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ABSTRACT:

The paper introduces 3D least squares matching as a technique to analyze multi-temporal micro-tomography data in civil engin-
eering material testing. Time series of tomography voxel data sets are recorded during an in-situ tension test of a strain-hardening
cement-based composite probe at consecutive load steps. 3D least squares matching is a technique to track cuboids in consecutive
voxel data sets minimizing the sum of the squares of voxel value differences after a 12-parameter 3D affine transformation. For a
regular grid of locations in each voxel data set of the deformed states, a subvoxel-precise 3D displacement vector field is computed.
Discontinuities in these displacement vector fields indicate the occurrence of cracks in the probes during the load tests. These
cracks are detected and quantitatively described by the computation of principal strains of tetrahedrons in a tetrahedral mesh, that is
generated between the matching points. The subvoxel-accuracy potential of the technique allows the detection of very small cracks
with a width much smaller than the actual voxel size.

1. INTRODUCTION

In materials research, several measurement techniques are used.
Classical instruments, that allow the observation of surfaces of
specimens, are for example strain gauges, inductive displace-
ment transducers or inclinometers. In the last years, photo-
grammetric camera systems also became more and more part
of the facilities of research labs with the advantage of being
contactless and having a high spatial resolution and accuracy.
Most photogrammetric contributions in this field use image se-
quences of camera systems and apply digital image correla-
tion (DIC) techniques in order to compute displacement vec-
tor fields and use them for further analysis (Hampel and Maas,
2003, Maas and Hampel, 2006, Hampel and Maas, 2009, Sut-
ton et al., 2009, Barazzetti and Scaioni, 2010, Koschitzki et
al., 2011, Liebold and Maas, 2016, Liebold and Maas, 2018,
Liebold et al., 2019, Liebold and Maas, 2020, Liebold et al.,
2020a, Liebold et al., 2020b). Early applications of DIC were
based on the cross-correlation method (Barnea and Silverman,
1972). Later, gradient based techniques were developed (Lu-
cas and Kanade, 1981). These techniques used an iterative least
squares algorithm to compute the displacements. (Ackermann,
1984) and (Grün, 1985) extended the mathematical model to an
affine transform where rotation, scaling and shearing were con-
sidered. However, DIC techniques applied to image sequences
only allow the observation of a specimen’s surface. A further
interesting point is the view inside the specimen. Therefor,
X-ray tomography can be used. During load tests, a speci-
men can be observed in an in-situ experiment where different
states of deformation are recorded in a tomograph. The above-
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mentioned 2D techniques can be extended to 3D and are then
called digital volume correlation (DVC). (Bay et al., 1999) ap-
plied 3D cross-correlation to X-ray tomography data in order
to compute 3D displacement vector fields. While 3D cross-
correlation determines three shift parameters between consec-
utive cuboids of voxel data, (Maas et al., 1994) described a
subvoxel-precise 12-parameter 3D least-squares cuboid track-
ing applied to a sequence of 3D images taken from two mixed
fluids. The mathematical model was an affine transform that
included translation, rotation, scale as well as shear paramet-
ers. The paper at hand is based on the work of (Maas et al.,
1994) and will extend the mathematical model with radiomet-
ric parameters. The algorithm will be applied to data sets of
different deformation states from an in-situ tension test with
a fiber-reinforced composite probe (strain-hardening cement-
based composite, SHCC). The data was recorded by a micro-
CT instrument and the experiment is described in (Lorenzoni
et al., 2020). Fig. 1 shows one slice of the voxel data of the
reference state as well as one slice of a deformed state from the
experiment. In the deformed state, cracks are clearly visible.

The paper is structured as follows: Section 2 gives an overview
of the 3D least squares matching algorithm. Then, section 3
shows the analysis of the displacement fields using the strain
analysis. At the end, a conclusion is given.

2. 3D LEAST SQUARES MATCHING

2.1 Mathematical Model

The 3D least squares matching (3D LSM) algorithm is applied
to two volume data sets. In the reference volume, the integer
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(a)

(b)

Figure 1. a: One image of the image stack of the volume in the
reference epoch; b: One image of the image stack of the volume

in the later deformed epoch where cracks can be seen.

coordinates xRef,c, yRef,c, zRef,c of the point to be matched
are given which are the center of a small cuboid with defined
odd dimensions dimx, dimy and dimz:

xRef ∈ [xRef,c − hx, xRef,c + hx] ∧ xRef ∈ N
yRef ∈ [yRef,c − hy, yRef,c + hy] ∧ yRef ∈ N
zRef ∈ [zRef,c − hz, zRef,c + hz] ∧ zRef ∈ N

(1)

where hx = dimx−1
2

; hy =
dimy−1

2
; hz = dimz−1

2

The aim is to find the corresponding subvolume with the co-
ordinates xDef , yDef , zDef in the second volume of the de-
formed state. Eq. 2 shows the relationship between the gray
values of the first (reference) and second (deformed) volume,
also taking into account radiometric parameters (r0, r1):

f(xRef , yRef , zRef ) = r0 + r1 · g(xDef , yDef , zDef ) (2)

where f(xRef , yRef , zRef ) = gray value (reference state)
g(xDef , yDef , zDef ) = gray value (deformed state)

Eq. 2 is valid for all voxels in the cuboid. Between the two
states, a coordinate transformation is applied. Similar to (Ack-
ermann, 1984) and (Maas et al., 1994), a 3D affine transforma-
tion is used containing displacements, rotations, shear and scal-
ing, see Eq. 3. The shifts are represented by a0, b0 and c0.

xDef = xRef,c + a0 + a1 · x̃+ a2 · ỹ + a3 · z̃
yDef = yRef,c + b0 + b1 · x̃+ b2 · ỹ + b3 · z̃
zDef = zRef,c + c0 + c1 · x̃+ c2 · ỹ + c3 · z̃

(3)

where ai, bi, ci = affine parameters
x̃ = xRef − xRef,c, reduced x coordinate
ỹ = yRef − yRef,c, reduced y coordinate
z̃ = zRef − zRef,c, reduced z coordinate

Thus, the vector of unknowns is:

p = ( a0, a1, a2, a3, b0, b1,
b2, b3, c0, c1, c2, c3, r0, r1 )T

(4)

p has 14 unknowns and the cuboid contains at least 3×3×3 =
27 voxels (usually more), so that there is an over-determination.
Thus, the parameters of p are computed using the least squares
method. Therefore, a residuum is added to Eq. 2 in order to get
the observation equation:

f(xRef , yRef , zRef ) + v(xRef , yRef , zRef ) =

r0 + r1 · g(xDef , yDef , zDef )
(5)

where v(xRef , yRef , zRef ) = residuum

The linearization of the observation equation is done using the
first terms of the Taylor series:

f(xRef , yRef , zRef ) + v(xRef , yRef , zRef ) ≈
r0,0 + dr0 + (r1,0 + dr1) · g(xDef,0, yDef,0, zDef,0)

+ r1,0 · (gx · dxDef + gy · dyDef + gz · dzDef )

(6)

where xDef,0 = x computed with initial values of ai
yDef,0 = y computed with initial values of bi
zDef,0 = z computed with initial values of ci
r0,0, r1,0 = initial values of r0, r1

The gray value g(xDef,0, yDef,0, zDef,0) is computed by tri-
linear interpolation at the position (xDef,0, yDef,0, zDef,0).
Eq. 6 also contains derivations: the volume gradients of the gray
values.

gx =
∂g(xDef , yDef , zDef )

∂xDef

∣∣
xDef,0,yDef,0,zDef,0

gy =
∂g(xDef , yDef , zDef )

∂yDef

∣∣
xDef,0,yDef,0,zDef,0

gz =
∂g(xDef , yDef , zDef )

∂zDef

∣∣
xDef,0,yDef,0,zDef,0

(7)

They can be obtained by a combination of numerical differen-
tiation gx,i, gy,i, gz,i at the integer positions xi, yi, zi (central
differences, Eq. 8) and tri-linear interpolation.

gx,i ≈ 0.5 · (g(xi + 1, yi, zi)− g(xi − 1, yi, zi))
gy,i ≈ 0.5 · (g(xi, yi + 1, zi)− g(xi, yi − 1, zi))
gz,i ≈ 0.5 · (g(xi, yi, zi + 1)− g(xi, yi, zi − 1))

(8)
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The differentials dxDef , dyDef and dzDef are computed by:

dxDef =

3∑
i=0

∂xDef

∂ai
· dai =


1
x̃
ỹ
z̃


T

·


da0
da1
da2
da3



dyDef =

3∑
i=0

∂yDef

∂bi
· dbi =


1
x̃
ỹ
z̃


T

·


db0
db1
db2
db3



dzDef =

3∑
i=0

∂zDef

∂ci
· dci =


1
x̃
ỹ
z̃


T

·


dc0
dc1
dc2
dc3



(9)

Thus, the vector of corrections to the unknowns is:

dp = ( da0, da1, da2, da3,
db0, db1, db2, db3,
dc0, dc1, dc2, dc3, dr0, dr1 )T

(10)

The vector of unknowns is composed of the vector of the initial
values p0 and the vector of the corrections to the unknowns:

p = p0 + dp (11)

The linearized observation equations can be written in matrix
notation:

A · dp = l + v (12)

where A = Jacobian matrix
l = reduced observation vector
v = residual vector

The computation of the Jacobian matrix is shown in Eq. 13 and
Eq. 14 shows the reduced observation vector.

l =

f1 − r0 − r1 · g1f2 − r0 − r1 · g2
...

 (14)

In the Gauss-Markov model, the sum of the squares of the re-
siduals is minimized:

vT · v→ min
dp

(15)

To achieve this, the normal equations are solved for dp:

AT · A · dp = AT · l (16)

The corrections to the unknowns are added to the initial values
using Eq. 11. The steps from Eq. 13 to Eq. 16 (and p = p0+dp)
are repeated until the process converges.

A
=

 ∂
f

∂
a
0

∣ ∣ p=
p 0

∂
f

∂
a
1

∣ ∣ p=
p 0

∂
f

∂
a
2

∣ ∣ p=
p 0

∂
f

∂
a
3

∣ ∣ p=
p 0

∂
f

∂
b
0

∣ ∣ p=
p 0

∂
f

∂
b
1

∣ ∣ p=
p 0

∂
f

∂
b
2

∣ ∣ p=
p 0

∂
f

∂
b
3

∣ ∣ p=
p 0

∂
f

∂
c
0

∣ ∣ p=
p 0

∂
f

∂
c
1

∂
f

∂
c
2

∣ ∣ p=
p 0

∂
f

∂
c
3

∣ ∣ p=
p 0

∂
f

∂
r
0

∣ ∣ p=
p 0

∂
f

∂
r
1

∣ ∣ p=
p 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

 
=

 r 1
·g

x
1

r 1
·g

x
1
·x̃

1
r 1
·g

x
1
·ỹ

1
r 1
·g

x
1
·z̃

1
r 1
·g

y
1

r 1
·g

y
1
·x̃

1
r 1
·g

y
1
·ỹ

1
r 1
·g

y
1
·z̃

1
r 1
·g

z
1

r 1
·g

z
1
·x̃

1
r 1
·g

z
1
·ỹ

1
r 1
·g

z
1
·z̃

1
1

g 1
r 1
·g

x
2

r 1
·g

x
2
·x̃

2
r 1
·g

x
2
·ỹ

2
r 1
·g

x
2
·z̃

2
r 1
·g

y
2

r 1
·g

y
2
·x̃

2
r 1
·g

y
2
·ỹ

2
r 1
·g

y
2
·z̃

2
r 1
·g

z
2

r 1
·g

z
2
·x̃

2
r 1
·g

z
2
·ỹ

2
r 1
·g

z
2
·z̃

2
1

g 2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 

(13)
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The standard deviation of the unit weight is:

s0 =

√
vT · v
n− u (17)

where v = A · dp− l = residual vector
n = number of observations
u = number of unknowns

In addition, the standard deviation of the ith parameter is:

sp,i = s0 ·
√

Qxx,ii (18)

where Qxx = (AT · A)−1 = cofactor matrix of unknowns

2.2 Initial Values

Due to the non-linearity of the gray value distribution in the
volume data, initial values have to be obtained for the 3D LSM
algorithm if the movements between the epochs exceed the di-
mensions of the cuboid. In case of predominant translations
and small rotations, 3D cross-correlation can be used to com-
pute initial shifts.

2.3 Application in the Experiment

As explained in the introduction part, the 3D least squares
matching method is applied to a sequence of voxel data sets
of a reference and six consecutive load levels. First, a regu-
lar 3D grid of points is defined, and points with insufficient
contrast in their neighborhood are excluded. Before applying
the least squares method, initial values are computed using 3D
cross-correlation (Bay et al., 1999). Then, the displacement
vector fields are computed using the 3D least squares matching
algorithm. Fig. 2 shows a sequence of six displacement vector
fields between the reference state and the deformed states. With
higher loads (higher steps), cracks appear and grow. This also
leads to higher differences between parts of the displacement
vector fields.

To evaluate the influence of the affine and the radiometric para-
meters, the algorithm is applied introducing 3 (only translation),
12 (affine transformation) and 14 parameters (affine transform-
ation and radiometric parameters) in the least squares process.
The mean standard deviations of unit weight (Eq. 17) of the
matching results are compared for the three versions and for
each epoch, see Table 1. The differences in the s0 values are
less than 2 %. Between the epochs in the experiment, there are
only very small rotations and also the radiometric conditions
are almost the same such that there is no significant advantage
to use 12 or 14 parameters. However, for other experiments, it
may improve the results.

In addition, the precision is analyzed: Table 2 shows the mean
standard deviations of the three translation parameters using
Eq. 18 (cuboid dimensions 15×15×15 vx). The precision val-
ues are consistently in the order of 0.01 to 0.02 vx.

epoch mean(s0,t) mean(s0,a) mean(s0,r)
0→1 3.105 3.096 3.067
0→2 3.174 3.160 3.109
0→3 3.187 3.168 3.127
0→4 3.213 3.189 3.140
0→5 3.258 3.215 3.161
0→6 3.288 3.235 3.168

Table 1. Mean standard deviations of the unit weight of a
3-parameter computation s0,t (only shifts), a 12-parameter
computation s0,a (affine parameters) and a 14-parameter

computation s0,r (including radiometric parameters).

epoch mean(sa0 ) mean(sb0 ) mean(sc0 )
0→1 0.0132 vx 0.0141 vx 0.0149 vx
0→2 0.0136 vx 0.0145 vx 0.0152 vx
0→3 0.0136 vx 0.0146 vx 0.0153 vx
0→4 0.0137 vx 0.0147 vx 0.0154 vx
0→5 0.0138 vx 0.0148 vx 0.0155 vx
0→6 0.0139 vx 0.0149 vx 0.0156 vx

Table 2. Mean standard deviations of the shift parameters in vx
(14-parameter computation).

3. DEFORMATION ANALYSIS

In our material testing approach, it is important to find the dis-
continuities in the 3D displacement vector field. The computa-
tion of strains allows to identify such areas. The method that
will be presented in Sec. 3.1 requires at least four points and
the corresponding shifts to calculate a strain. Because of that,
the points of the displacement vector field are triangulated into
a tetrahedral mesh and for each tetrahedron, strains are com-
puted. Fig. 3 shows a tetrahedral mesh of the probe of Fig. 1.

3.1 Strain Analysis

This section gives a short overview of the calculation of prin-
cipal strains as well as volume strains in tetrahedral meshes
as an extension of the 2D triangle analysis approach presen-
ted in (Liebold and Maas, 2016). The principal strains of tet-
rahedrons are computed using the coordinates of its vertices
in the reference (xRef ,yRef ,zRef ) and in the deformed state
(xDef ,yDef ,zDef ). First, the parameters of an affine transform-
ation between the coordinates are calculated using the four ver-
tices of the tetrahedron.

~pDef = ~t+ F · ~pRefxDef

yDef

zDef

 =

t1t2
t3

+

f11 f12 f13
f21 f22 f23
f31 f32 f33

 ·
xRef

yRef

zRef

 (19)

where ti,fij = affine parameters

The deformation gradient F is composed of the nine parameters
fij . F can be decomposed into a product of a symmetric and
rotation matrix (Becker and Bürger, 1975).

F =

f11 f12 f13
f21 f22 f23
f31 f32 f33

 = V · R (20)

where F = deformation gradient tensor
R = rotation matrix
V = left stretch tensor (symmetric)
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Step 0→1 Step 0→2 Step 0→3

Step 0→4 Step 0→5 Step 0→6

Figure 2. Color-coded visualizations of displacement vector fields of the different epochs (one layer of voxel data, 2D projections of
3D vectors).

Figure 3. Tetrahedral mesh of the matching points.

The left Cauchy-Green deformation tensor V2 is calculated in
order to compute the polar decomposition:

V2 = V · VT = F · FT (21)

In the next step, an eigenvalue decomposition of left Cauchy-
Green deformation tensor is performed:

V2 = C ·Λ · CT = C ·

λ1 0 0
0 λ2 0
0 0 λ3

 · CT (22)

where C = eigenvector matrix (orthogonal matrix)
Λ = eigenvalue matrix (diagonal matrix)
λi = ith eigenvalue, diagonal element of Λ
and λ1 ≤ λ2 ≤ λ3

The greatest principal strain ε3 (technical strain) is derived from
the eigenvalue λ3 (Eq. 23). It is a dimensionless quantity.

ε3 =
√
λ3 − 1 (23)

From F, it is also possible to derive a volume strain (Ogden,
1997, Altenbach, 2018):

εv = det(F)− 1 (24)

A crack crossing a tetrahedron will cause an extension of the
tetrahedron and will thus lead to a larger value of ε3 as well
as εv . The corresponding eigenvector (column of C) gives the
direction of the strain ε3. Strain values greater than 0 indicate a
tension whereas a value of 0 indicates a stable element.

3.2 Application to the Experimental Data

In Fig. 4, the s3 strains (Eq. 23) are visualized for the six differ-
ent load steps (cross sections of the voxel data blended with a
cross section of the color-coded tetrahedrons). The evolution of
cracks is visible. The corresponding stress-displacement curve
is shown in the work of (Lorenzoni et al., 2020).
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Step 0→1 Step 0→2 Step 0→3

Step 0→4 Step 0→5 Step 0→6

Figure 4. Slices of the voxel data blended with the cross-section of the s3-color-coded tetrahedrons.

Especially, the visualization of step 5 shows some fluctuation
in the strain values at the lower crack due to varying sizes of
the tetrahedrons. It is a consequence of some missing matching
results for points with matching cuboids crossed by the crack
where LSM fails. In the lower center, some artefacts in the
strain map are visible due to some matching errors at the air
hole.

4. CONCLUSION

The paper presents the algorithm and application of 3D least
squares matching to crack detection in multi-temporal micro-
tomography voxel data sets. The affine parameters in the model
allow to regard rotations and scaling between states. Changes
in illumination are considered by radiometric parameters. Dis-
placement vector fields are computed with standard deviations
of the translation parameters of less than 0.02 vx. Strain values
are calculated from the displacements to show deformed areas
and to detect cracks.

Future work could concentrate on the determination of the ac-
curacy of the 3D least squares matching.
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