
* Corresponding author 
 

LARGER RECEPTIVE FIELD BASED RGB VISUAL RELOCALIZATION METHOD 

USING CONVOLUTIONAL NETWORK 
 

Jiangying Qin 1, Ming Li 1,2,*, Deren Li1, Xuan Liao3, Jiageng Zhong 1, Hanqi  Zhang1 

 
1State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, 

 Wuhan University, Wuhan 430079, China 
2Department of Physics, ETH Zurich, Zurich 8093, Switzerland - mingli39@ethz.ch 

3Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University,  
Hong Kong 999077, China 

 

KEY WORDS: Visual Relocalization, Camera Relocalization, Pose Regression, Deep ConvNet, RGB Image 

 
 
ABSTRACT: 

 
Visual Relocalization is a key technology in many computer vision applications. Traditional visual relocalization is mainly achieved 
through geometric methods, while PoseNet introduces convolutional neural network in visual relocalization for the first time to realize  
real-time camera pose estimation based on a single image. Aiming at the problem of accuracy and robustness of the current PoseNet  
algorithm in complex environment, this paper proposes and implements a new high-precision robust camera pose calculation method  

(LRF-PoseNet). This method directly adjusts the size of the input image without cropping, so as to increase the receptive field of the  
training image. Then, the image and the corresponding pose tags are input into the improved LSTM-based PoseNet network for training,  
and the Adam optimizer is used to optimize the network. Finally, the trained network is used to estimate the camera pose. Experimental  
results on open RGB dataset show that the proposed method in this paper can obtain more accurate camera pose compared with the  
existing CNN-based methods. 
 

1. INTRODUCTION 

Visual relocalization plays a key role in photogrammetric 
computer vision, autopilot and robotics (Husain, 2019; Acharya, 
2019; Wang, 2020; Pham, 2021). However, feature ambiguities 
have made it remain challenging. For example, the traditional 
geometry based visual relocation method is mainly realized by 

local feature matching which is based on the known 3D 
environment created by SfM (Sattler, 2017; Han, 2019) or SLAM 
(Mur-Artal, 2015; Mur-Artal, 2017). It matches the local 2D 
feature points extractedfrom the query image with the 
corresponding 3D feature points in the model to establish the 
corresponding relationship (Bay, 2006; Lowe, 2004; Rublee, 
2011), and solves the camera posewith six degrees of freedom by 
PnP and other algorithms (Lepetit, 2009; Hesch, 2011). For the 

mismatched points that exist in the matching process, the random 
sampling consensus algorithm (Martin, 1981; Chum, 2005) is 
used to eliminate and accelerate the camera pose calculation. 
Geometric-based visual relocalization methods rely on correct 
feature matching, however, not enough matching points can be 
found accurately in all scenarios. Various complex situations that 
may exist in the actual environment, such as illumination changes, 
viewpoint changes, object occlusion, motion blur, and lack of 
texture, may affect feature matching and make it difficult to 

obtain accurate camera poses. On the other hand, since the 
matching cost increases exponentially with respect to the number 
of key points, the cost of matching in a large and dense feature 
space is very large. 
 
In recent years, neural networks have developed rapidly and are  
widely used in tasks such as object recognition, image retrieval,  
and image classification (Eric, 2016; Melekhov, 2017; Shao, 

2020; Liu, 2021). In 2015, Kendall et al. innovatively introduced 
convolutional neural networks to the field of image-based visual 
relocalization and proposed the PoseNet method (Kendall, 2015). 
This method uses transfer learning from large-scale classification 
data to directly obtain a 6-DOF camera pose from a single image 
in an end-to-end manner. Although PoseNet overcomes many 
limitations of geometry-based methods, especially reduces the 
dependence on rich textures and improves the robustness and 

efficiency of visual relocalization, its positioning accuracy still 
lags behind that of geometry-based methods when local features 

perform well. Therefore, many scholars are committed to 
improving the PoseNet method to improve its accuracy. (Kendall, 
2016) uses bayesian convolutional neural network to estimate the  
uncertainty of positioning to improve the positioning accuracy of  
the method. (Kendall, 2017) proposes a loss function based on 
geometry and reprojection errors to solve the difficulty of  
hyperparameter training caused by the use of L2 distance in the  
PoseNet loss function. (Valada, 2018) combines the geometric  

knowledge and semantic knowledge of the world to locate and  
proposes a novel "geometric consistency loss" function. (Nguyen,  
2019) proposes the SP-LSTM framework based on CNN and  
LSTM. CNN and LSTM are used to learn the depth features and  
spatial dependence of images, respectively. It uses time  
information to improve the position accuracy. (Aragao, 2020)  
combines the Inception layer into the down-sampling and up-
sampling symmetrical layer to solve the depth scene and 6- 

degree-of-freedom estimation. 
 
In order to combine the advantages of the geometric-based visual  
relocation method and the deep learning-based visual relocation  
method, scholars have proposed a visual relocation method based  
on fusion of geometry and deep learning, that is, to estimate the  
camera pose by combining geometry methods and deep learning  
methods. The deep learning part is used to learn and predict the  
3D position of the pixel in world coordinates and geometric  

methods infer the camera pose from these correspondences.  
(Guzman, 2014) try to use hybrid methods for visual relocation,  
but their main limitation is that they require the use of RGB-D  
images for training and testing (Cavallari, 2017). (Brachmann,  
2016) optimizes this limitation and proposes to use only  
automatic context random forest from RGB images for  
positioning. (Meng, 2016) realizesimage localization by using 
regression forest to estimate the initial camera pose, then queries 

the nearest neighbor key frame image, and optimizes the initial 
pose by sparse feature matching between the camera input image 
and the nearest key frame. (Brachmann, 2017) uses the 
architecture of VGG style to predict 3Dcoordinates and proposes 
a distinguishable RANSAC to learn the matching function that 
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optimizes the quality of pose. Although these methods improve 

positioning accuracy, they require many predictions about the 
scene coordinates, which causes RANSAC to spend more and 
more time to infer the best camera pose. 

Based on this, this paper proposes a high-precision camera pose 
estimation method LRF-PoseNet. This method mainly improves 
PoseNet from the following three aspects. First, by improving 
the cropping method of the input image to obtain a larger 

receptive field. Secondly, the Adam optimizer is used to optimize 
the network. Finally, the LSTM structure is introduced into the 
PoseNet neural network to perform structural dimensionality 
reduction on the fully connected layer and select the most useful 
feature correlation for the task of camera pose estimation. 
Experiments show that the method proposed in this paper has 
better accuracy and stronger robustness. 

2. METHODOLOGY

The experimental images used in this paper are automatically 
generated sample annotations (i.e. camera poses) in advance by 
SfM. During image preprocessing, in order to obtain a fixed size 
image, this paper proposes to directly resize the experimental 

image to the corresponding size without cropping. Then, the 
obtained images and corresponding annotations are put into the 
high-precision positioning network based on LSTM proposed in 
this paper for training. The network introduces LSTM structure 
on the basis of PoseNet network structure to perform structural 
dimension reduction on the full connection layer and select the 
most useful feature correlation for pose estimation task. In 
addition, this paper chooses the Adam optimizer to optimize the 

network to train the most suitable parameters. Figure 1 is the 
architecture of this paper. 

Location Orientation

Image

PoseNet LSTMs

Adam

Figure 1. Architecture of the proposed method. 

2.1 Image Processing for Larger Receptive Fields 

PoseNet is based on the GoogleNet network, and one of its 
disadvantages is that it has strict restrictions on the network 
structure. Among them, the size of the RGB image input to the 
network must be 224*224 pixels specified by GoogleNet (Seifi, 

2019). However, the actual RGB image participating in the 
training may not be the specified size. To solve this problem, the 
processing method of PoseNet is to scale the size of the image’s 
minimum side to 256 pixels according to the aspect ratio of the 
original image, and then crop the 224*224 window in the middle 
of the scaled image as the training image. As shown in Figure 2, 
2a is the original image, 2b is the image whose height is scaled 
to 256 pixels according to the aspect ratio, and 2c is the image 
with 224*224 pixels in the center of 2b. One disadvantage of this 

processing is that the image information outside the cropping 
window will be lost and cannot be added to the network for 
training. However, the lost part may also contain key information 
to assist positioning, thereby affecting the accuracy of 
positioning. 

2a                                 2b                            2c 

Figure 2. Schematic diagram of PoseNet image preprocessing. 

In order to solve the problem of image information loss in 
PoseNet, this paper proposes to use the entire field of view of the 
image, that is, only need to scale the input image to 224×224 
pixels, as shown in Figure 3. Figure 4 shows the difference 
between the receptive field of the input image of PoseNet and the 
network of this paper. There is significant texture information in 
the red box area in the figure, but the PoseNet network discards 
this information. Using the direct zoom method proposed in this 

paper will result in different aspect ratios, but considering that 
the new aspect ratio changes are consistent for all images in the 
dataset, losing the original aspect ratio will not have any impact 
on network performance. In addition, although this zoom method 
will reduce the resolution of the image, the receptive field is more 
important than the image resolution, because the pooling layer in 
the network can smooth the high-frequency details of the high-
resolution image. Therefore, using the direct zoom method will 

get higher positioning accuracy. The experimental results in this 
paper also prove this. 

 (a)                              (b) 

Figure 3. Schematic diagram of LRF-PoseNet image 

preprocessing. (a–b) correspond to before and after processed. 

     (a)                       (b) 

Figure 4. Field of view comparison between PoseNet and LRF-

PoseNet. (a–b) correspond to different methods.
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     (a)                       (b) 

Figure 4. Field of view comparison between PoseNet and LRF-

PoseNet. (a–b) correspond to different methods. 

2.2 Network Structure 

GoogleNet is a new deep learning framework proposed by 

Christian Szegedy in 2014. It was originally designed for object 
classification and detection. It uses an average pooling layer after 
the convolutional layer to collect the information of each feature 
channel in the entire image. PoseNet uses a fully connected layer 
(FC) after average pooling layer to learn the correlation between 
features. But the regression pose is not accurateafter the high-
dimensional output of the FC layer. Specifically, compared with 
the amount of available training data, the dimensionality of 

2048D image embedding through fully connected layers is 
usually relatively large. Therefore, the linear  
pose regressor has multiple degrees of freedom, and resulting 
over-fitting, which is tend to cause inaccurate predictions on test 
images that are different from training images. Reducing the 
dimensionality of FC can reduce this adverse effect. But studies 
have shown that the use of LSTM memory block networks for 
dimensionality reduction is more effective (Walch, 2017). 

Compared with PoseNet's application of dropout to avoid 
overfitting, the estimation of this method is more accurate, which 
proves the rationality of using LSTMs in this paper. However, 
directly inputting the 2048D vector into the LSTM does not work 
well. This is because even if the LSTM storage unit can 
rememberthe features far away, the length of 2048  is too long 
for the LSTM. In order to solve this problem, this paper resizes 
the vector to a 32×64 matrix and introduces four LSTMs in the 
up, down, left and right directions. Then these four outputs are 

connected and passed to the fully connected layer. It simulates 
the  structured dimensionality reduction function and improves 
the accuracy of pose calculation. The network structure is shown 
in Figure 5, where the blue part represents the module inherited 
from PoseNet, and the yellow part represents the improved 
module of the network. 

Figure 5. Our image positioning network. 

2.3 Network Optimizer 

PoseNet uses Stochastic gradient descent (SGD) to optimize the 

network. SGD is a very common optimization algorithm in neural 
network model training (Zinkevich, 2011). It is based on the 
gradient descent algorithm. The basic idea of the gradient descent 
algorithm is to obtain the partial derivative of each 
hyperparameter, then the current gradient can be obtained, and 
then the parameter is updated in the opposite direction of the 
gradient, and iteratively updated in this way. Then the global 

optimal solution of the hyperparameter can be obtained. However, 

the SGD algorithm has two shortcomings in dealing with 
practical problems. The first is that it is difficult to choose an 
appropriate learning rate so it uses the same learning rate for all 
parameters. But in practical applications, for sparse data or 
features, we may want to update faster, and for features that do 
not appear frequently, we hope that it can be updated slower to 
reduce training costs. The SGD algorithm cannot satisfy this 
point. Second, because the SGD algorithm uses the gradient 

descent of a random sample as the average gradient descent of 
the overall sample, this also makes it easy for SGD to converge 
to a local optimum, and in some cases may be trapped in a saddle 
point. Adam method is a method to obtain better performance by 
calculating the adaptive learning rate of each parameter. It adds 
first-order momentum and second-order momentum on the basis 
of SGD. The first-order momentum is shown in equation (1), 

where 𝛽1  is a hyperparameter, often taking an empirical value of
0.9. The first-order momentum is the exponential moving 
average of the gradient direction at each time, approximately 

equal to the average of the sum of the gradient vectors at the latest 

1 1 − 𝛽1⁄  time.

mt = 𝛽
1

∙ mt-1 + (1 − 𝛽
1

) ∙  𝑔
t

(1) 

In other words, the descending direction at time t is determined 
not only by the gradient direction of the current point, but also by 
the descending direction accumulated before. It avoids training 
problems caused by extreme current gradients. 

The second-order momentum solves the problem of learning rate, 
and the historical update frequency is measured by the second-
order momentum: the sum of the squares of all gradient values so 
far in this dimension. The second-order momentum is shown in 

equation (2), where  𝛽2 is a hyperparameter.

Vt = 𝛽2 ∙ Vt-1 + (1 − 𝛽2) ∙  𝑔𝑡
2 (2) 

For parameters that are frequently updated, since we have 
accumulated a lot of knowledge about it, we do not want it to be 

affected too much by a single sample, so we hope that the 
learning rate will be lower; For parameters that are updated 
occasionally, because there is too little information to understand, 
we hope to learn more from each occasional sample, that is, the 
learning rate is higher. This improvement can effectively solve 
the problems of low training accuracy and high cost caused by 
the consistent learning rate of all parameters of SGD. 

3. EXPERIMENTS

3.1 Experimental Data and Computing Environment 

In order to verify the effectiveness of the LRF-PoseNet method 
proposed in this paper, this paper conductes multiple sets of 
experiments, and compares the experimental results with the 
experimental results of the PoseNet open source code. This paper 
uses Pytorch to program the proposed new method. In the 
experiment, the processor used is Intel(R) Core (TM) i7-8750H, 

the memory is 8GB, the GPU is GeForce GTX 1060, and the 
batch size of 75 is used to finetune the network. Set the initial 
learning rate for 500 epochs to 0.0005. For the Adam 

optimization algorithm, set  𝛽1 =0.9, 𝛽2 =0.999. The image data
used in this paper comes from the public databases CoRBS 
dataset and TUM RGB-D benchmark dataset. The CoRBS data 
has a total of 563 training images and 48 test images 
(Wasenmüller, 2016). The TUM data has a total of 1197 training 
images and 325 test images, respectively. 
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FCFC

FC

FC

LSTM

LSTM

LSTM

LSTM

...

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-47-2021 | © Author(s) 2021. CC BY 4.0 License.

 
49



 

3.2 Experimental Results and Analysis 

In order to show the experimental results of different methods 
fairly and objectively, this paper provides the average position 
accuracy and average orientation accuracy results of the two 
datasets using two methods, as shown in Table 1. The average 

position and orientation accuracy of the original PoseNet of the 
two sets of data are 0.48m, 5.08° and 0.35m, 4.16°, respectively. 
The average accuracy of the LRF-PoseNet method proposed in 
this paper is significantly higher than that of PoseNet. The 
position accuracy and orientation accuracy of CoRBS data and 
TUM data are increased by 0.44m, 2.64° and 0.14m, 0.54°, 
respectively, and the error is reduced by about 91%, 52% and 
40%, 13%. 
 

 

  PoseNet LRF-PoseNet 

CoRBS Position(m) 
Orientation(°) 

0.48 
5.08 

0.04 
2.44 

TUM Position(m) 
Orientation(°) 

0.35 
4.16 

0.21 
3.62 

Table 1. Comparison table of average accuracy. 

 
Figure 6 is a scatter plot of the position and orientation errors of 
the query image after using two methods on the TUM data. The 
horizontal axis is the position error, in meters, and the vertical 
axis is the direction error, in degrees. Figure 6a is the result of 
PoseNet running, and Figure 6b is the result of LRF-PoseNet 
running. It can be seen from the figure that the error point of the 
improved method in this paper is closer to the origin point, that 

is, the position error and the orientation error are smaller, which 
shows that the method in this paper has significantly improved 
the accuracy of the PoseNet method. Especially for some points 
difficult in positioning, the PoseNet method has more points with 
larger positioning error, and its position error and orientation 
error can reach about 1.5m and 15 degrees, respectively. For 
LRF-PoseNet, the maximum position error and orientation error 
are about 0.7m and 12 degrees respectively, and the number of 

such points is very small. That is the position accuracy and 
orientation accuracy are greatly improved compared with 
PoseNet. 
 

 
(a) 

 
(b) 

Figure 6. Scatter plot of errors. (a–b) correspond to position 

error and orientation error. 

 

Figure 7 as the cumulative error histogram of the CoRBS test set 
shows the positioning performance of the two methods from a 
more quantitative and intuitive perspective. Figure 7a shows the 
position error, and Figure 7b shows the orientation error. 
Generally speaking, compared with PoseNet algorithm, the 
method proposed in this paper is more competitive. From the 
point of view of position error, PoseNet has no points with a 
positioning error within 0.2m, while the corresponding point of 

LRF-PoseNet reaches 79%. The positioning accuracy is greatly 
improved compared with the original PoseNet. For the 
orientation error, the percentage of the orientation error within 3 
degrees of the two methods is 4% and 93% respectively. The 
percentage of LRF-PoseNet's orientation error within 3 degrees 
is 89% higher than that of PoseNet. When the orientation error is 
3.5 degrees, the corresponding percentages of the two methods 
are 16% and 100% respectively, that is, the orientation error of 

all points of LRF-PoseNet is within 3.5 degrees. At this time, 
there are still many points with orientation accuracy greater than 
3.5 degrees. 
 

 
                                                 (a) 
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(b) 

Figure 7. Cumulative histogram of errors. (a–b) correspond to 

position error and orientation error. 

 
4. CONCLUSION 

This paper changes the PoseNet image preprocessing method to 
obtain a larger receptive field, proposes a new neural network 
based on LSTM and uses the Adam optimizer to optimize the 

network, which improves the accuracy and robustness of the 
original PoseNet visual relocalization. Through the statistics and 
comparison of the experimental results, it is proved that the LRF-
PoseNet method proposed in this paper has a significant 
improvement in the performance of PoseNet. On the one hand, 
the method proposed in this paper is more accurate than PoseNet. 
On the other hand, the method in this paper is more robust to 
complex environment and can achieve high-precision image 

positioning more effectively. 
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