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ABSTRACT: 

 

Land use is an important piece of information with many applications. Commonly, land use is stored in geospatial databases in the 

form of polygons with corresponding land use labels and attributes according to an object catalogue. The object catalogues often have 

a hierarchical structure, with the level of detail of the semantic information depending on the hierarchy level. In this paper, we extend 

our prior work for the CNN (Convolutional Neural Network)-based prediction of land use for database objects at multiple semantic 

levels corresponding to different levels of a hierarchical class catalogue. The main goal is the improvement of the classification 

accuracy for small database objects, which we observed to be one of the largest problems of the existing method. In order to classify 

large objects using a CNN of a fixed input size, they are split into tiles that are classified independently before fusing the results to a 

joint prediction for the object. In this procedure, small objects will only be represented by a single patch, which might even be 

dominated by the background. To overcome this problem, a multi-scale approach for the classification of small objects is proposed in 

this paper. Using this approach, such objects are represented by multiple patches at different scales that are presented to the CNN for 

classification, and the classification results are combined. The new strategy is applied in combination with the earlier tiling-based 

approach. This method based on an ensemble of the two approaches is tested in two sites located in Germany and improves the 

classification performance up to +1.8% in overall accuracy and +3.2% in terms of mean F1 score.  

 

 

1. INTRODUCTION 

Land use describes the socio-economic function of a piece of 

land. This information is frequently maintained by governmental 

mapping agencies. Commonly, land use data is stored in the form 

of polygon objects in geospatial databases, the labels of which 

indicate the corresponding land use. In order to verify this 

information automatically as a first step of a database update, 

current remote sensing data can be employed to predict a land use 

label. The predicted label can then be compared to the one 

contained in the database, and inconsistent predictions can be 

interpreted as cues for land use change.  

 

Today, work on image-based classification is dominated by 

convolutional neural networks (CNN) (Krizhevsky et al., 2012). 

CNN require images of a fixed size as input. If the goal is to 

predict the current land use for every polygon in the database, a 

big challenge relates to the large variation of polygons in terms 

of their geometrical extent. In addition, object catalogues of 

geospatial databases typically contain a very large number of 

land use classes (also called categories, these terms are used 

interchangeably in this paper), many of which cannot be expected 

to be distinguishable in remote sensing imagery. On the other 

hand, many object catalogues, e.g. the catalogue used in the 

German Authoritative Real Estate Cadastre Information System 

(ALKIS; AdV, 2008), provide land use information in multiple 

semantic levels with a hierarchical structure. From the point of 

view of the application, it is therefore useful to obtain predictions 

at multiple semantic levels simultaneously.  

 

Consequently, in (Yang et al., 2020a) we proposed a method for 

the hierarchical classification of land use polygons based on 

CNN, in which land use labels consistent with the pre-defined 

object-class hierarchy were predicted at multiple semantic levels 

simultaneously. The input consists of multispectral aerial 

imagery and derived height data at a resolution in the order of 0.1 

to 0.2 metres. The classification is based on a two-stage process: 

first, a fully convolutional network (FCN) (Long et al., 2015) is 

applied to predict the current land cover at pixel level; the 

resultant land cover posteriors, the original data and a binary 

mask encoding the polygon shape provide the input to the second 

step, the CNN-based prediction of land use at multiple 

hierarchical levels. The evaluation has shown that the 

classification quality clearly depends on the size of the polygon: 

small polygons, i.e. polygons which fit into a window of 256 x 

256 pixels (which is the input size of the CNN) are classified with 

considerably lower accuracy than the large ones. To a certain 

degree it is not a surprise for some of them to be classified 

incorrectly: some polygons in the database cover only about 10% 

of the area of the image patch, so that the image content will be 

dominated by the surroundings.  

 

In this paper, we address the problem of classifying small land 

use objects in the context of the hierarchical classification 

technique presented in (Yang et al., 2020a). A simple scaling 

approach (Yang et al., 2019) was found not to be sufficient to 

solve the problem. Thus, in this paper we present a multi-scale 

approach: each small object (according to the above definition, 

this is an object fitting into a window of 256 x 256 pixels in the 

resolution of the sensor data) is presented to the CNN multiple 

times, each time in a different scale, and the predictions are 

combined afterwards. Apart from capturing context regions of 

multiple size and processing images that are dominated by the 

interior of the object, also our experience with large objects, 

which are split into tiles that are classified independently before 

determining a joint classification result, gives rise to the 
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expectation that the combination of multiple predictions may act 

as a kind of ensemble method and improve the quality of the 

predictions accordingly.  

The scientific contribution of this paper can be summarized as 

follows: 

 

 Based on our previous work for hierarchical land use 

classification (Yang et al., 2020a), we propose a multi-scale 

approach for classifying small land use objects to improve 

the classification accuracy for these objects; 

 We validate that approach by conducting a series of 

experiments in two test sites located in Germany. At the 

same time, we highlight the benefits and investigate the 

limits of the proposed approach in differentiating fine-

grained class structures corresponding to the finest semantic 

level of a hierarchical object catalogue. 

 

In section 2, we give a brief review of related work. Our new 

multi-scale approach is presented in section 3. Section 4 

describes the experimental evaluation of our method. 

Conclusions and an outlook are given in section 5. 

 

2. RELATED WORK 

Since the success of AlexNet (Krizhevsky et al., 2012), CNN 

have been shown to outperform other classifiers by a large 

margin. They have also been widely adopted for classification in 

remote sensing applications; cf. (Zhu et al., 2017) for an 

overview.  

 

Zhang et al. (2018) propose a segment-based approach to 

determine land use from remote sensing data. The authors start 

with an initial non-semantic image segmentation using mean-

shift (Comaniciu and Meer, 2002), the resultant segments are 

then considered to correspond to objects for which land use is to 

be predicted. These segments are split into rectangular patches 

using the moment bounding box method of Zhang and Atkinson 

(2016). These patches, which consist of either 48 x 48 or 128 x 

128 pixels, are classified independently from each other using a 

CNN. The final class label of each segment is determined by 

combining the predictions for all patches by simple majority vote. 

Zhang et al. (2019) propose a joint deep learning framework for 

classifying land cover and land use simultaneously in an iterative 

approach. Both (Zhang et al., 2018) and (Zhang et al., 2019) 

focus on 10 urban land use classes only.  

 

In contrast to the approaches cited so far, Huang et al. (2018) rely 

on the availability of polygons representing urban blocks for 

which land use is predicted on the basis of multispectral images. 

Each polygon is represented by a series of rectangular processing 

units of 227 x 227 pixels which are positioned inside the polygon 

on the basis of a skeleton. These processing units are classified 

independently from each other using a CNN-based approach. The 

final prediction for a polygon is obtained by computing the 

arithmetic mean of the class scores of all corresponding 

processing units. Their work focuses solely on urban land use and 

differentiates 13 classes. All methods cited so far differentiate 

land use classes only in one semantic level.  

 

A problem that occurs when predicting class labels for database 

objects is the large variability of such objects in size. One strategy 

to cope with this problem is an analysis of the input data at 

multiple scales. In the context of multi-scale analysis, many 

researches use a pyramidal approach to capture context areas of 

different size, using the image at different resolutions as input. 

Marmanis et al. (2018) adopted the multi-scale approach 

originally described in (Kokkinos, 2016) for land cover 

classification and gained a slight improvement (0.2%) in terms of 

overall accuracy. Auderbert et al. (2018) proposed an alternative 

way of multi-scale analysis by combining predictions of land 

cover at different resolutions (corresponding to different layers 

of the network decoder) to achieve final prediction, which also 

leads to a slight improvement (0.3%) in terms of overall 

accuracy. However, these methods apply a pixel-wise prediction 

of land cover, not a prediction of land use for objects of a 

geospatial database.  

 

Considering classifying land use objects in multiple semantic 

levels while guaranteeing consistent hierarchical predictions, 

Yang et al. (2020a) proposed two approaches to classify land use 

objects in three semantic levels according to the ALKIS object 

catalogue. In the evaluation we found again a considerable 

accuracy discrepancy between large and small polygons. In this 

paper, we propose an additional multi-scale approach to address 

this problem. The small polygons are represented by multiple 

patches at different scales that are presented to the CNN for 

classification, and the classification results are combined. In this 

context, the size of the polygons is enlarged to mitigate the 

influence of the area outside the object boundaries on the 

classification result.  

 

3.  HIERARCHICAL CLASSIFICATION OF LAND USE 

For our method, the first input required for the CNN-based 

hierarchical land use classification is a land use database in which 

all objects are represented by polygons with land use categories 

at multiple semantic levels according to a hierarchical object 

catalogue. Multispectral aerial image (RGB-IR), a normalized 

digital surface model (nDSM), i.e. a model of heights above the 

terrain, and pixel-wise class scores for land cover obtained from 

a first pixel-wise land cover classification step serve as additional 

input. To obtain land cover class scores, the CNN-based land 

cover classification method of Yang et al. (2021) is used. The 

goal of CNN-based land use classification is the prediction of one 

class label for every polygon at three semantic levels in a way 

that is consistent with the hierarchic object catalogue.  

 

As mentioned earlier, in CNN-based land use classification a big 

challenge is the large variation of polygons in terms of their 

geometrical extent. For instance, road objects are commonly long 

and thin, and residential objects cover both, quite large and quite 

small areas. To overcome this problem, large objects have to be 

split into several patches first. These patches are classified by the 

CNN independently from each other, and finally, the individual 

predictions are combined to determine the class label of the 

compound object. In the following, we adapt the method 

presented in (Yang et al., 2021) for that purpose. In that paper, 

large polygons were split into patches by a tiling approach, 

whereas small polygons (i.e., polygons that fit into a window of 

the input size of the CNN) were only represented by a single 

patch at the original scale of the remote sensing data. In section 

3.1, we propose an alternative patch preparation strategy for 

small objects, which is the main methodological contribution of 

this paper. In section 3.2 we briefly outline the CNN architecture 

for land use classification of (Yang et al., 2021) to make this 

paper self-contained. Section 3.3. presents several network 

variants. It also describes the method for combining the pre-

dictions for individual patches and gives implementation details.  

 

3.1 Patch preparation 

In (Yang et al, 2021), a window of 256 x 256 pixels centred at 

the centre of gravity of the object from all data (image and nDSM, 

binary object mask, land cover scores) is extracted and then 
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presented to the CNN. This procedure is unproblematic if the 

polygon size corresponds well to the window size at the ground 

sampling distance (GSD); otherwise the window is either 

dominated by information outside the object (for very small 

objects) or the object does not fit into the window. In (Yang et 

al., 2021), large objects not fitting into the input window of the 

CNN are split into tiles; this method is outlined in section 3.1.1. 

In section 3.1.2, we present an alternative approach based on 

scaling, in which for small polygons patches are generated at 

different scales. These strategies can be combined to achieve a 

classification methodology in which both small and large objects 

are represented by multiple patches (cf. section 3.3).  

 

3.1.1 Tiling approach: For large objects, the window enclosing 

the object is split into tiles (patches) of the desired size. This 

might cause the number of patches to be very large. As a 

consequence, the training procedure is expected to lead to 

overfitting to patches corresponding to large objects. To avoid 

this, for objects with more than 3 patches, we randomly select 

40% of these patches for further processing only, whereas the 

other patches are discarded. For all other objects, all patches are 

preserved. Fig. 1 illustrates this process for a large road object.  

 

 
Figure 1: Illustration of the tiling process for a large road object. 

 

3.1.2 Multi-scale approach: Using the method described in 

section 3.1.1 for patch generation, small objects will correspond 

to exactly one patch, which additionally might be more 

representative for the background than for the object. To improve 

the classification of small polygons, we propose a new method in 

which they are represented in different scales both in training and 

classification. First, the input data are scaled such that the object 

fits exactly into a window of the input size of the CNN using the 

scale 

 

  𝑠1 =
256

max(𝑤,ℎ)
,   (1) 

 

where w and h are the width and height of a rectangle enclosing 

the object at the GSD of the images in [pixels], respectively. The 

other scales sk are based on s1:  

 

𝑠𝑘 =
1

2𝑘−1
∙ 𝑠1,   (2) 

 

These scales are computed for 𝑘 ∈ {2, 3, 4, 5}, i.e. the minimum 

scale that can be considered is 1/16 ∙ s1; however, we do not use 

scales 𝑠𝑘 < 1, except for 𝑠1. For objects that fit into a window of 

256 x 256 pixels at the GSD of the input image, we additionally 

define a scale 𝑠0 = 1, so that for these data, the original input is 

used for patch generation, too. Thus, the number of scales applied 

to an object depends on the object size. For each selected scale 

sk, a corresponding window centred at the object centre is 

extracted from all the input data and up-scaled to 256 x 256 

pixels. In the scaling process, the binary mask images are 

interpolated via nearest neighbour interpolation; for all other 

data, bilinear interpolation is applied. Fig. 2 presents an example 

for a multi-scale representation of a small polygon. In this case, 

three scale factors are applied.  

 

This patch generation procedure implies that large polygons are 

represented by a single patch extracted using the scale 𝑠1. Thus, 

the window enclosing the entire object is downscaled to the 

desired input size of 256 x 256 pixels. Thus, for large objects, this 

procedure is the identical to the one described in our previous 

work (Yang et al., 2019). In that paper, this scaling approach did 

not work very well when applied as a stand-alone procedure, 

though it could improve the results slightly when used in an 

ensemble with the tiling method.  

 

Object mask RGB orthophoto Remark 

  

images at the original 

resolution of GSD = 

20 cm;  
𝑠0 = 1 

  

𝑠1 ≈ 5.6 

 

  

𝑠2 ≈ 2.8 

 

  

𝑠3 ≈ 1.4 
 

 

Figure 2:  An example showing the contents of a small polygon 

at the original scale and up-scaled versions at three 

different scales. All images have a size of 256 x 256 

pixels. The size of the polygon is about 45 x 45 pixels 

in the resolution of the images (about 81 m2 in area). 

 

3.2 Network architecture 

The classification of the patches generated in one of the ways 

described in section 3.1 is based on the LuNet-lite-JO network 

described in (Yang et al., 2021) and presented in Fig. 3. The input 

image patches are processed by a series of blocks of convolution 

and pooling layers. Afterwards, the network is split into two 

branches. The first branch consists of standard convolution and 

pooling layers, whereas the second one extracts a ROI from the 

feature map of the previous joint layer that tightly encloses the 

object. Subsequently, rescaling of that ROI to 16 x 16 pixels is 

performed and a set of convolutions and poolings is applied. 

Finally, the feature vectors of the two branches are concatenated 

to form a combined 128-dimensional vector. The combined 
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vector is processed by three fully-connected layers to obtain raw 

unnormalized class scores 𝑧𝐿𝑈
𝑙  for each of the three semantic 

levels l. These class scores are the input to a network block 

consisting of two layers with a specific connectivity structure 

designed for learning semantic dependencies between the 

different layers; the reader is referred to (Yang et al., 2021) for 

details about these layers. The output consists of raw class scores 

𝑧𝐿𝑈
𝑜𝑢𝑡,𝑙

 per layer, which are passed to the final softmax layer to 

produce probabilistic class scores.  

 

 
 

Figure 3: Architecture of LuNet-lite-JO. The red numbers 

indicate the number of filters per layer. More details 

are given in the main text.  

 

Although the last layers of the network are designed to learn 

dependencies between classes at different semantic levels, there 

is no guarantee that the prediction results are consistent with the 

hierarchical object class catalogue. To achieve semantic 

consistency, the joint optimization (JO) strategy, also proposed 

in (Yang et al. 2021), is used. The basic idea is to maximize the 

joint class scores of the consistent triplets of class labels. As the 

class structure is hierarchical, each class at the finest semantic 

level corresponds to one such triplet; each triplet consists of the 

corresponding class in the finest level and its predecessors 

according to the class hierarchy. The joint class score of a triplet 

is the product of the scores of all labels in a triplet, and the triplet 

having maximum joint class score is selected as the prediction 

result for each patch.  

 

3.3 Training, network variants and inference at object level 

3.3.1 Training: Training of the network described in section 3.2 

is based on stochastic mini-batch gradient descent. The input 

consists of patches with known triplets of class labels (one per 

semantic level). The loss function consists of two terms designed 

to maximise the joint class scores for triplets of predictions that 

match the reference and to minimize the class scores of triplets 

not corresponding to the reference, respectively. For more 

details, the reader is referred to (Yang et al., 2021).  

 

3.3.2 Network variants: In section 3.1, two different methods 

for producing patches to be classified by the CNN have been 

described. Of course, the patches to be used for training (cf. 

section 3.3.1) and for testing have to be generated using the same 

approach. Thus, there are different network variants. The variant 

LuNet-lite-JO-T is based on patches generated by tiling (cf. 

section 3.1.1). It is identical to the strategy pursued in (Yang et 

al., 2021) and serves as a baseline in our experiments. The second 

variant, denoted by LuNet-lite-JO-MS, is based on using patches 

generated by the multi-scale approach (cf. section 3.1.2). As 

pointed out in section 3.1.2, for large polygons this variant is not 

expected to work too well. The third variant, referred to as LuNet-

lite-JO-ENS, is an ensemble of the first two networks and is what 

we consider to be the main variant investigated in this paper. At 

test time, it takes the first two networks (trained independently 

from each other) and combines their outputs in a decision level 

fusion process described below. We expect this variant to 

combine the advantages of the two basic approaches and lead to 

an improved classification performance.  

 

3.3.3 Inference at object level: Each network delivers class 

scores that are consistent with the class hierarchy of the object 

catalogue of the geospatial database for a single patch. The 

predictions of multiple patches have to be combined to obtain the 

final class scores for an object to be classified. In case of LuNet-

lite-JO-T and LuNet-lite-JO-MS, these patches are generated by 

one of the two patch generation strategies described in section 

3.1, respectively, and there may be objects corresponding to one 

patch only. In the variant LuNet-lite-JO-ENS, both patch 

generation strategies are applied. In this case, the set of patches 

generated by tiling are processed by LuNet-lite-JO-T and the 

patches generated by the multi-scale approach are processed by 

LuNet-lite-JO-MS. Consequently, all objects correspond to 

multiple patches in the case of LuNet-lite-JO-ENS.  

 

The combination of the class scores of the individual patches is 

identical for all variants. For objects which are not split in the 

tiling process due to their size, the prediction of the related 

patches is directly used to define the result at object level. Of 

course, as pointed out earlier, this will only occur for variants 

LuNet-lite-JO-T and LuNet-lite-JO-MS. For objects which had to 

be split, we first compute combined class scores per semantic 

level by taking the product of the corresponding softmax outputs 

of all patches. These products form the basis for selecting the 

optimal triplet of class labels using the joint optimization 

procedure outlined in section 3.2. That is, the joint optimization 

procedure is not applied at patch level, but at object level.  

 

3.3.4 Implementation: All networks are implemented based 

on the tensorflow framework (Abadi et al., 2015). We use a GPU 

(Nvidia TitanX, 12GB) to accelerate training and inference. 

 

4. EXPERIMENTS 

4.1 Test Data und test setup 

4.1.1 Test data: Two German test sites are used for our 

experiments. The first one is located in Hameln, covering an area 

of 2 x 6 km2 with various urban and rural characteristics. The 

second one is located in Schleswig. It covers an area of 6 x 6 km2 

and has similar characteristics as Hameln. For both test sites, 

digital orthophotos (DOP), a nDSM and land use objects from 

the German Authoritative Real Estate Cadastre Information 

System (ALKIS) are available. The DOP are multispectral 

images (RGB-IR) with a GSD of 20 cm. The nDSM was 

generated from a digital surface model generated by image 

matching and subtracting a given digital terrain model. The 

ALKIS object catalogue (AdV, 2008) is used to obtain the 

hierarchical class structure. There are three semantic levels with 

4 classes at level I, 14 classes at level II and 21 classes at the 

finest level III; the class structure is presented in Tab. 1 along 

with the number of samples per class. The total number of land 

use objects is 2945 in Hameln and 4345 in Schleswig.  

 

4.1.2 Test setup: Each test dataset is split into six blocks for 

cross validation. The block size is 10.000 x 5.000 pixels (2 km2) 

and 30.000 x 5.000 pixels (6 km2) for Hameln and Schleswig, 

respectively. In each test run one block is used for testing and the 

rest for training. In each run, about 15% of all training samples 

are used for validation and the rest is used for updating the 

network parameters. We report the average overall accuracy and 
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F1 scores over all test runs for evaluation, in both cases based on 

the number of correctly classified database objects.  

 

We use the FuseNet-lite architecture of (Yang et al., 2021) for 

pixel-wise land cover classification based on the available input 

data. For both datasets we differentiated eight land cover classes 

(building, sealed area, bare soil, grass, tree, water, car and 

others), so that the input patches for the networks for predicting 

land use have 14 bands (4 DOP bands, nDSM, binary mask, 8 

land cover inputs). The overall accuracy at pixel level was 88.8% 

in Hameln and 86.5% in Schleswig (Yang et al., 2021). 

 
level I level II level III #H #S 

se
tt

le
m

en
t 

residential area (res.) 

residential in use 

(res.use) 
528 803 

extended residential 

area (ext. res.) 
34 61 

industry area (ind.) 

factory area (fact.)  87 39 

business area (busi.) 193 158 

infrastructure (infra.) 54 62 

mixed-used area (mix) mixed-used area (mix) 9 127 

special area (special) special area (special) 135 207 

recreation area 

(recreation) 

sport & leisure area 

(leisure) 
27 64 

park 299 365 

tr
a
ff

ic
 road traffic (ro.traf) 

motor-road  530 732 

traffic-guided area 

(traf.area) 
134 75 

path & way (path) path & way (path) 477 287 

parking lot (park.lot) parking lot (park.lot) 91 76 

ve
g
et

a
ti

o
n

 

agriculture  

farm land  58 214 

garden/fallow land 

(garden) 
100 440 

forest 

hardwood or softwood 

(h/s. wood) 
33 154 

hard and softwood 

(h&s. wood) 
15 134 

grove grove 51 88 

moor or swamp (moor) moor or swamp (moor) 31 116 

w
a
te

r 

b
o
d
ie

s flowing water (flow.wat.) 
flowing water bodies 

(flow.wat.bo.) 
54 41 

stagnant water (stag.wat.) 
stagnant water bodies 

(stag.wat.bo.) 
5 102 

Total number of objects 2945 4345 

 

Table 1. Hierarchical class structure. Abbreviations are shown 

in brackets. #H / #S: number of samples in level III for 

Hameln and Schleswig, respectively.  

 

In the training phase, the setting of the hyper-parameters is kept 

the same as in (Yang et al., 2021). Weight decay is 0.0005, the 

total number of training epochs is 8, and the minibatch size is 30. 

The base learning rate is 0.001 and the rate is reduced by a factor 

of 10 after four epochs. In addition, data augmentation (DA) is 

applied on both datasets. For patches generated by the tiling 

approach, DA is the same as described in (Yang et al., 2021). For 

patches generated by multi-scale approach, all patches are 

augmented by horizontal and vertical flipping and 36 random 

rotations, so that each original patch contributes 39 training 

patches.  

 

4.2 Evaluation  

In section 4.2.1, we firstly compare the results obtained by the 

three network variants described in section 3.3.2 and then take a 

closer look at the performance for individual classes. The results 

delivered by LuNet-lite-JO-T, corresponding to the method 

described in (Yang et al., 2021), serve as a baseline for 

comparison. In section 4.2.2 we analyse the achieved accuracies 

as a function of object size to assess the impact of the multi-scale 

patch generation approach on the results for small objects.  

 

4.2.1 Comparison of network variants: Tab. 2 presents an 

overview or the results obtained by LuNet-lite-JO-T, LuNet-lite-

JO-MS and LuNet-lite-JO-ENS in both test sites. Tabs. 3 and 4 

give the detailed F1 scores of all categories over all levels in 

Hameln and Schleswig, respectively. The results in Tab. 2 show 

that there is a clear ranking of the methods according to the 

achieved quality metrics across all semantic levels. In all cases, 

the variant based on multi-scale patch generation (LuNet-lite-JO-

MS) achieves the lowest quality numbers. The variant based on 

tiling (LuNet-lite-JO-T) achieves the second-best results. In 

Hameln, LuNet-lite-JO-T outperforms LuNet-lite-JO-MS by up 

to 2.4% in terms of OA and +2.8% in terms of mean F1 score; 

the corresponding numbers are +3.2% (OA) and +2.5% (mean F1) 

in Schleswig. However, the method combining the two 

approaches (LuNet-lite-JO-ENS) delivers the best results in terms 

of both OA and mean F1 score over all semantic levels in both 

sites. Compared to the baseline, the increase is up to +1.8% in 

OA and + 3.2% in mean F1 in Hameln (1.6% and 3.2% in OA 

and mean F1, respectively, in Schleswig). The improvement in 

OA is relatively constant across all semantic levels. However, 

there is a tendency for the improvement of the mean F1 scores to 

become larger as the semantic level increases. The largest 

improvements in terms of the mean F1 score occur at level III in 

both sites (about 3%). The main benefit of adding the multi-scale 

patches for small objects to the classification thus seems to be 

related to a better performance for underrepresented classes in the 

finest semantic level of the object catalogue.  

 

Network 

variant 

Category level 

I II III 

OA 𝐹1̅̅̅̅  OA 𝐹1̅̅̅̅  OA 𝐹1̅̅̅̅  

Hameln 

LuNet-lite-JO-T 91.5 85.9 78.5 59.9 74.1 51.8 

LuNet-lite-JO-MS 91.1 83.1 76.1 58.5 71.7 50.2 

LuNet-lite-JO-ENS 93.0 87.5 80.0 61.5 75.9 54.7 

Schleswig 

LuNet-lite-JO-T 91.0 85.4 74.8 61.8 70.4 55.3 

LuNet-lite-JO-MS 90.6 83.7 71.5 59.3 67.2 53.1 

LuNet-lite-JO-ENS 92.2 86.5 76.1 63.8 72.0 58.5 

 

Table 2: Overview of the results of hierarchical land use 

classification achieved by LuNet-lite-JO-T, LuNet-lite-

JO-MS and LuNet-lite-JO-ENS for Hameln and 

Schleswig. 𝐹1̅̅̅̅ : mean F1 score [%], OA: Overall 

Accuracy [%]. Best scores are shown in bold font. 

 

Looking at the F1 scores of all classes (Tab. 3 and Tab. 4), it can 

again be observed that LuNet-lite-JO-T outperforms LuNet-lite-

JO-MS in most indices over all levels, and the ensemble method 

delivers better results than the baseline in most cases. In Hameln, 

the F1 scores of all categories at level I are increased at least by 

1.4% by the ensemble method. At level II, 10 out of 14 categories 

are better recognised, with increases of F1 score up to +6.7% 

(class moor or swamp). At level III, 15 out of 21 categories are 

also better identified, with a maximum increase of +14.3% (class 

extended residential) in terms of F1 score. Similar behaviours of 

improvement are observed in the results for Schleswig, where the 

maximum increases of F1 scores from the coarsest level to the 

finest level are +2.0%, +6.1% and +13.4%. LuNet-lite-JO-MS 

achieves the best results for very few classes, e.g. parking lot in 

Hameln at level II. It has to be noted that the class-wise F1 scores 

for some classes at levels II and III are not satisfactory yet. These 

problems affect underrepresented classes (e.g. sport & leisure 

area at level III) and classes which have a similar appearance in 

the data, as already observed in (Yang et al., 2020b). In summary, 

these results reveal that in principle both strategies for patch 

generation are well-suited for the purpose of land use 

classification, but the method based on tiling performs slightly 

better than the one based on multi-scale patch generation. This 
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may be due to the fact that the tiled versions preserve the 

geometrical resolution well, in particular for large objects. 

However, the, combination of both types of patch generation for 

the classification of database objects performs best in terms of 

OA and mean F1 score, indicating that both approaches are 

complementary to each other to a certain degree.  

 

4.2.2 Influence of object size: In (Yang et al., 2021) object size 

was found to have a major impact on the classification accuracy: 

small objects are less frequently classified correctly. Therefore, 

generating multiple patches for small polygons based on the 

multi-scale approach is expected to improve the classification of 

small polygons. To validate this assumption, the differences of 

the OA and mean F1 scores between LuNet-lite-JO-ENS and 

LuNet-lite-JO-T and between LuNet-lite-JO-ENS and LuNet-lite-

JO-MS at all semantic levels are computed. These differences are 

presented as a function of object area in Figs. 4 and 5. The area 

unit 𝐴 = 2621𝑚2 is the area of a CNN patch of 256 x 256 pixels 

at a GSD of 20 cm. In the figures, positive differences correspond 

to an increase of the quality metric. Tab. 5 presents the area 

categories and the statistics about the numbers of polygons in 

each category.  

 

Looking at the differences between LuNet-lite-JO-ENS and 

LuNet-lite-JO-MS (checkered bars), using the ensemble leads to 

an increase in OA at all levels and for polygons of different sizes 

in both sites, and the improvement for large polygons 

corresponding to more than one patch according to the tiling 

approach (which are in the categories 2A-3A and >3A) is larger 

than the one for smaller polygons only corresponding to a single 

tiled patch (category < A). The maximum increase is about 6% 

in Hameln, occurring at level III in category 2A-3A, and about 8% 

in Schleswig, occurring at level II and also in category 2A-3A. 

level I level II level III 

class T MS ENS class T MS ENS class T MS ENS 

S
et

tl
em

en
t 

92.1 92.0 93.8 

res. 86.9 86.0 88.2 
res.use 89.7 88.6 90.3 

ext. res. 36.1 43.6 50.4 

ind. 69.7 72.9 74.5 

fact. 34.4 49.9 44.5 

busi. 52.2 52.9 56.5 

infra. 29.9 39.7 42.3 

mix 0 0 0 mix 0 0 0 

special 52.2 53.0 53.9 special 52.2 53.0 53.9 

rec. 75.5 72.4 77.4 
leis. 6.2 6.3 6.9 

park 76.7 72.8 78.9 

tr
a
ff

ic
 

92.5 92.0 93.9 

ro.traf. 83.6 80.7 84.5 
mo. road 86.4 84.1 86.9 

traf. area 63.7 60.1 67.2 

path 84.7 77.4 84.1 path 84.7 77.4 84.1 

park.lot 50.9 55.2 50.9 park.lot 50.9 55.2 50.9 

ve
g
et

a
ti

o
n
 

83.0 80.7 84.6 

agr. 87.4 83.7 87.2 
farm 85.4 71.5 83.1 

garden 68.7 61.4 68.2 

forest 84.0 71.7 84.3 
h/s.wood 59.9 59.4 64.1 

h&s.wood 47.6 13.1 44.2 

grove 54.0 57.3 57.9 grove 54.0 57.3 57.8 

moor 26.7 34.6 33.4 moor 26.7 34.6 33.4 

w
a
te

r 

76.1 67.8 77.6 
flow.wat. 74.1 64.9 74.9 flow.wat.bo 74.1 64.9 74.9 

stag.wat. 9.2 9.0 10.0 stag.wat.bo. 9.2 9.0 10.0 
 

Table 3: F1 scores [%] for individual classes at all semantic levels in Hameln, achieved by the three variants LuNet-lite-JO-T (T), 

LuNet-lite-JO-MS (MS) and LuNet-lite-JO-ENS (ENS). The best values per class are printed in bold font.  

 
level I level II level III 

class T MS ENS class T MS ENS class T MS ENS 

se
tt

le
m

en
t 

93.3 91.9 94.0 

res. 87.1 84.3 87.5 
res.use 88.4 85.4 88.4 

ext. res. 68.4 67.1 74.5 

ind. 57.9 56.2 64.2 

fact. 0 17.9 7.9 

busi. 53.9 53.0 59.8 

infra. 32.4 32.9 45.6 

mix 27.6 20.6 27.5 mix 27.6 20.6 27.5 

special 38.6 33.8 36.2 special 38.6 33.8 36.2 

rec. 68.9 63.7 69.9 
leis. 52.3 31.8 59.9 

park 68.6 64.5 70.1 

tr
a
ff

ic
 

90.5 90.8 92.5 

ro.traf. 84.8 82.6 85.8 
mo. road 88.7 86.5 89.8 

traf. area 42.3 36.8 45.4 

path 72.5 63.0 75.8 path 72.5 63.0 75.8 

park.lot 26.9 41.0 33.2 park.lot 26.9 41.0 33.2 

ve
g
et

a
ti

o
n
 

93.6 91.6 93.6 

agr. 92.0 88.9 92.5 
farm 90.1 84.1 90.7 

garden 85.9 84.3 86.5 

forest 89.5 86.2 89.9 
h/s.wood 46.0 50.7 47.4 

h&s.wood 58.3 52.3 58.9 

grove 58.6 48.9 60.7 grove 58.6 48.9 60.7 

moor 63.1 57.0 67.0 moor 63.1 57.0 67.0 

w
a
te

r 

64.2 60.5 65.9 
flow.wat. 26.0 39.6 27.2 flow.wat.bo 26.0 39.6 27.2 

stag.wat. 72.4 64.9 76.4 stag.wat.bo. 72.4 64.9 76.4 
 

Table 4:  F1 scores [%] for individual classes at all semantic levels in Schleswig, achieved by the three variants LuNet-lite-JO-T (T), 

LuNet-lite-JO-MS (MS) and LuNet-lite-JO-ENS (ENS). The best values per class are printed in bold font.   
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There is a similar picture for the mean F1 scores, except that in 

Hameln there is decrease at level III in category A-2A. 

 

 

 
 

Figure 4: Differences of OA (top) and mF1 (bottom) between 

different network variants in Hameln. Solid bars: 

differences between LuNet-lite-JO-ENS and LuNet-

lite-JO-T; checkered bars: differences between LuNet-

lite-JO-ENS and LuNet-lite-JO-MS.  

 

 

 
 

Figure 5: Differences of OA (top) and mF1 (bottom) between 

different network variants in Schleswig. Solid bars: 

differences between LuNet-lite-JO-ENS and LuNet-

lite-JO-T; checkered bars: differences between LuNet-

lite-JO-ENS and LuNet-lite-JO-MS.  

 

Turning the focus on the differences between LuNet-lite-JO-ENS 

and LuNet-lite-JO-T (solid bars), the increase caused by using the 

ensembe is lower than the one between LuNet-lite-JO-ENS and 

LuNet-lite-JO-MS in most cases, because the network based on 

the tiling approach perform better than the multi-scale one (cf. 

Section 4.2). In Hameln, the accuracy for polygons having an 

area smaller than A are improved by at least 1.5% over all 

semantic levels. The maximum increase of 2.3% at level III 

occurs in the category of polygons with an area of A-2A. As the 

object size increases further, there is still an improvement in 

accuracy, but it becomes smaller. In Schleswig, there is a similar 

tendency for the increase in OA due to using the ensemble 

method. We see that in both sites, the maximum increase occurs 

with polygons having an area smaller than A, and it is at least 

2.1%. Switching the focus to the mean F1 score, we observe a 

similar behaviour in both test sites. The most significant increase 

occurs at level III with polygons smaller than A in both sites; this 

increase is 4.8% in Hameln and 4.6% in Schleswig. Note that it 

is exactly this group of polygons for which the multi-scale 

approach will generate additional patches. In conclusion, the 

proposed multi-scale approach helps in the classification of all 

polygons when it is combined with the tiling approach, and on 

average, small polygons benefit more than large ones from the 

combination.  

 
Object 

Size 

Hameln Schleswig 

#Polygons #avg.Tiles #Polygons #avg.Tiles 

< A 1757 1.4 1754 1.4 

A – 2A 513 3.0 768 2.8 

2A – 3A 222 4.6 393 4.5 

> 3A 453 10.1 1430 15.5 

 

Table 5: Number of polygons (#Polygons) and avegrage tiles 

(#avg.Tiles) generated in tiling approach as a function 

of object size in Hameln and Schleswig. 

 

5. CONCLUSION 

In this paper, we have proposed an additional multi-scale 

approach for land use classification to address the problem of a 

poor classification performance for small polygons. The 

experimental results show that the integration of the multi-scale 

approach does improve the classification performance indeed, 

with improvements of up to +1.8% in terms of OA and +3.2% in 

terms of mean F1 score, and the categories at the finest semantic 

level are improved most. Furthermore, the integration of the 

multi-scale approach improves the classification of polygons 

differently according to their size. The average of the mean F1 

scores over all semantic levels increases by the largest amount 

for small polygons, i.e. those for which the new approach 

generates additional multi-scale patches. We believe that this 

observation validates the effectiveness of the proposed approach. 

In addition, we also observed an increase in performance for 

larger polygons.  

 

In the current version of our method we train and test the 

networks for patches genereated using the tiling and multi-scale 

approaches and combine the results by decision level fusion in 

the ensemble method. To achieve an end-to-end learning 

framework, in future work we strive to combine both types of 

patches in one unified CNN model, e.g. by combining the patches 

directly to form a larger training dataset or by developing a joint 

network architecture with two branches. Another interesting 

point is to increase the number of training samples, which is a 

pre-requisite for reliable results. However, manual annotation of 

large areas is time-consuming and expensive. One possibility is 
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to derive the training labels from an outdated geospatial 

databases, though in this case one has to cope with annotation 

errors (label noise) (Kaiser et al., 2017). Strategies to mitigate 

these errors in the class labels of training samples can be 

developed and integrated in the learning model, e.g. (Maas, et al., 

2019). 
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