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ABSTRACT:

This paper reports the results of a study that aims to develop semi-automatic methods for assessing the degree of corrosion in in-
dustrial plant. We evaluated two fully convolutional networks (U-Net and DeepLab v3 +) to segment corroded areas in panoramic
images of offshore platforms. The experimental analysis was based on two datasets built for this study. The datasets comprise 9,112
2D images and 3,732 panoramic images. Both FCNs trained on 2D images were tested on 2D images and cubic projections of pan-
oramic images. In addition to pointing out encouraging results, the experiments indicated that most prediction errors concentrated
in corrosion defects with a small pixel area.

1. INTRODUCTION

Currently, visual inspection is the primary form to monitor
some types of corrosion in industrial facilities. It requires a
person to assess damage based on pre-classified visual patterns.
Therefore, the procedure carries a high degree of subjectivity,
is susceptible to varying knowledge and personal experience bi-
ases and is time-consuming. Besides, the produced reports are
challenging to visualize and often provides insufficient support
for decision-making.

Early works on automatic corrosion segmentation relied on fil-
ter engineering to extract texture descriptors upon which cor-
rosion spots could be delineated (Liu et al., 2019), therefore,
overcoming some of the limitations mentioned above. Recent
approaches such as (Shi et al., 2021), (Papamarkou et al., 2021)
and (Fondevik et al., 2020), rely on deep learning techniques to
segment corrosion. These works used relatively small datasets
comprising less than 900 annotated image samples captured by
cameras with a narrow field of views (fov) at a short distance
with corrosion spots in focus or close to the centre of the image.

An automatic model must be robust against noise, differences
in lighting patterns, and variations in scales and pose to oper-
ate in realistic scenarios. Many image samples are necessary
to train convolutional networks to adequately represent all the
variability of the input images in the operating conditions. This
work is concerned about reducing annotator bias and building a
model robust to complex scene variations.

In recent years, hardware costs for capturing panoramic images
have reduced considerably. Thus, cameras with a large fov are
becoming more and more attractive to assess the state of entire
industrial facilities. However, these images are highly distorted,
and the translation invariance underlying the convolution oper-
ation does not hold, which makes the use of conventional deep
learning techniques more complex.

This work reports the first results of evaluating two state-of-
the-art deep learning architectures, specifically a U-Net (Ron-
∗ Corresponding author

neberger et al., 2015), and a DeepLab v3+ network (Chen et
al., 2018), for the segmentation of corrosion spots in industrial
facilities from 360° images.

We first built a dataset of annotated 2D images - narrow field of
view (fov) - that captures a wide variety of imaging conditions.
We also built a second annotated dataset of 360° images for
qualitative and quantitative assessment. Six experienced pro-
fessionals contributed to the data annotation process.

The datasets mentioned above were the basis for a series of ex-
periments that evaluated fully convolutional networks trained
on 2D image samples to delineate corrosion spots on 2D and in
360° images of offshore facilities.

The remainder of this paper is organized as follows. The fol-
lowing section describes the methods adopted for corrosion seg-
mentation. Section 3 details the experimental analysis, includ-
ing the dataset description, the experimental protocol and the
performance metrics adopted. The results are presented and
discussed in Section 4, and, finally, the conclusions and future
directions are summarized in Section 5.

2. METHODS

2.1 U-Net

The U-Net was introduced in (Ronneberger et al., 2015) for bio-
medical applications right after the first work on fully convolu-
tional network (FCN) was published (Long et al., 2015). The
U-Net is an evolution of the basic FCN. It is built up of two
paths. The first one, called encoder, reduces the spatial resolu-
tion to form a compact representation of the input image, which
feeds a second (decoder) path, consisting of a sequence of up-
sampling operations that recover the input image original res-
olution. A further distinguishing characteristic of U-Net is the
so-called skip connections. They concatenate features produced
along the encoder path with the corresponding features calcu-
lated through the decoder path. In this way, U-Net recovers fine
spatial details that might have gone lost through the successive
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downsampling operations of the encoder. Figure 1 from (Ron-
neberger et al., 2015) illustrates the U-Net architectural details.

Figure 1. U-Net architecture from (Ronneberger et al., 2015)

Both encoder and decoder paths are composed of blocks with
two 3×3 convolutions, each followed by a rectified linear unit
(ReLU) activation function. 2×2 max-pooling layers perform
the downsampling operations with stride 2. The number of fea-
ture maps doubles after each downsampling step. Each block
in the decoder path involves a transposed convolution, whose
results are concatenated with the corresponding feature maps
computed in the encoder path. The encoder and decoder follow
the same pattern of two 3×3 convolutions followed by ReLU
activation functions.

In this work, we replaced the original U-Net encoder with a
ResNet-50 (He et al., 2016) pretrained on the ImageNet dataset
(Krizhevsky et al., 2012).

Table 1, shows the ResNet-50 building blocks. The ResNet-50
downsampling operations are carried out first by a 7×7 convo-
lution followed by a 3×3 convolution, both with stride 2. Next,
three downsampling operations are carried out by convolutions
with stride 2, resulting in a total reduction of spatial resolution
by a factor of 32 (same as U-Net). The feature maps brought by
skip connections to the decoder path come from encoder layers
preceding each downsampling operation.

Table 1. ResNet50 building blocks (adapted from (He et al.,
2016))

2.2 DeepLab v3+

Since its publication, the DeepLab v3+ architecture (Chen et al.,
2018) has achieved outstanding performance in many semantic
segmentation problems. It uses atrous convolutions to capture
spatial context at multiple scales without increasing the number
of network learnable parameters, a strategy that has been ex-
plored by all DeepLab versions since the first release in (Chen
et al., 2014).

The architecture is illustrated in figure 2. Like U-Net, it com-
prises an encoder and a decoder path. The encoder is a modific-
ation of the Xception 65 architecture. The main differences are:
it has more layers, replaces regular convolutions with depth-
wise separable convolutions, replaces max-pooling operations
by strided depthwise separable convolutions, and adopts batch
normalization and ReLU activation functions just after each
depthwise convolution (see figure 3).

Figure 2. DeepLab v3+ architecture, image credits to (Chen et
al., 2018).

Figure 3. DeepLabV3+: Modified Xception (from (Chen et al.,
2018))

A spatial pyramid with parallel atrous convolutions (ASPP
module) explores the encoded features to extracts new features
at multiple scales. The ASPP module also incorporates an
image pooling to capture the global image context. The fea-
ture map delivered by the ASPP undergoes a 1×1 convolution,
whose outcome is upsampled by a factor of 4 before being con-
catenated with the result of a 1×1 convolution applied to fea-
ture maps computed in the encoder path. A 3×3 convolution
followed by an upsampling by 4 completes the model.
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2.3 Dealing with panoramic images

Panoramic, also called 360°, images contain RGB data gathered
from a scene over a whole spherical field of view. Spherical data
can be represented as images using map projections (Snyder,
1987). The commonly used Equirectangular projection un-
wraps the sphere to a rectangular surface, mapping the meridi-
ans to equally spaced vertical lines and the latitude circles to
equally spaced horizontal lines. Figure 4 shows an example of
an Equirectangular projection.

Figure 4. Example of an equirectangular projection

Another way to represent spherical data is the Gnomonic pro-
jection, also known as rectilinear projection. This projec-
tion maps the sphere to tangent planes. The transformation
is described in details in (Snyder, 1987). A simplification of
Gnomonic projections is the cubemap projection. Cubemaps
are widely used in computer graphics due to their simplicity
(Szeliski, 2010)(Snyder, 1987). The method consists of project-
ing the spherical image into the six faces of a cube that circum-
scribe the sphere. Figure 5 shows an example of the projections
obtained from the image in figure 4 .

Figure 5. Example of a cubemap projection

In the present study, we used cubemaps to generate 2D recti-
linear inputs to FCNs trained on a 2D image dataset to predict
pixel-wise class labels.

3. EXPERIMENTAL ANALYSIS

3.1 Dataset

The 2D dataset built for this research comprises 9,112 RGB
images of varied sizes. Pixels were labelled as corroded or not
corroded. The images captured in many campaigns represent
different poses under various illumination patterns. In total, six
annotators, whose main activity is visual corrosion inspection
on offshore installations, cooperated in building the dataset. To
avoid errors caused by fatigue, a limit of 25 images per day was
established per expert.

Annotation of corrosion spots is no simple task because the bor-
ders of affected areas are ambiguous, and the subjective percep-
tion of the annotator strongly influences the outcome. Figure 6
shows examples with reasonably well-defined corrosion spots
in the first and second columns. On the other hand, samples
3, 4 and 5 exemplify a few types of common ambiguities: cor-
rosion stains, marks on the coating provoked by corrosion, but
harmless to integrity (3 and 4), left out regions, when the annot-
ator concentrated on the most critical damage (4 and 5).

We further built a second dataset consisting of 3,732 panoramic
images for qualitative assessment. A subset of 42 panoramic
images was labelled for a quantitative assessment on cubemap
projections. The set of labelled 360° images refers to two sites:
the newest and least degraded one and the oldest and most de-
graded one.

3.2 Networks’ implementation and training

Classical data augmentation operations, such as horizontal and
vertical flips, rotation, shear and translation, were used to en-
large the 2D training set. For training, we used 6,196 images
patches of size 513×513 pixels. The validation and test sets
had a total of 1,549 and 1,367 images, respectively. We fine-
tuned the ResNet-50 pre-trained on ImageNet (Krizhevsky et
al., 2012) with a constant learning rate with a batch size of 24.

We adopted for the DeepLab v3+ encoder an output stride equal
to 8. The rates of the atrous convolutions in the ASPP module
were 12, 24, and 32. We used a model pre-trained on ImageNet,
and MS Coco (Lin et al., 2014).

The loss function was the weighted cross-entropy. After having
trained on 2D data, we applied both networks to the panoramic
images in the following way. Each panoramic image was un-
folded into six 2D perpendicular projections, which were given
to the tested FCNs. The generated outcome was back-projected
to the spherical space and compared with the 360° reference.

3.3 Performance metrics

Let’s define true positives (TP ) as the number of correctly clas-
sified corroded pixels. Let’s further define as false positives
(FP ) the number of pixels wrongly predicted as belonging to
the class corroded, and as false negatives (FN ) the number of
corroded pixels not predicted as such. We define Precision
(P ) as the proportion of pixels predicted as corroded that are
actually corroded. Formally:

P =
TP

TP + FP
(1)

Similarly, Recall (R) is defined as the proportion of corroded
pixels predicted as such, i.e.,

R =
TP

TP + FN
(2)

The f1-score is a popular metric defined as the harmonic mean
between Precision and Recall. Formally:

F1-score = 2
P ·R
P +R

(3)
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Figure 6. Sample images: reference segmentation (upper row) and example of prediction (lower row)

The average f1-score is given by the arithmetic mean of f1-
scores computed for the corroded and for the not corroded
classes.

Another accuracy metric used in our analysis is the intersection
of Union (IoU ). Let’s denote with Ref the set of corroded
pixels in the reference, and Pre a predicted corroded region.
IoU is defined as:

IoU =
|Ref ∩ Pre|
|Ref ∪ Pre| (4)

where | · | is the cardinality operator.

IoU can also be computed for non corroded regions. The
mean IoU is given by the average of the IoU values for cor-
roded and corroded regions.

4. RESULTS

4.1 Evaluation on 2D images

Table 2 shows the accuracy obtained by U-Net and DeepLab
v3+ on 2D test images, specifically the f1-score and IoU for the
class corroded and the mIoU that also considers the non cor-
roded class. The DeepLab v3+ model outperformed the U-Net
(over 9%) in all the performance metrics. Recall that DeepLab
v3+ was pre-trained on ImageNet and Coco while U-Net was
pre-trained only on ImageNet, which may have favoured De-
pLab v3+.

In the following, we concentrate on the results produced by
DeepLab v3+ since it performed significantly better than U-Net,
although most conclusions drawn henceforth also apply to the
results obtained with U-Net.

Networks Performance Metrics
f1 IoU mIoU

U-Net (ResNet-50) 53% 39% 59%
DeepLab v3+ (Xception 65) 62% 49% 68%

Table 2. Overall performance on 2D images.

A closer analysis of DeepLab v3+ results reveals that it per-
formed well for large corrosion spots and poorly on images with
corrosion circumscribed in small regions in the image. This
conclusion is supported by Figure 7 that plots the f1-score vs
the percentage of corroded pixels per image. The figure shows
a clear trend of the network to perform better on images with
large corrosion spots. The other way around, the networks per-
formed poorly on images with a small fraction of corrosion.

Figure 7. f1-score vs percentage of corroded pixels

Figure 8 shows the results from another perspective. It presents
the percentage of corroded pixels per connected component in
the reference image. The horizontal axis represents the average
area per corrosion spot, i.e., the percentage of corroded pixels
divided by the number of connected components on the image
label. The vertical axis shows the performance metric, either
the f1-score or IoU. The color scale refers to the percentage of
positive (corroded) samples over the whole image. One infers
from Figure 8 that the average area of corroded spots more than
the image-wise percentage of corroded pixels is determinant of
networks performance.

Samples 1 and 2 of figure 6 (lower row) show examples of
good outcomes produced by DeepLab v3+. They correspond
to points 1 and 2 in the plots of figure 8. Even not belonging to
the group with a sizeable corroded percentage (less than 30%),
these images have large average areas per corrosion area, which
places them at the right side of the plots in figure 8.
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Figure 8. f1-score (above) and IoU (below) versus the
percentage of true corroded pixels

Points 3, 4 and 5 in the plots of figure 8 correspond to the pre-
dictions 3 to 5 shown in figure 6. Looking at these figures,
one understands that the poor performance attained on these
images was because the regions delineated as corroded by the
network were considerably more extensive than the actual cor-
roded area.

As mentioned in Section 3.1, the datasets contain noisy samples
due to the subjectivity of the annotation process. Remarkably,
for some test images, the network managed to delineate the cor-
roded spots more accurately than the human annotator himself.
One example is shown in Figure 9. This example, among oth-
ers, points to the robustness of the tested FCN against noisy
samples.

Figure 9. Left: Input image, Center: Label defined by the
annotator. Right: Belief map produced by the network

4.2 Evaluation on 360° images

Networks Performance Metrics
f1 IoU mIoU

U-Net (ResNet-50) 31% 19.7% 55%
Deeplab v3+ (Xception 65) 41% 28% 59%

Table 3. Overall performance on 360 images.

Table 3 shows the accuracies recorded in our experiments. As
before, DeepLab v3+ achieved better performance than U-Net
in terms of IoU and f1-score. The difference in performance
observed on 360° images compared to the 2D image counter-
part was noteworthy. A further investigation revealed that in the

dataset of panoramic images, corrosion occurs mainly in small
areas. As discussed in section 4.1, the tested FCNs tended to
perform poorly under these circumstances, which explains, at
least partially, the comparatively inferior performance observed
in the experiments on 360 ° images.

Projection Metrics
f1 IoU mIoU %corroded areas

Front 35% 23% 58% 6%
Right 34% 22% 58% 5%
Rear 38.5% 22% 58% 5%
Left 39.5% 25% 58.8% 6.9%
Top 31.9% 19% 56.7% 4%
Bottom 47.6% 33.6% 57.8% 17%

Table 4. Performance per cube projection

We further observed that the networks performed better at bot-
tom projections (see Table 4). Such projections had on average
17% of corroded pixels, which is significantly larger than the
percentage on the other projections. Indeed, bottom projections
cover steel floors, which usually have larger corroded areas by
nature compared to other projections that often capture medium
to minor defects.

We applied the trained networks to 3,732 panoramic images. A
visual inspection of the outcomes showed that the model could
detect the most degraded areas successfully. Though we have
no reliable reference to compute performance metrics, we took
the percentage of predicted corroded pixels as a criterion to
rank the images according to the level of damage. Figure 10
shows six examples of network predictions. Images 1, 3, 4, and
6 are samples with large degraded areas. Note that the floor
accounts for most of the corroded area. In image 2 the model
misinterpreted the floor as corroded. The image in Region 5 is
highly ambiguous, although the model marked it as corroded.

5. CONCLUSIONS

In this work, we reported the first achievement of ongoing re-
search to develop a semi-automatic procedure to assess the level
of corrosion in offshore facilities from panoramic images. We
built two datasets comprising 2D and 360°images. Two state-
of-the-art fully convolutional neural networks were evaluated
for the semantic segmentation of corroded spots. The DeepLab
v3+ model presented a superior performance consistently when
compared with the U-Net.

The tested networks accurately segmented large areas of corro-
sion but performed comparatively worse as the areas of corro-
sion decreased. The networks, therefore, performed reasonably
well in the type of defects most relevant to the decision on when
to initiate major maintenance interventions.

One of the method’s expected benefits is the reduction of sub-
jectivity inherent in visual corrosion assessment. Indeed, in
some test images, the networks produced better results than
those generated by human annotators.

Finally, we observed that networks trained in 2D images be-
haved similarly when applied to planar projections of panor-
amic images, though with lower accuracy. A closer analysis of
the outcomes indicated that most accuracy degradation was due
to the small areas of corroded spots in the panoramic images
than the cubemap projection itself.
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Figure 10. Sample images: examples of reference segmentation (upper row) and prediction (lower row)

The distance to the camera from objects in panoramic scenes of
offshore installations varies greatly. The experiments demon-
strated that conventional FCNs perform poorly on small cor-
roded regions. Even large defects on surfaces away from the
cameras will appear as small regions in the images, which will
degrade the accuracy. To mitigate this difficulty, in the continu-
ation of this work, it is planned to build a new database that
incorporates depth maps.
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