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ABSTRACT:  
The number of approaches available for semantic segmentation of point clouds has grown exponentially in recent years. The availability 
of numerous annotated datasets has resulted in the emergence of deep learning approaches with increasingly promising outcomes. 
Even if successful, the implementation of such algorithms requires operators with a high level of expertise, large quantities of annotated 
data and high-performance computers. On the contrary, the purpose of this study is to develop a fast, light and user-friendly 
classification approach valid from urban to indoor or heritage scenarios. To this aim, an unsupervised object-based clustering approach 
is used to assist and improve a feature-based classification approach based on a standard machine learning predictive model. Results 
achieved over four different large scenarios demonstrate the possibility to develop a reliable, accurate and flexible approach based on 
a limited number of features and very few annotated data. 
 
  

1. INTRODUCTION 

The current 3D research activities – which extends to various 
domains and applications – are dominated by classification 
endeavours. The semantic segmentation (or more commonly 
classification) task is a significant challenge for 3D unstructured 
datasets acquired with active or passive sensors (Xie et al., 2020). 
Recognising elements composing a scene is a crucial step, 
especially for Digital Twins (Stojanovic et al., 2018), Smart 
Cities (Nys et al., 2020) and Building Information Modelling 
(Bassier et al., 2017). In this context, there is a great demand for 
automated processes that can speed-up and improve the 
reliability of existing classification frameworks. However, we 
can safely say that there are no reliable and generalised methods 
for all the different scales and scenarios one can encounter. A 
classification method can hardly fulfil all domains since the 
semantic definitions attached to objects can differ depending on 
the domain. Most semantic segmentation methods aim to 
advance performances in one specific context, such as indoor 
structural recognition (ceiling, wall, floors, chair, etc.) (Dai et al., 
2017; Stojanovic et al., 2019) or outdoor classification (street, 
building, car, vegetation, etc.) (Özdemir et al., 2019; Hu et al., 
2020). This is also because modern approaches mainly rely on 
supervised methods based on neural networks (Guo et al., 2020), 
which necessitate annotated context-specific datasets such as the 
ones provided by Armeni et al. (2017) and Tan et al. (2020). 
These approaches are often fully supervised, rarely unsupervised 
and require a high level of expertise on top of high computing 
resource demands. 
 
1.1 Aim and structure of the paper  

This paper aims at an easy-to-implement and user-friendly 
supervised method generalisable to several contexts and 
domains. To achieve this, we explore how unsupervised object-
based features (Poux and Billen, 2019; Poux et al., 2020; Poux 
and Ponciano, 2020) can help a supervised point-based 
classification (Grilli et al., 2019; Grilli and Remondino, 2020). 
The goal is to combine two different classification approaches to 
maximise results' accuracy, minimise human efforts and deliver 
a 3D classification method that is case- and context-independent 

while usable by non-experts. Experimental results are conducted 
on heterogeneous datasets (Section 1.2), including multi-scale 
urban areas (aerial LiDAR and photogrammetry), indoor 
buildings (RGB-D sensor) and architectural scenarios (terrestrial 
photogrammetry). The achieved results demonstrate the method's 
reliability and replicability. In the age of deep learning, the 
suggested method relies on a standard machine learning 
algorithm (Random Forests) to achieve fast and accurate point 
cloud classification, using reduced annotated samples and a 
minimal number of automatically computed features. Thus, 
primary purpose of this study is not the direct comparison with 
state-of-the-art methods but rather a study to evaluate how to 
improve 3D classification results by merging features and 
methods used in Poux et al. (2020) and Grilli et al. (2019). 
Following a summary of related works in Section 2, we define 
our methodology in Section 3. Section 4 presents the results over 
four heterogeneous scenarios to demonstrate the efficiency of the 
presented approach. Finally, in Section 5, we give some closing 
remarks as well as suggestions for future work. 
 
1.2 Considered scenarios  

The presented method was evaluated on the following scenarios: 
• Large scale urban point cloud (700 m x 700 m), derived with 

a hybrid aerial sensor over the city centre of Bordeaux 
(Toschi et al., 2021), including four classes (street, facades, 
roof, vegetation).  

• Large scale urban point cloud (220 m × 200 m), belonging to 
the Dublin dataset (Zolanvari et al., 2019), acquired with a 
LiDAR sensor (without colour information) and featuring 
five classes (street, vegetation, façade, window, roof). 

• Indoor point cloud (22 m × 28 m), available in the S3DIS 
dataset (Armeni et al., 2016), acquired with the Matterport 
sensor (Lehtola et al., 2017), including eight classes (roof, 
floor, facade, window, door, table, chair, and bookcase). 

• Architectural point cloud (240 m lenght), derived with 
photogrammetry for the Bologna's porticoes and belonging 
to the ArCH benchmark (Matrone et al., 2020), composed of 
seven classes (arch, column, moulding, façade, vault, 
window, floor). 
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2. RELATED WORKS 

The main methods for 3D classification reported in the most 
recent literature can be divided into two big macro-categories: 
machine and deep learning approaches. The feature engineering 
phase is one of the primary distinctions between standard 
machine learning methods and advanced deep learning methods. 
In the first case, the operator studies and selects the features, 
whereas in the second case, neural networks learn features after 
being fed large amounts of annotated data. 
According to the application's purpose of this research, this 
section is first focused on the point cloud feature selection, then 
on the existing approaches based on a combination of clustering 
and point-based classification.   
Feature selection. Establishing the features to be used in the 
model is a critical step in the supervised classification analysis. 
Most of the similar studies depend on geometric features to 
classify the points of a considered point cloud based on their local 
neighbourhood. The neighbourhood to be used can be defined 
using either an established radius, which can be spherical (Lee 
and Schenk, 2002) or cylindrical (Filin and Pfeifer, 2005) or a K 
number of nearest neighbours (KNN) (Linsen and Prautzsch, 
2001). The sampling rate resulting from data acquisition and the 
items of interest influence the choice of an acceptable value 
(radius or K).  For this reason, all these neighbourhood types have 
been and are still broadly explored in literature within single or 
multi-scale approaches (Weinmann et al., 2015). On the other, 
multi-scale approaches have proved to the most efficient, 
whether used for spherical/cylindrical neighbourhoods (Brodu 
and Lague 2012; Niemeyer et al. 2014; Thomas et al., 2018), or 
KNN (Hackel et al. 2016). Regarding the geometric features 
themselves, height based (Hackel et al., 2016; Özdemir et al., 
2019), as well as angular-based features (Munoz et al. 2008) are 
commonly used for point cloud classification purposes. Besides, 
the eigenvalue-based features proposed by Pauly et al. (2003) 
have proved to help describe the local geometry of the point. 
These features are shape descriptors derived from a combination 
of the eigenvalues (λ1 > λ2 > λ3) extracted from the covariance 
matrix (Blomey et al., 2014). The features values illustrate the 
main linear (1D), planar (2D), or volumetric (3D) structure of the 
point cloud in the neighbourhood. Blomley et al. (2014) offer 
detailed insights into the traditional eigen-based covariance 
features in differing scale scenarios. Deeper analyses have then 
been proposed in Weinmann et al. (2014, 2015, 2017a).  
Classification methods. The semantic segmentation methods-
denoted classification in this article- can vastly differ depending 
on the feature set provided as an input to the machine learning 
classifier. In the literature, we usually distinguish point-based 
classifiers (that reason from a per-point feature set) from 
segment-based classifier (per-segment labelling). The later 
usually relies on a segmentation step, where the point cloud is 
partitioned into subsets of points called 'segments'. In addition to 
neighbourhood definitions found at the point-level to achieve 
point-based classification, such as shown in Bremer et al. (2013), 
other characteristics can describe each segment to guide the 
process. The result is a set of internally homogeneous segments, 
i.e. groups of points representing the basic units for classification. 
In many cases, segmentation procedures aim to produce 
relatively small segments (over-segmentation), representing only 
object parts (sub-objects) rather than the final objects of interest 
directly. In Chehata et al. (2009) first, a supervoxel-based 
segmentation is used to segment point cloud data, then different 
machine learning algorithms are tested to label the point cloud. 
Luo et al. (2018) proposed a supervoxel-based classification; 
their method used Conditional Random Field matching to 

classify supervoxels. Sun et al. (2018) used a Random Forest 
classifier to classify point cloud based on supervoxels. Some 
authors rely on a region growing algorithm for segmentation of 
point cloud flowed by an object-based classifier such as SVM 
(Yang et al., 2017) or a Bagged Tree Classifier (Bassier et al., 
2020). use segment-based shape analysis relying on semantic 
rules.  
This article investigates the merging of both clustering and point-
based classification to develop a user-friendly approach. A small 
number of similar attempts have been proposed in the literature, 
such as presented in Weinmann et al. (2017b) where segment-
based shape analysis relies on semantic rules. This approach 
motivates the gains of a "higher level" understanding of the scene 
translated into features that can help achieve better inference. 
Other works which relies on "segment features" in point-based 
classification frameworks can be found in Guinard et al. (2017), 
Landrieu et al. (2017) and Landrieu and Simonovsky (2018). 
 

3. METHODOLOGY 

This section first describes the different steps of our framework 
(Section 3.1) and then explains the features used in our combined 
classification approach (Section 3.2).  

 
3.1 Framework 

The combined approach presented in this study follows these 
main steps: 
• Apply unsupervised clustering, following the approach 

presented in Poux et al. (2020) to segment the datasets.  
• Extract of a small set of geometric and covariance-based 

features which are effective for heterogeneous scenarios: the 
feature selection and their computation within heuristic 
neighbours is automatically performed to by-pass the 
otherwise laborious feature design process (Section 3.2).  

• Manually annotate a reduced portion of the point cloud, 
facilitated and supported by the clustering results (Figure 1): 
although the datasets used in this paper contains fully 
annotated point clouds, the data were divided into training 
(30%) and test (70%) sets (Figure 2). Our idea is that, when 
training is not available, the training's size should be as 
limited as possible and the annotation step rapid and user 
friendly. 
 

 
Figure 1. Clustering output for the training set of the Dublin 
dataset. 

 
• Train a standard machine learning algorithm: based on 

previous performance analysis (Grilli et al., 2019; Grilli and 
Remondino, 2020; Matrone et al., 2020), we selected the 
widely known Random Forest classifier (Breinman, 2001) 
among different classifiers available in the literature (SVM, 
Decision tree, etc.). 
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Figure 2. Training and test sets for the four case studies: Bordeaux (a), Dublin (b), S3DIS (c), Bologna (d). 

 
• Assess the achieved point-wise classification outcomes 

through quality metrics extracted for the entire test set: 
among the several metrics existing in the literature (Goutte 
and Gaussier, 2005), the Overall Accuracy (OA) is used to 
evaluate the classifier's ability to predict labels based on all 
observations.  In addition, it is considered the F1-score, as it's 
a good measure of how well the classifier performs, being an 
average of Precision and Recall.  

 
3.2 Feature engineering 

We aim to design a reduced number of meaningful features that 
can be used and adapted in different scenarios for point cloud 
classification. These features can then be fed into standard 
classifiers to train machine learning predictive models.  
Three main categories of features are combined: a) radiometric 
(RGB values), b) clustering and c) geometric features. 
Clustering features (Figure 3). Clustering methods have two 
major advantages: (i) they don't use prior knowledge on 
discriminating variables and (ii) they find answers directly in the 
data. This allows exploring fed variables and highlight 
unsuspected (or suspected) relationships. The clustering features 
are computed following an unsupervised scheme, where the point 
cloud is partitioned into subsets of neighbouring points called 
segments (Poux et al., 2020; Poux and Ponciano, 2020; Bassier 
et al., 2020). We aim at a set of internally homogeneous segments 
that will host the cluster features at four different aggregation 
levels.  
 

 
Figure 3. Four levels of clustering features: from top to 
bottom level 1, 2, 3 and 4. 

 

The procedure aims to yield relatively small segments, 
representing only object parts (sub-objects) rather than the final 
objects of interest directly, which, sorted, constitute the Cluster 
feature Level 1. Then adjacent segments with similar properties 
are merged to spatially contiguous objects (Cluster feature level 
2) by considering the results of the first clustering pass instead of 
the initial point cloud as input. Such a step-wise procedure, based 
on an initial over-segmentation, permits reducing the risk of 
combining multiple real-world objects in one segment (under-
segmentation). The principle of the approach is to limit any 
domain knowledge and parameter tweaking to provide a fully 
unsupervised clustering featuring. Finally, level 3 is based on a 
k-means clustering using the Hartigan's rule (Chiang and Mirkin, 
2010), whereas level 4 is a graph-based centrality-measure of the 
clusters weighted over the first three levels.  
The initial parameters involved in the definition of these multi-
level clustering features are automatically extracted through an 
automatic heuristic determination of three RANSAC-inspired 
clustering parameters: 
• a distance threshold for neighbourhood definition (ε); 
• the threshold for the minimum number of points needed to 

form a valid planar region (τ);  
• the decisive criterion for adding points to a region (α). 
 
Geometric features (Figure 4). Covariance features (Blomey et 
al., 2014), or eigen-based features, are commonly used in 
segmentation and classification procedures due to their ability to 
provide in-depth information on the geometrical layout of the 
reconstructed scene. The most common covariance features 
include (Table 1):  

 
Linearity Lλ =  !"	–	!%	

!"
                       (1) 

Planarity Pλ =  !%	–	!&	
!"

 (2) 

Sphericity Sλ =  !&	
!"

 (3) 

Omnivariance Oλ =  !∏ λj&
'("

!  (4) 

Anisotropy Aλ =  !"	–	!&	
!"

 (5) 

Eigenentropy Eλ = -∑ λ&
'(" j ln (λj) (6) 

Sum of eigenvalues Ʃλ  = ∑ λ&
'(" j (7) 

Surface variation Cλ =  !&	
)	*

 (8) 

Table 1. Covariance features. 
Grilli et al. (2019) presented a study about the behaviour of the 
covariance features measured within spherical neighbourhoods at 
increasing radius sizes in order to pick a smaller number of 
features that could be useful for heritage case study classification. 
In the same way, in this paper, we aim to identify a reduced 
number of geometric features that can be used in any possible 
environment, notwithstanding a fast computation. 
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The number of covariance features used in the presented 
approach is reduced to the only two Omnivariance and Surface 
Variation, chosen because of their ability to distinguish macro-
elements and entities (Teruggi et al., 2020). In order to 
demonstrate the effectiveness of the reduced selection, the 
classification experiments were also carried out using the entire 
set of features (Section 4).   
In addition, a height-based feature (Distance from Ground) and a 
normal-based one (Verticality) are considered. In particular, we 
have noticed that the feature Verticality is typically needed, 
independently from the scenario, to differentiate precisely 
horizontal and vertical artefacts. Directly related, the use of a 
height-based feature like the Distance from ground (Δz 
component) becomes essential to distinguish the different 
horizontal elements (i.e., street and roof).  
It has to be underlined that the selected features are extracted 
within a spherical radius ε (offered by the Clustering features) in 
a multi-scale approach. Experimentally we observed that a 
maximum number of 4ε was optimal for all scenarios.  

 
Figure 4. Examples of geometry-based features: from top to 
bottom Omnivariance, Verticality and Surface Variation. 

4. EXPERIMENTS AND RESULTS 

For each case study, the Random Forest classifier was trained 
with different combinations of features to have an internal 
comparison between the proposed method and the ones we 
combined. In particular:  
A. Clustering: clustering features (treated at a point level) are 

given in input to the classifier. Further experiments will 
include a segment-level classification. Total number of 
features: 4.  

B. Covariance features in a multi-scale approach: all the 
different covariance features (Table 1) are extracted at 
increasing radii, together with Verticality and Distance from 
ground. Total number of features: 73 (1 height-based, 9 
geometric x 8 scales). 

C. Proposed approach: combination of clustering features and 
few selected geometric features calculated at four scales (ε, 
2ε, 3ε, 4ε). Total number of features: 17 (1 height-based, 3 
geometric x 4 scales, 4 clustering). 

Besides, all datasets were treated with and without their 
radiometric attributes to further test the approach's reliability in 
different conditions.  
Tables 2 shows results coming from the above-mentioned feature 
combinations in the four considered scenarios (Section 1.2). It 
can be seen that the proposed approach, which combines 
clustering features and a few selected geometric features, leads 
to an improvement in results. It is also noticeable that the 
combined approach performed better when radiometric features 
were included. Besides, we can see that the better improvements 
were achieved for the urban scenarios. In fact, quite similar 
accuracy values were reached between the standard multi-scale 
(Approach B) and the combined approach for the indoor and 
architectural datasets. However, from a qualitative point of view, 
classification results look much "cleaner" when cluster and 
geometric features are combined (Figure 5 and 6). In addition, it 
has to be considered that only 17 features were used for the 
proposed approach, against the 73 of the standard one.  
For more details about the quality of the results, please check 
Figures 7-10, comparing hand-annotated and predicted point 
clouds.  Finally, in Tables 3-6, all the per-class F1 scores are 
reported. 

 
 URBAN - Bordeaux URBAN - Dublin INDOOR – S3DIS ARCHIT.  - Bologna 

CLASSIF. APPROACH OA % F1 % OA % F1 % OA % F1 % OA % F1 % 

No RGB 
A 81.43 81.07 84.91 84.45 69.54 67.54 63.04 61.69 
B 88.31 88.14 90.82 90.54 83.25 81.00 79.05 78.92 

C (Proposed) 92.52 92.47 93.13 92.89 84.96 84.11 79.09 79.17 

RGB 

A 82.78 82.46 - - 73.25 72.71 60.39 60.52 

B 88.46 88.28 - - 87.55 86.63 80.31 80.23 

C (Proposed) 92.56 92.51 - - 88.59 88.07 80.38 80.55 

Table 2.  Classification metrics achieved in the four scenarios using different features.  

 
Figure 5. A portion of the Bologna dataset coloured (a) and hand-annotated (b), with its classification results achieved using 
clustering features (c), geometry-based features in a standard approach (d), combining clustering and geometry-based features (e). 
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Figure 6. A portion of the S3DIS dataset coloured (a) and hand-annotated (b), with its classification results achieved using clustering 
features (c), geometric features in a multiscale approach (d), combining clustering and geometry-based features (e). 

 
 F1 scores 
 Ground Façade Roof Vegetation 

A 87.17 71.04 87.88 71.38 

B 85.3 84.21 91.97 73.4 

C 94.79 85.01 94.89 84.85 

Table 3. Per-class F1 scores for the Bordeaux dataset. 
 

 F1 scores 
 Ground Veg Façade Window Roof 

A 94.42 44.07 62.59 10.02 86.51 

B 97.13 76.31 86.63 43.6 94.11 

C 96.3 93.58 87.66 40.76 94.33 

Table 4. Per-class F1 scores for the Dublin dataset. 
 

 F1 scores 

 Roof Ground Wall Wind Door Table Chair Book 

A 81.15 87.09 78.98 49.25 38.48 51.71 34.51 33.29 

B 98.3 95.83 90.3 77.74 69.38 70.28 59.55 33 

C 98.08 97.44 90.25 73.5 66.86 73.87 72.88 49.06 

Table 5. Per-class F1 scores for the S3DIS dataset 
 

 F1 scores 
 Ground Façade Col Arch Vault Wind Mould 

A 88.49 56.96 26.86 28.59 78.75 50.13 48.82 

B 98.16 79.26 81.14 66.16 90.42 71.32 67.25 

C 99.96 79.65 85.75 65.52 90.79 70.56 69.09 

Table 6. Per-class F1 scores for the Bologna dataset. 

 
Figure 7. Visual comparison between the hand-annotated Bordeaux dataset (left) and the prediction achieved using the 
proposed method (right). 
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Figure 8. Visual comparison between the hand-annotated Dublin dataset (left) and the prediction achieved using the proposed 
method (right). 

 

 
Figure 9. Visual comparison between the hand-annotated S3DIS dataset (left) and the prediction achieved using the proposed 
method (right). 
 

 
Figure 10. Visual comparison between the hand-annotated Bologna dataset (left) and the prediction achieved with the proposed 
method (right). 
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5. CONCLUSIONS 

The paper presented a combined approach, based on 
clustering and covariance features, for point cloud 
classification based on a traditional machine learning 
predictor. Four heterogeneous datasets were considered, 
featuring different type of classes and scenarios. Experiments 
proved that unsupervised object-based features help 
supervised point-based classification. Therefore, the 
combined method offers reduced labelling efforts, speeds up 
classification processing, improves accuracy, requires low 
computational power and is generalisable to various 
scenarios, making it suitable for daily work in various fields. 
As future work, we plan to compare the presented approach 
with other state-of-the-art methods for benchmarking 
purposes, including deep learning methods. 
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