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ABSTRACT:

Emerging traffic management technologies, smart parking applications, together with transport researchers and urban planners are
interested in fine-grained data on parking space in cities. However, there are no standardized, complete and up-to-date databases
for many urban areas. Moreover, manual data collection is expensive and time-consuming. Aerial imagery of entire cities can
be used to inventory not only publicly accessible and dedicated parking lots, but also roadside parking areas and those on private
property. For a realistic estimation of the total parking space, the observed use of multi-functional traffic areas is taken into account
by segmenting not only parking areas but also roads according to their purpose. In this paper, different U-Net based architectures
are tested for detecting all these types of visible traffic areas. A new large-scale, high-quality dataset of manual annotations is used
in combination with selected contextual information from OpenStreetMap (OSM) to depict the actual use as parking space. Our
models achieve a good performance on parking area segmentation, and we show the significant impact of OSM data fusion in deep
neural networks on the simultaneous extraction of multiple traffic areas compared to using aerial imagery alone.

1. INTRODUCTION

Accurate information on parking spaces is nowadays relevant
for parking guidance systems as well as for traffic management
and urban planning. The importance of this data is increasing
in the context of intelligent transportation systems, thereby en-
abled value-added services and autonomous driving. In trans-
portation research, the relevance of parking for citywide traffic
is recognized but rarely addressed (Habib et al., 2012). This
is mainly caused by the insufficient data basis: the example of
Germany shows that there is no standardized, up-to-date and
comprehensive database even for the three largest cities (Sen-
ate of Hamburg, 2020, State capital of Munich, 2019, Senate of
Berlin, 2014). Especially the latter aspect must be emphasized,
since despite a considerable share of private parking spaces,
only those on public property are covered. Information is par-
tially available for managed parking lots, but this reflects only
a fraction. Previous research has focused primarily on deter-
mining the occupancy level of designated, large parking areas
using deep learning methods on data from surveillance cam-
eras (Amato et al., 2017), drones (Fraunhofer IAO, 2021) or
satellites (Drouyer, 2020). Existing datasets with a high ground
sampling distance (GSD) deal with the segmentation of park-
ing spaces in addition to a variety of other classes using deep
learning (Zhou et al., 2018b, Cheng et al., 2017). One anno-
tation dataset on aerial imagery and the corresponding Fully-
Convolutional neural Network (FCN) also separates non-paved
parking places (Azimi et al., 2019). A significant category of
parking areas has not been considered so far, which requires a
new approach for semantic scene understanding: dual-use ar-
eas in backyards, on the roadside and on sidewalks that are reg-
ularly used for parking, although no markings are visible on
aerial imagery.

The state-of-the-art methods for object segmentation in aerial
∗ Corresponding author

(a) aerial image (10 cm/px) (b) OSM mask

(c) Fuse-Dense-U-Net predictions (d) ground truth

Figure 1. Illustration of the dataset and the results: (a-b) input
data, (c) predictions of our best model, (d) manually annotated

ground truth. Categories colors are: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ parking area, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ road,
∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ access way and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ pedestrian/bike way.

imagery is based on FCNs (Long et al., 2015), and recently
more specifically on the U-Net architecture (Ronneberger et al.,
2015). This type of networks is particularly adapted to extract-
ing high levels of details in high-resolution imagery, thanks to
the skip-connections linking each encoder layer to the corre-
sponding decoder layer, have therefore been successful in a va-
riety of binary object segmentation challenges: for road seg-
mentation (Zhou et al., 2018a, Buslaev, 2017) and building seg-
mentation (Hamaguchi and Hikosaka, 2018, Lindenbaum, 2017)
in the respective DeepGlobe18 (Demir et al., 2018) and SpaceNet
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Figure 2. An overview of the different fully-convolutional neural network architectures used in our study: (a) Dense-U-Net, (b)
DLA-Dense-U-Net, (c) Fuse-Dense-U-Net, (d) SkipFuse-Dense-U-Net. RGB, OSM and Pred. are described in Figure 1.

challenges (Etten et al., 2019). While complex architectures
specialized for a wide variety of classes such as DeepLabV3+
(Chen et al., 2018) are especially effective on ground imagery
datasets like the CityScapes (Cordts et al., 2016) or PascalVOC
(Everingham et al., 2010), their spatial accuracy is lacking for
remote sensing imagery. More advanced architectures were de-
signed for fine-grained semantic extraction in aerial imagery,
like SkyScapesNet (Azimi et al., 2019), but they require large
amount of memory to run which prevents their conversion into
fusion networks.

In addition to the above mentioned approaches, where the input
data comes from a single modality, several studies investigated
the fusion of multi-modal and multi-temporal data via neural
networks (Chlaily et al., 2020, Hong et al., 2020). Thereby,
special attention was paid to the way the data was fused within
the networks. In (Hong et al., 2020), the impact and differ-
ences between shallow and deep models for the multi-model
image classification have been investigated. In (Merkle et al.,
2019) the benefits of combining RGB, near infrared (NIR) and
thermal infrared (TIR) aerial images for the task of semantic
vehicle segmentation and the influence of an early or late fu-
sion within the network have been researched. Instead of fus-
ing data from different sensors only, (Audebert et al., 2017) in-
vestigated the inclusion of highly processed and semantically
richer data. More specifically, they tested different network ar-
chitectures to explore the utility of OpenStreetMap (OSM) in
combination with RGB data for semantic labeling.

In this study we perform parking area extraction using first a
base architecture, Dense-U-Net (Henry et al., 2020), then we
improve its fine-grained details recovery capability by intro-
ducing DLA-Dense-U-Net, following the Deep Layer Aggre-

gation (DLA) technique (Yu et al., 2018). Finally we test and
improve the OSM fusion performance of FuseNet (Hazirbas
et al., 2016) with our architectures SkipFuse-Dense-U-Net and
SkipFuse-DLA-Dense-U-Net. To train these models, we used
a new high quality annotation dataset that supports the seman-
tic understanding of both dedicated and regularly used park-
ing areas in contrast to roads and access ways. We show that
such fine-grained annotations and extraction methods are yield-
ing excellent results, especially considering the diversity of the
urban environment density and the varying illumination condi-
tions in our imagery. Future work should validate the gener-
alization capability such models on imagery from other cities
featuring different parking area topologies.

2. METHODS

For the automatic extraction of traffic areas, we implement a
fully-convolutional architecture derived from U-Net (Ronneberger
et al., 2015), namely Dense-U-Net (Henry et al., 2020) and
its DLA variant (Yu et al., 2018). While U-Net is the pre-
ferred backbone by the remote sensing community for seman-
tic segmentation tasks thanks to its effectiveness in recover-
ing fine-grained spatial details, its backbone is lacking many
features from state-of-the-art architectures and compatible pre-
trained weights are rarely available. Therefore we selected the
Dense-U-Net architecture with a DenseNet-121 backbone for
the following reasons: its densely connected layers allow for a
faster training, it has a higher capacity for learning complex
semantics, and most deep learning libraries provide weights
pre-trained on the ImageNet dataset. Contrary to other U-Net-
derived architectures, Dense-U-Net does not use a simple de-
coder composed only of successive deconvolutions, but rather
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Figure 3. Zoomed-in samples of aerial images, annotations and overlay from our dataset with the three classes: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ parking area, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ road
and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ access way.

a flipped DenseNet mirroring the layers from the encoder at
the corresponding pooling level (see Figure 2.a). This helps
extracting more spatial and semantic information from the low-
level and high-level layers respectively. To further improve this
aspect, we also bring in the technique called DLA, which den-
sifies the U-Net’s skip-connections. In short, it nests U-Nets
at each down-sampling level, so that fine-grained details are
recovered more progressively than with direct skip-connection
(see Figure 2.b). In the following, we are calling this architec-
ture DLA-Dense-U-Net.

Additionally, we intend to leverage as much information as pos-
sible from existing data sources like OSM. Although sometimes
spatially and semantically inaccurate, these provide a good base-
line for distinguishing roads, access ways and parking lots. We
extract vector information from 7 traffic-related object cate-
gories and rasterize it into classes from 0 to 6: drivable and
non-drivable ways, access ways, parking spaces, gas stations,
bicycle parking and parking vending machines. We explore
three ways of merging the OSM data into the model. In the
first one, we apply a naive normalization of the OSM classes
into [0, 1] and concatenation to the input data as a fourth chan-
nel. In the second one, we implement Fuse-Dense-U-Net and
Fuse-DLA-Dense-U-Net following the technique and idea from
FuseNet (Hazirbas et al., 2016) and (Audebert et al., 2017)
by adding a separate encoder for the normalized OSM raster,
whose block-wise output features are added to the aerial image
encoder’s corresponding output features (see Figure 2.c). In the
third one finally, we modify the fusion scheme from FuseNet to
keep the aerial RGB encoder features separate from the OSM
encoder features. Our intuition is that the fusion of two hetero-
geneous data types, if done like in FuseNet, will make the op-
timization of the main encoder harder and lead to lower perfor-
mance. In our modified architectures, SkipFuse-Dense-U-Net
and SkipFuse-DLA-Dense-U-Net, the fusion of RGB and OSM
feature maps is done only at the input of the skip-connections,
and therefore the two encoders do not interact with one another
(see Figure 2.d).

3. DATASET

To train our segmentation networks, we manually annotated a
series of aerial images pixel-wise with 3 categories: parking
spaces, roads and access ways. The aerial images were ac-
quired from the city of Brunswick (Germany) with the 3K cam-

Figure 4. Spatial distribution of training, validation (reddish),
and test set (yellowish) images over the city centre of Brunswick
(Germany). Note that overlapping areas are only considered in

one of the three sets.

era system (Kurz et al., 2012) on six days over a period of two
years from 2019 till 2020. At each flight, an area of around
40km2 was acquired based on five flight strips with a small
across track overlap of 10 %. The frame rate was set to 1 Hz,
which leads to a 80 % along track overlap of the images. The
two full frame 35mm cameras aboard capture images of size
5616 × 3744 pixel. The GSD is derived from the focal length
of 50mm and ranges between 9.0 cm and 10.3 cm depending
on the flight altitude, which varies slightly between 650 m and
750 m above ground for the different flight days.

Altogether 47 images from the six overflights were selected
for annotation. The covered scenery is diverse with respect to
buildings and land use, e. g. the historic town center with a large
pedestrian area is covered by nine images, the mainly residen-
tial areas by 24 images, the industrial areas by ten images, and
other areas by four images (see Figure 4). The flight times have
been set in such a way that there is a wide variability in terms
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Figure 5. Distribution of selected images across time of day (top)
and across months within the years 2019 and 2020 (bottom).

of times, seasons, days of the week, and weather. The distri-
bution of the selected images regarding time and seasons are
illustrated in Figure 5. In the selected images various types of
car parking are represented, from big parking lots at industrial
areas to small along-side parking places in the suburban. Image
examples for the different parking types are shown in Figure 6.

For the training, validation and testing of our deep learning
based approaches, we divided the 47 images into three disjoint
sets: the training set includes 35 images, the validation set con-
tains 5 images and the test set consists of 7 images. Here, we
tried to spatially separate the validation and test set as good as
possible from the training set while maintaining the same varia-
tion of parking types as in the original covered area. The spatial
distribution of the three sets is illustrated in Figure 4. Since
there was some overlap between images of different sets, we
masked out the corresponding areas. More precisely, we ex-
cluded all areas contained in the test set from the validation set
and all areas contained in the test and validation set from the
training set.

The primary goal pursued with the dataset is the most complete
detection of parking areas that are both officially dedicated and
regularly used as such. The former have various looks: they
are of the same or contrasted surfaces compared to roads, have
painted or paved markings, different alignments to the direc-
tion of travel, and multiple types of exposures to traffic flow.
The latter are dual-use areas: most of the day they are taken by
moving traffic, and only when parking pressure is high, parking
is observed on the roadside or partially on sidewalks. Thus, the
fully but not exaggerated detection of parking areas is complex,
in which the surroundings also play a role. For this reason, two
further classes are defined, which are used to investigate the
extent to which the adjacency of road traffic areas can be help-
ful for the distinction of parking areas. Roads are dedicated to
moving motorized traffic and have a connecting function. In
contrast to roads, objects of class access way are areas for ac-
cessing a destination, e. g. houses, parking garages or back-
yards. This segmentation is particularly needed in transporta-
tion research that builds on this work (Hellekes et al., 2021).
Taking the three object classes together, the background forms
the residual in the images.

Consistent and high quality annotations were achieved on the
one hand by refining the annotation policy based on structurally
different parts of the test area. On the other hand, manual la-
belling was performed by experts for German infrastructure and
multi-level quality checking. A sample annotation is shown in
Figure 3.

Figure 6. Exemplary image crops (from top to bottom): urban –
low illumination, suburban – no sun, industrial – sunny.

4. RESULTS AND DISCUSSION

All models described in Section 2 are trained over 100 epochs,
with a patch size of 512 × 512px, with an Adam optimizer and
an exponential learning rate schedule initialized at 10−4 and
decayed at a 0.99 rate after each epoch. When training the
Dense-U-Net, the Fuse-Dense-U-Net and the SkipFuse-Dense-
U-Net models we used a batch size of 12 and for the training
of the DLA-Dense-U-Net, the Fuse-DLA-Dense-U-Net and the
SkipFuse-DLA-Dense-U-Net models a batch size of 8. Addi-
tionally, we experimented with three OSM data fusion schemes:
without OSM (RGB input only), with concatenated OSM as in-
put and the OSM fusion. The training and the validation of the
models where performed on sets composed of 3080 patches and
440 patches respectively (for details see Section 3).

The results on the test set images (in total 616 patches) at epoch
100 are presented in Table 1. Overall, we achieved the best
results with the SkipFuse-Dense-U-Net. By comparing the dif-
ferent OSM fusion schemes, it can be seen that the concatena-
tion of OSM data into the input features helps extracting roads
slightly better, it actually decreases the model’s performance
for the parking area class. The most likely reason is that this
naive approach fuses heterogeneous data through the same en-
coder, leading to confusion in the feature extraction. In compar-
ison, both Fuse-Dense-U-Net and SkipFuse-Dense-U-Net yield
much improved predictions, but with a more significant perfor-
mance boost for the latter (+2.3% and +4% mean IoU respec-
tively, versus Dense-U-Net with no OSM fusion). The DLA-
based models however showed unexpected results: without any
OSM fusion, DLA-Dense-U-Net reached the best performance
on parking area segmentation, by 0.7% ahead of the second-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-479-2021 | © Author(s) 2021. CC BY 4.0 License.

 
482



backbone with fusion scheme IoU [%] average [%]
network OSM mean road access way parking recall precision

Dense-U-Net - - 72.33 69.30 58.55 68.14 82.16 84.82
Dense-U-Net concatenation 71.73 72.00 59.51 62.98 81.42 84.64
Dense-U-Net FuseNet (Hazirbas et al., 2016) 74.62 73.05 63.09 68.49 84.07 85.93
Dense-U-Net SkipFuseNet 76.38 77.98 64.40 68.77 84.73 87.65

DLA-Dense-U-Net - - 73.49 71.28 59.37 69.48 83.47 85.08
DLA-Dense-U-Net concatenation 72.59 71.91 60.24 65.05 81.84 85.40
DLA-Dense-U-Net FuseNet (Hazirbas et al., 2016) 72.89 71.80 59.44 67.07 82.64 85.04
DLA-Dense-U-Net SkipFuseNet 74.60 74.05 61.61 68.70 83.91 86.00

Table 1. Performance comparison of the Dense-U-Net and DLA-Dense-U-Net architectures using different OSM fusion methods.

(a) aerial image (b) no OSM (c) concatenation (d) SkipFuseNet (e) ground truth (f) OSM mask

Figure 7. Qualitative comparison of the impact of OSM and the different fusion schemes on the models with a Dense-U-Net
backbone. Categories colors are: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ parking area, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ road, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ access way, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ pedestrian/bike way and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ bicycle parking.

ranked method SkipFuse-Dense-U-Net. And contrary to our
expectations, no fusion scheme on the DLA-based model im-
proved this score or that of other classes. A possible explana-
tion could be that the DLA architecture is effective at extracting
fine-grained spatial details, but not fine-grained semantic infor-
mation. Since Dense-U-Net is already providing excellent spa-
tial accuracy in our experiments, little to no performance gain
is reasonable to expect from the DLA-based models.

Qualitative results of all models using the Dense-U-Net as back-
bone are shown in Figure 7. Here, the positive effect of incor-
porating the OSM data as additional input on the predictions
becomes visible. In the first row of the figure, a large pedestrian
area is marked in the OSM. When using only the aerial images
as input, the network predicts roads and access ways inside the
pedestrian zone. In contrast, using the OSM data and the ad-
vanced fusion scheme results in almost no wrong prediction in
these areas. Furthermore, the OSM data helps the network to
better differentiate between the classes access ways and roads.
This can be seen in the second row of Figure 7. Here the model
in (b) wrongly identifies some access ways as roads, whereas
they are consistently predicted as access ways as soon as OSM
data is taken into account in (c) and (d).

In another experiment, we investigated the influence of the three
classes from our dataset on the predictions of the parking areas.
Therefore, we trained our best model, the SkipFuse-Dense-U-
Net, on the same training dataset, but 1) with using the class
parking area only and 2) with using the class parking area and
merging the classes road and access way into one class. All
the other hyperparameters were kept the same. A quantitative
evaluation of these experiments is provided in Table 2 and im-
age examples in Figure 8. The results in Table 2 show that we
gain around 1 % of IoU for the class parking area by training
the network only on this class. A possible explanation for this
improvement could be that the class parking area is more easily
distinguished from other traffic areas than anticipated, and our
model can focus more specifically on this class when extract-
ing not other categories of objects. In contrast to the quantita-
tive evaluation, the difference in the predictions’ quality for the
class parking area is barely visible (see Figure 8). Nevertheless,
depending on the use case, it should be considered to use only
the class parking area for training if no information about the
road network is required later.
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backbone with fusion number of IoU [%] average [%]
network OSM scheme classes mean road access ways parking recall precision

Dense-U-Net SkipFuseNet 3 76.38 77.98 64.40 68.77 84.73 87.65
Dense-U-Net SkipFuseNet 2 79.73 75.23 - 69.57 87.20 89.56
Dense-U-Net SkipFuseNet 1 83.90 - - 69.78 89.17 92.16

Table 2. Performance of SkipFuse-Dense-U-Net with all 3 classes, roads and access ways merged, or only parking in the ground truth.

(a) aerial image (b) only parking (c) parking and road (d) three classes (e) ground truth (f) OSM mask

Figure 8. Qualitative comparison of the impact of the number of classes in the training set on the SkipFuse-Dense-U-Net model. Color
coding: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ parking area, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ road, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ access way, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ pedestrian/bike way and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ bicycle parking.

5. CONCLUSION AND FUTURE WORK

Our experiments have shown that state-of-the-art segmentation
models are capable of extracting parking areas accurately, reach-
ing up to 69.78 % IoU in our best setup. Additionally we ob-
tained good results for other traffic related objects, namely roads
and access ways, with a best mean IoU score of 76.38 %, which
opens opportunities for a future use in transport models. The
fusion of OSM brought considerable quantitative and qualita-
tive improvements in both identification of the surface types and
smoothness of the region borders. These results were made pos-
sible due to the use of an accurately manually annotated dataset,
confirming the necessity and value of high-quality labeling for
remote sensing tasks. Our dataset reflects well the heterogene-
ity of Brunswick, Germany, but a large number of additional
yet not annotated aerial images is available. This means that
in future works, the quality of multiple predictions for the same
scene under different conditions could be compared and used to
reduce uncertainties of a single prediction through merging. On
the generalization side, the layout of traffic areas in Germany
is highly standardized but cities have their own characteristics:
historical city center, slowly grown structure, centralized urban
planning, building density, etc. Future studies should confirm
the capability of the proposed method to generalize to new areas
and assess the need for fine-tuning on region specific features.
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