinelearningmastery.com/roc-curves-and-prec

ision-recall-curves-for-classification-in-python.

Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boost-
ing System. Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining -
KDD ’16, 785–794.

Choi, E., Lee, C., 2003. Feature extraction based on the Bhat-
tacharyya distance. Pattern Recognition, 36(8), 1703–1709.

Coelho, 2013. Mahotas: Open source software for scriptable
computer vision. Journal of Open Research Software, 1(1), e3.

de Jong, K. L., Bosman, A. S., 2019. Unsupervised
Change Detection in Satellite Images Using Con-
volutional Neural Networks. arXiv:1812.05815 [cs].
http://arxiv.org/abs/1812.05815.

He, A., He, J., Kim, R., Like, D., Yan, A., 2017. An ensemble-
based approach for classification of high-resolution satellite im-
agery of the Amazon Basin. 2017 IEEE MIT Undergraduate
Research Technology Conference (URTC), IEEE, Cambridge,
MA, 1–4.
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