
EVALUATING HAND-CRAFTED AND LEARNING-BASED FEATURES FOR 
PHOTOGRAMMETRIC APPLICATIONS 

 
F. Remondino, F. Menna, L. Morelli 

 
3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy 

Web: http://3dom.fbk.eu – Email: <remondino><fmenna>@fbk.eu, lcmorelli.eng@gmail.com  
 

Commission II, WGII/1 

 
 
KEY WORDS: Keypoints, Detectors, Descriptors, Tie points, Deep learning, Accuracy, Point cloud, RMSE. 
 
 
ABSTRACT: 
The image orientation (or Structure from Motion - SfM) process needs well localized, repeatable and stable tie points in order to derive 
camera poses and a sparse 3D representation of the surveyed scene. The accurate identification of tie points in large image datasets is 
still an open research topic in the photogrammetric and computer vision communities. Tie points are established by firstly extracting 
keypoint using a hand-crafted feature detector and descriptor methods. In the last years new solutions, based on convolutional neural 
network (CNN) methods, were proposed to let a deep network discover which feature extraction process and representation are most 
suitable for the processed images. In this paper we aim to compare state-of-the-art hand-crafted and learning-based method for the 
establishment of tie points in various and different image datasets. The investigation highlights the actual challenges for feature 
matching and evaluates selected methods under different acquisition conditions (network configurations, image overlap, UAV vs 
terrestrial, strip vs convergent) and scene's characteristics. Remarks and lessons learned constrained to the used datasets and methods 
are provided. 
 
 
 

1. INTRODUCTION 

The extraction of accurate, reliable, and well-distributed tie 
points among images is a prerequisite for the accurate recovery 
of camera parameters and the generation of 3D geometry. Tie 
points are traditionally found coupling hand-crafted detectors 
(Lowe, 2004; Bay et al., 2006; Leutenegger et al., 2011; Rublee 
et al., 2011; Alcantarilla et al., 2013; Tombari and Di Stefano, 
2014) and descriptors (Trzcinski et al., 2013; Calonder et al., 
2011; Tola et al., 2010; Alahi et al., 2012) with feature matching 
comparison methods (brute force, FLANN, etc.) (Gonzalez-
Aguilera et al., 2020). 
To be correctly coupled, the detected and described keypoints 
must have a high level of repeatability, be discriminative, 
geometrically invariant, not very sensitive to changes in the 
brightness of the scene, and sparse to reduce memory usage 
(Apollonio et al., 2014).  
Since few years, alternative deep learning methods based on 
convolutional neural networks (CNN) have been proposed and 
evaluated (Balntas et al., 2017; Schönberger et al., 2017; Fan et 
al., 2019; Jin et al., 2020; Bojanić et al., 2020). It is well-known 
that hand-crafted methods are bounded by a priori knowledge. So 
researchers aimed to let a deep network discover automatically 
which feature extraction process and representation are most 
suited to the data (Revaud et al., 2019). Some end-to-end 
methods for image-based 3D reconstruction purposes under 
challenging conditions are now available and solutions based on 
traditional hand-crafted methods are beginning to be 
outperformed by state-of-the-art learning-based approaches (Yi 
et al., 2016; DeTone et al., 2018; Ono et al., 2019; Dusmanu et 
al., 2019; Revaud et al., 2019; Christiansen et al, 2019; Luo et al, 
2020). Among the current limitations for these learning-based 
methods, we can list the lack of shape-awareness and the general 
invariance to geometric, radiometric and scale changes, low 
localization accuracy, repeatability, etc. These issues can degrade 
the extractor performance in very different ways depending on 
how it has been designed (Revaud et al., 2019; Luo et al, 2020).  

The aim of this work is to assess existing learning-based 
approaches to extract tie points across images for 
photogrammetric applications, especially those jointly 
performing detection and description ("end-to-end" methods). 
These are very interesting and can potentially lead to a better 
performance in terms of fewer outliers. On the other hand, as 
reported in Fan et al. (2019), Luo et al. (2020), Jin et al. (2020) 
and Bojanić et al. (2020), we should expect a very low keypoint 
localization accuracy or the extraction of a limited number of 
features (DeTone et al., 2018), which, in both cases, lead to a less 
accurate 3D reconstruction. Unlike similar investigations, we 
propose to evaluate learning-based methods with different 
metrics, using various image blocks (Table 1) and considering 
bundle adjustment statistics as well as 3D reference points 
(targets measured with topographic methods) as ground truth. 
 
 

2. RELATED WORK 

 2.1 Learning-based methods 

CNN-based features and methods can be applied in keypoint 
detection and description or can simultaneously perform both 
steps. A detector and a descriptor can be merged into a single 
architecture or be studied separately, even if some works (Yi et 
al., 2016; Ono et al., 2019; Revaud et al., 2019) suggest not to 
separate their training to obtain more reliable keypoints in the 
matching process. Loss functions include pairwise, triplet or 
structured loss whereas applications vary from image retrieval to 
camera pose estimations and dense 3D reconstructions. Network 
structures are highly variable and depend on the chosen approach 
(one-braced, siamese, multi-braced, etc.). Methods include:  
Learning-based detectors. They train a CNN to detect keypoint, 
among which: TILDE (Verdie et al., 2015), Quad-Net (Savinov 
et al., 2017) and Key.Net (Barroso et al., 2019). They focused on 
identifying repeatable keypoints that could not be reliable for 
matching, as highlighted in Revaud et al. (2019). End-to-end 
methods also have their own detectors, such as LIFT (Yi et al., 
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2016), LF-Net (Ono et al., 2019), SuperPoint (DeTone et al., 
2018), D2-Net (Dusmanu et al., 2019).  
Learning-based descriptors. Several stand-alone learning-
based descriptors have been proposed, such as L2-Net (Tian et 
al., 2017), HardNet (Mishchuk et al., 2017), SOS-Net (Tian et al., 
2019), LogPolarDesc (Ebel et al., 2019). They are usually trained 
on cropped patches centred on known keypoint (e.g. from SIFT), 
with the risk of creating a descriptor with a SIFT-like behaviour. 
Detect-then-describe. Firstly, the keypoints are detected and 
then a patch extracted around each feature is passed to the 
description step. In this way, sparse local features are obtained 
with the advantage of lower memory usage and a detection that 
refers to low-level structures, such as corners and blobs, which 
allows a precise keypoint localization. The feature detector often 
considers only small image regions and typically focuses on low-
level structures such as corners or blobs. Therefore, the descriptor 
captures higher level of information in a larger patch around the 
keypoint (Dusmanu et al., 2019). The detector and the descriptor 
can be hand-crafted, learned methods or a combination of the 
two. Since the detector looks for keypoints in an area of the image 
which is significantly smaller than the one used by the descriptor, 
noisy and low-resolution images can lead to significant variations 
of the low-level radiometric values that do not allow the 
coupling, while the corresponding descriptors would still be able 
to be coupled (Dusmanu et al., 2019). 
End-to-end. These approaches perform a simultaneous detection 
and description in order to extract recognizable and uniquely 
describable keypoints (Yi et al., 2016; DeTone et al., 2018; Ono 
et al., 2019; Dusmanu et al., 2019; Revaud et al., 2019; 
Christiansen et al, 2019; Luo et al., 2020). The joint training of 
descriptor and detector avoids extracting non-discriminative 
keypoints and selects only repeatable interest points to improve 
the overall feature matching pipeline. These methods have a 
variable degree of architectural sharing for detection and 
description. For example, SuperPoint shares a deep 
representation between detection and description, however they 
rely on different decoder branches which are trained 
independently with specific losses (Dusmanu et al., 2019). D2-
Net shares all parameters between detection and description and 
uses a joint formulation simultaneously optimized for both tasks 
(Dusmanu et al., 2019). LF-Net instead has two different 
networks for detection and description, trained together in an 
end-to-end way, but they do not share computations 
(Christiansen et al, 2019). 
Detect-and-describe. This is a subcategory of end-to-end 
methods where detector and descriptor completely share the same 
network: ASLFeat (Luo et al., 2020), D2-Net (Dusmanu et al., 
2019), and R2D2 (Revaud et al., 2019).  
In terms of localization accuracy, Luo et al. (2020) emphasize- 
the need to recover spatial accuracy in the keypoint localization 
of end-to-end methods and identify some critical issues: while 
LF-Net's and D2-Net's lack in accuracy due to low-resolution 
feature maps, i.e., 1/4 of the original size, for SuperPoint it could 
be related to its decoder, used to restore spatial resolution. 
Finally, R2D2 keeps the original resolution using dilated 
convolution, but performs the detection deeply in CNN’s layers. 
 
2.2 Comparisons between hand-crafted and learning-based  

While early studies on learning-based tie point extraction 
methods based their evaluation criteria on repeatability and 
matching score in isolation (Schönberger et al., 2017), more 
recent works emphasize instead the importance of performing 
downstream evaluations of the entire photogrammetric pipeline, 
going beyond pure descriptor matching (Yi et al., 2016; 
Schönberger et al., 2017; Ono et al., 2018; Jin et al., 2020). New 
feature extractors, being hand-crafted or learning-based, are 

generally tested on benchmarks - such as Balntas et al. (2017) or 
Bojanić et al. (2020), evaluating keypoint verification, matching 
and retrieval. Nevertheless, in geomatic applications, it is 
essential to test them with metrics specifically tailored for the 
object space, in particular 3D coordinates of the surveyed area. 
Interesting evaluations in multiview scenarios are currently 
available (Schönberger et al., 2017; Jin et al., 2020), using 
extensive datasets, with different shooting angles, camera and 
environmental and lighting conditions, but without accuracy 
evaluations in metric terms in object space. The comparison 
between different methods assumes choosing several 
hyperparameters which can significantly influence the outcome 
of the assessment:  
• Number of extracted features: it affects the accuracy of the 

image orientation process and extracting more and more 
features leads to a plateau (Jin et al., 2020). 

• Detector and descriptor parameters: in our experiments we 
use default parameters both for hand-crafted and learning-
based methods. 

• Ratio threshold and features number: the ratio helps in 
filtering outliers or non-discriminative keypoints.  Jin et al. 
(2020) pointed out that the ratio test is critical for 
performance analysis and one could arbitrarily select a 
threshold that favours one method over another, which shows 
the importance of proper benchmarking. Schönberger et al. 
(2017) proposed not to enforce the ratio test by pruning 
descriptors whose top-ranked nearest neighbours are very 
similar. Therefore, Schönberger et al. (2017) carried out only 
the cross-check without the ratio test whereas Jin et al. (2020) 
performed both the cross-check and the ratio test (the latter 
after looking for the optimal value). In our experiment we 
chose the second approach in order to use the results of that 
research both for the features number (8000) and the optimal 
ratio thresholds. 

• Evaluation criteria: Schönberger et al. (2017) focused on 
evaluating descriptors starting from SIFT features, testing 
only descriptors, except for LIFT (Yi et al., 2016) which has 
its own detector. In most datasets an external ground truth is 
not used and evaluations are based on statistics obtained by 
COLMAP after the bundle adjustment. Unfortunately, some 
of the commonly used metrics, such as the reprojection error, 
are not able to disclose underlying systematic effects in the 
object space, in particular for imaging networks with poor 
geometry and redundancy. On the contrary, in some cases, 
low reprojection errors may even correspond to bad accuracy 
in object space. This is the case, for example, when the used 
functional model (pinhole camera) is incomplete, thus 
introducing systematic errors that can be absorbed by the 
camera network and therefore resulting in object space 
polynomial deformation (also called dome effect) (Menna et 
al., 2020; Nocerino et al., 2014; James and Robson, 2014). In 
some cases, the ground truth refers to camera location, that 
may be highly correlated with the interior orientation 
parameters, also depending on the imaging geometry 
(interior and exterior orientation parameters) and object 
shape (planar, three-dimensional). Jin et al. (2020), as ground 
truth, use SfM results obtained processing a larger number of 
images and evaluate the performance of small subgroups of 
images comparing the retrieved camera angles with respect 
to the ground truth values. We believe that the accuracy 
analysis of a photogrammetric method should be carried out 
on the triangulated 3D points using reference 3D data in the 
form of GCPs measured with an independent measurement 
technique (e.g. differential GNSS, geodetic surveying, laser 
tracker). In our experiments, all datasets feature a sufficient 
number of reference 3D coordinates (Table 1). 
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Images Camera GSD Ground 
Truth Acquisition 

DATASET 1: Neptune Temple in Paestum (Italy) 

17                                                 
(12 perpendicular, 5 oblique) 

Nikon D3X, 24 MP, full frame sensor,                     
14 mm focal length 9 mm 6 GCPs Terrestrial 

      

DATASET 2: Neptune Temple in Paestum (Italy) 

11 Canon EOS 550D, 18 MP, APS-C sensor,                 
25 mm focal length 14 mm 6 GCPs UAV 

    

DATASET 3: Paestum Wall (Italy) - Perpendicular + Convergent images 
155 in 2 strips                               

(71 perpendicular, 84 oblique) 
Nikon D3X, 24 MP, full frame sensor,  

50 mm focal length 4-9 mm 22 GCPs Terrestrial 

        
DATASET 4: Ventimiglia Roman Theatre (Italy) - Nadiral + Oblique images 

64 in 4 strips                                
(52 nadir, 12 oblique) 

Nikon D3X, 24 MP, full frame sensor,                     
50 mm focal length 11 mm 7 GCPs UAV 

          

DATASET 5: Saranta Kolones (Cyprus) 

176 Nikon D3X, 24 MP, full frame sensor,                     
28 mm focal length 2-4.5 mm 12 GCPs Terrestrial 

          

Table 1: Summary of the datasets (images and camera networks with sparse point clouds) employed in the presented evaluation. The 
ground truth is given by reference 3D points measured with topographic methods (GCP-like): these 3D points are not included in the 
bundle adjustment as constraint but used to estimate an Helmert transformation and derive RMSEs of 3D coordinates. The reported 
min/max Ground Sampling Distance - GSD values are resampled from the original ones considering the used image resolution (i.e., 
1500x1000 px – see Section 3.6) during the evaluations. 
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3. METHODOLOGY 

The working methodology extends past assessments of learning-
based methods by focusing on the following aspects: 
Accuracy. We want to investigate whether learning-based 
methods can be a valid alternative to hand-crafted ones, by 
verifying point localization and accuracy in object (3D) space. 
Evaluation criteria. We turn the attention from camera poses 
(Jin et al. 2020) to object point accuracy, reporting the absolute 
error of computed 3D coordinates compared to known reference 
points. 
Datasets. Instead of photo-tourism datasets (Schönberger et al., 
2017; Jin et al., 2020), we use sets of images acquired for 
photogrammetric purposes, in order to evaluate learning-based 
methods in contexts closer to engineering, heritage or 
architectural practice and surveys (Table 1). The employed 
datasets feature strong appearance changes due to significant 
variations in scale and viewing angle. 
Camera configuration. We use more controlled scenarios, with 
image networks and scales typical of topographic and 
photogrammetric surveys, including single/unique camera, 
parallel (terrestrial or UAV) strips and loop closures acquisitions. 
 
3.1 Considered methods 

3.1.1 Learning-based methods 
Among the available solutions, we mainly considered the end-to-
end methods, i.e., those that jointly use CNNs for both the 
detection and description step. This choice was dictated by the 
following reasons: 
• We intend to investigate the contribution of CNNs in the 

keypoints extraction, without the result being influenced by 
hand-crafted methods (usually the detector). 

• Networks performing a joint learned detection and 
description show better performances (Yi et al., 2016; Ono et 
al., 2018). 

• Selected networks provide sparse features hence they are 
preferred with respect to dense approaches in order to avoid 
excessive computation time on high-resolution images. 

• Chosen methods were generated as general-purpose solutions 
hence they should accommodate various scenarios and 
contexts. 

• These methods were trained for wide-baseline, a very 
interesting scenario that we tested adding oblique images, 
with strong appearance variance due to different scale and 
viewing angles with respect to perpendicular/nadir images. 

• Selected methods seem to be suitable for retraining in order 
to include photogrammetric scenarios not considered so far 
(e.g. UAV and aerial). 

The considered methods represent the state of the art and include:  
• LFNet (Ono et al., 2018): it first identifies keypoints with its 

own detector, trained without using an existing one, then it 
calculates the position, scale and orientation of each feature, 
cutting an image patch around each keypoint, and finally it 
passes them to the descriptor. 

• R2D2 (Revaud et al., 2019): it joins detector and descriptor 
steps, focusing on features not only repeatable but with a 
good chance to be matched. It extracts a descriptor for each 
pixel of the image and obtains two confidence maps for 
repeatability and reliability. Keypoints are chosen where 
there is a maximum in both maps. The detector was trained 
in a self-supervised manner avoiding the usage of keypoints 
extracted with existing detectors. R2D2 requires a large 
amount of memory usage as it uses dilated convolutions. 

• SuperPoint (DeTone et al., 2018): it consists of an encoder 
and two decoders, one for the localization of the features, the 

others for their description. The method is trained on 
synthetic images in a self-supervised way in the first phase, 
then the training is reinforced using real images. This method 
tends to extract fewer features with respect to other end-to-
end methods. 

• ASLFeat (Luo et al., 2020): it aims to recover shape-
awareness and accuracy in keypoint localization with a multi-
level detection mechanism. Its structure is based on D2-Net 
(Dusmanu et al., 2019) and performs both detection and 
description in a single step. 

• Key.Net+HardNet (Barroso et al., 2019; Mishchuk et al., 
2017): in the first handcrafted and learned filters are 
combined to detect repeatable keypoints (Revaud et al., 
2019), while the latter is a learning-based descriptor. Their 
combination performed well in Jin et al. (2020) and it was 
chosen as an example of detect-then-describe method. 

 
3.1.2 Hand-crafted methods 
Following past keypoint analyses (Apollonio et al., 2014; 
Schönberger et al., 2017; Jin et al., 2020), we employed SIFT 
(Lowe et al., 2004) - since it has proven to be the most reliable 
and versatile over time, SURF (Bay et al., 2006) and AKAZE 
(Alcantarilla et al., 2013). In particular, the latter two have been 
chosen following the investigations on the optimal ratio threshold 
presented in Jin et al. (2020).  
 
3.2 Evaluation Pipeline 

The SfM / image orientation process includes several steps: 
features detection and description, keypoints matching, 
geometric verification and bundle adjustment. The most widely 
used open-source software, such as VisualSfM (Wu et al, 2013), 
COLMAP (Schönberger et al., 2016) and OpenMVG (Moulon et 
al., 2016), can import features only if they are SIFT-like, i.e., 
consisting of 128 positive integer parameters in the range [0, 
255]. There is no implemented method for importing floating-
point descriptors or descriptors of arbitrary size. Therefore, using 
OpenCV-Python libraries, we extracted the features and matched 
them externally, performing the geometric verification and 
bundle adjustment in COLMAP. This software has performances 
comparable to OpenMVG (Stathopoulou et al., 2019), but it 
offers a more user-friendly graphical interface and provide useful 
statistics after the bundle adjustment. AliceVision (Moulon et al., 
2016; Jancosek et al., 2011) is also an interesting choice since it 
already integrates AKAZE and SIFT, but currently presents 
difficulties in registering large datasets (Stathopoulou et al., 
2019). Finally, VisualSFM was excluded because it only 
considers the first radial distortion additional parameter, whereas 
some of the considered datasets have short focal lengths, thus 
requiring at least two coefficients to properly model the lens 
radial distortion. 
Features extraction and detection. For the learning-based 
methods, we used the respective implementations available on 
GitHub with default parameters. For R2D2 the model 
WASF_N8_big.pt was chosen, designed to extract more 
keypoints than other models, while for ASLFeat and LF-Net we 
used model.ckpt-60000 and outdoor with rotation augmentation 
respectively. For the hand-crafted methods, we used the OpenCV 
implementation made available within PhotoMatch (González-
Aguilera et al., 2020). Note that for the SURF descriptor we have 
chosen the more discriminative version with 128 parameters 
instead of 64. 
Features matching. This step was performed with the Brute-
Force method implemented in OpenCV-Python with distance L2 
or Hamming according to the method used. Brute-Force was 
chosen, albeit slow, to ensure a fair comparison between 
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methods. The obtained matches were then filtered with the 
Lowe's ratio test and cross-check. 
Bundle adjustment (free network). All matches were imported 
as raw matches to be geometrically checked before the bundle 
adjustment with the RANSAC method implemented in 
COLMAP. All intrinsic parameters are shared by all cameras and 
the first two radial distortion coefficients are used. The initial 
image pair from which the bundle starts is freely chosen by the 
software. COLMAP does not allow to include GCPs in the 
bundle solution, therefore their image coordinates were imported 
as tie points in order to triangulate their 3D coordinates. These 
computed values were then used for the accuracy evaluations. 
Helmert transformation. The computed 3D coordinates were 
imported into CloudCompare and roto-translated with a scale 
factor (7-parameter Helmert transformation) using the available 
reference coordinates as ground truth (Oniga et al., 2016). 
 
3.3 Keypoint number and ratio threshold 
 
Since the accuracy of each method depends on the number and 
quality of extracted keypoints and on the way outliers are filtered, 
our tests were performed as proposed in Jin et al. (2020) in order 
to use the same optimal ratio thresholds in the Brute-Force 
matching (SIFT: 0.80; SURF: 0.90; AKAZE: 0.90; ASLFeat: 
0.80; R2D2: 0.95; Key.Net+HardNet: 0.85; LF-Net: 0.95; 
SuperPoint: 0.90). For all methods, we extracted 8000 features 
except for SuperPoint and LFNet that have been trained to extract 
fewer keypoints than the other networks. Therefore, for these two 
methods we extracted 2000 and 8000 features. 
 
3.4 Performance analyses  
 
The performance evaluation is executed using similar metrics and 
processes presented in (Heinly et al., 2012; Apollonio et al., 
2014; Remondino et al., 2017; Stathopoulou et al., 2019). The 
evaluation includes quantitative analyses for keypoint 
repeatability, pairwise matching efficiency, root mean square 
error (RMSE) on reference 3D points and tie point multiplicity. 
With respect to other evaluations which do not report absolute 
metric errors (Schönberger et al., 2017; Jin et al., 2020), our work 
aims to perform assessments also considering known 3D 
coordinates and comparing these reference values with those 
achieved triangulating specific points marked in the images. 
 
3.5 Datasets and reference 3D points 
 
The employed datasets (Table 1) have been chosen in order to 
appropriately represent typical 3D surveying scenarios in civil 
and cultural heritage applications, in terms of scale, network and 
camera-object distance. The Paestum Wall, which features a 
predominant dimension over the others, contains orthogonal 
(Perpendicular) as well as convergent (Oblique) images in order 
to reduce possible block deformations (dome effect). In the 
Ventimiglia Theatre dataset, beside two parallel nadiral UAV 
strips (Nadir), we included also two Oblique strips with an 
inclination of ca 45° in order to evaluate highly convergent 
views, illumination changes and perspective effects. The Saranta 
Kolones is composed of the largest number of images and 
presents a complex configuration with a strong variation of the 
camera-object distance and a loop closure.  
All datasets contain well-distributed points of known 3D 
coordinates, materialized with high-contrast photogrammetric 
circular targets in the scenes. The measurement of their 3D 
coordinates in a local coordinate system was carried out with 
geodetic surveying techniques using a total station with 1” 
angular accuracy. Each point was observed at least two times 
(face left and face right) in non-prism mode (distance 

measurement accuracy ca. 3 mm). For the Ventimiglia dataset the 
targets were fixed on the ground; in this case a prism pole 
mounted on a tripod was used and collimated from at least two 
survey stations. The expected accuracy for all the datasets is 
better than 5mm in the three coordinates. 
 
3.6 Extraction time, image resolution and hardware 
 
Due to the actual limitations of learning-based methods, all 
images have been downsampled to 1500x1000 px to optimize the 
computer resources used. For reference, in the pipeline of Jin et 
al. (2020) all images are downsampled to a maximum size of 
1024 pixels. Table 2 shows the average time needed to extract 
8000 features. Each method uses a different deep learning 
framework (TensorFlow, PyTorch) and CUDA version.The 
technical specifications of the employed hardware are as follows: 
Processor Intel Core i7-4510U CPU @ 2.00GHz 2.60 GHz, 
RAM 16.0 GB, System 64 bit, GPU GeForce GTX 850M (5 
Cores @ 901 MHz, 4096 MB). 
On the other hand, using the same hardware, all hand-crafted 
methods were able to extract keypoints on full-resolution images, 
indicating that currently the learning methods require a greater 
commitment of IT resources. To perform a fair comparison, in 
our experiments all hand-crafted methods worked on the same 
downsampled resolution like learning-based methods. 
 

METHOD 8000 keypoints per image [mm:ss] 
SIFT PhotoMatch 00:03 
SURF PhotoMatch 00:05 

AKAZE PhotoMatch 00:02 
ASLFeat 00:07 

R2D2 GPU/CPU 00:26 / 02:36 
Key.Net+HN 00:19 

LF-Net 00:04 
SuperPoint 00:04 

Table 2: Average time required to extract 8000 keypoints per 
image (1500x1000 px) with the available implementations. For 
learning-based methods, a variable extraction time of 3-7 minutes 
must be added for loading the pre-trained model, regardless of 
the number of keypoints extracted. 
 
 

4. RESULTS 
 
4.1 Rotation invariance 
 
Most of the published studies have tested learning-based methods 
on datasets with only roughly "upright" images, i.e., all images 
always present the sky in the upper part of the image and the 
object is always oriented in the same way with respect to the 
sensor. This is due to the fact that most of the learning-based 
methods (except SuperPoint and LF-Net) have no invariance to 
rotation or it is limited to small angles (about 20-30° for 
ASLFeat). The absence of rotation invariance in many of the 
tested learning-based methods is a very limiting deficiency for 
accurate photogrammetric applications where a single sensor 
with variable orientation is used, for example: 
• In UAV surveys, between one strip and the next one, there is 

an inversion of the orientation of the aircraft's bow with 
consequent rotation of the sensor by about 180° (see 
Ventimiglia Roman Theatre dataset). 

• In terrestrial surveys, it often happens that the sensor is 
rotated of 90° by the operator to better picture the scene or 
acquire an image network suitable for self-calibration. 

ASLFeat, R2D2 and Key.Net+HardNet have not a sufficient 
rotation invariance, therefore in all our datasets presenting a 
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sensor rotation of 90° or 180°, the following approach is chosen: 
first the keypoints are extracted on the original rotated images, 
then the image coordinates are rotated accordingly in order to use 
only a single sensor in COLMAP elaborations. This procedure 
has been applied to perform a fair comparison among the 
methods, without affecting the accuracy in interest points 
localization. In this way, all image datasets could be properly 
registered, except for Saranta Kolones, where it was not always 
possible to identify a position to be considered "upright" (see 3rd 
image in the last row of Table 1), preventing implementation of 
the above-mentioned procedure and causing incomplete image 
orientation for ASLFeat, R2D2, and Key.Net. For these methods, 
specific retraining is required to achieve a much greater rotational 
invariance.  
 
4.2 Mean Reprojecting Error (MRE) 
 
Comparing the obtained Mean Reprojection Error (Figure 3) and 
the RMSEs (Figure 6-8), it is clear that the MRE is not a 
sufficient evaluation parameter to compare the quality of the 
derived 3D information. There is no similar trend between the 
two parameters, so it may not be really discriminatory to use only 
the MRE to evaluate a 3D reconstruction pipeline (Schönberger 
et al., 2017). In fact, the MRE can vary significantly from point 
to point for many reasons: it could be lower for a point with low 
Mean Track Length (MTL) and bad camera configuration (small 
base between cameras) or higher for a point with high MTL but 
good camera configuration. 
 
4.3 Observations per image and Mean Track Length (MTL) 
 
In terms of Mean Track Length (Figure 4), ASLFeat, R2D2 and 
Key.Net+HardNet achieve significantly higher values than the 
other methods. The difference is particularly pronounced in the 
Paestum Wall Perpendicular+Oblique, indicating an excellent 
ability of these methods to recognize the same point even on 
images with a very different aspect, i.e., under large perspective 
distortions. The ability to identify (“track”) the same point on 
many images also emerges from the number of computed 3D 
points: for the same number of extracted features, a definitely less 
dense cloud is obtained (Figure 5). 
 
4.4 Root Mean Square Error (RMSE) on 3D coordinates 
 
The photogrammetric targets were manually marked on all 
possible images and then triangulated within the bundle 
adjustment. From the accuracy analyses (Figure 6-8) with the 
reference coordinates (Helmert/similarity transformation), it 
appears: 
• The performances of hand-crafted and learning-based 

methods are comparable when the camera configuration is 
good in terms of base / object distance ratio, image overlap 
and above all the inclusion of oblique/convergent images in 
the scene, as the bundle adjustment succeed to compensate 
for the lack in keypoint localization accuracy. 

• When the images are only nadiral, like in UAV surveys, or 
more generally, a quite flat scene is surveyed without the 
inclusion of oblique images (Roman Theatre Nadiral and 
Paestum Wall Perpendicular), the situation is more variable 
both for learning-based and hand-crafted methods. Only 
SIFT and ASLFeat perform well for both datasets.  
 

 
5. CONCLUSIONS AND FUTURE WORKS 

In this investigation we compared hand-crafted and learning-
based feature extraction methods, focusing on the accuracy 

achieved in object space. From our experiences and from the 
achieved results, we can conclude: 
• In terms of RMSE of 3D coordinates, learning-based achieve 

comparable results to hand-crafted methods when the image 
network is well designed. In the Saranta Kolones dataset, 
RMSE oscillate from a min of 0.011mm for 
Key.Net+HardNet to a max of 0.016mm for SuperPoint. For 
Paestum Wall Perpendicular+Oblique (Figure 8), the best 
learning-based is R2D2 which achieves 2.8 cm RMSE.  

• When datasets have a redundant image configuration and 
strong geometry (Neptune Temple, Paestum Wall 
Perpendicular+Oblique and Ventimiglia Nadiral+Oblique), 
the bundle adjustment results have higher reliability and 
sensitivity to disclose gross observation errors. For this 
reason, all the methods perform very similarly in terms of 
RMSE on the reference points when the camera network 
geometry is redundant and well designed. On the contrary, 
with only nadir and perpendicular imaging networks, the 
RMSE show significant differences most likely due to the 
presence of gross observation errors that remain undetected 
as they are absorbed by the exterior and interior orientation 
parameters due to perspective coupling. This effect results in 
an inaccurate dome shape, especially for the Paestum dataset. 

• None of the learning-based method could jointly tie and 
process Neptune terrestrial and UAV images, most probably 
due to large scale changes. 

• ASLFeat, R2D2, Key.Net+HardNet have a greater ability to 
recognize repeatable keypoints (higher MTL – Figure 4) even 
when images have a really different viewing angles. 

• LF-Net and Key.Net+HardNet achieved mediocre results in 
the most challenging datasets (Paestum Wall Perpendicular 
and Ventimiglia Theatre Nadiral), with RMSE more than 
double of SIFT and ASLFeat for the Paestum Wall 
Perpendicular dataset. 

• Only SIFT and ASLFeat performed well across all datasets, 
notwithstanding the lack of rotation invariance for the latter. 

• ASLFeat, R2D2, Key.Net+HardNet are not invariant to 
rotation, an essential property in photogrammetric 
applications, requiring a specific retraining of the CNNs in 
order to stand such variation of the camera configuration. 

• R2D2 exhibits controversial behaviour in the most 
challenging datasets, with a very high RMSE in Paestum 
Wall Perpendicular, probably linked to a non-optimal 
localization of the features. On the other hand, its keypoints 
are the best in terms of repeatability and reliability (always 
high MTL values) and excellent results in Roman Theatre 
Nadiral, which has little overlap between strips, but a good 
base to object distance ratio.  

• Due to low number of extracted features, SuperPoint seems 
to be the less suitable method for UAV photogrammetry, in 
particular when there is less overlap between strips (despite 
good accuracy results in terrestrial datasets). 

For sure more tests and datasets are needed to draw further 
lessons learnt but we believe that learning-based methods, being 
only at the dawn of their developments, are becoming a valuable 
and powerful alternative to traditional hand-crafted methods.  
In the near future, the following aspects will be investigated: (i) 
increase the image resolution where learning-based methods can 
work and features can be extracted, (ii) generate dense point 
clouds from the retrieved image orientation and perform a cloud-
to-cloud analyses, (iii) expand the analysis to learned descriptors, 
coupling them to hand-crafted detectors, (iv) 
consider  processing time and memory usage, (v) re-train some 
methods in order to better accommodate high-resolution images, 
camera rotations, scale and illumination changes, etc. 
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Figure 3: Mean reprojection error (MRE) [pixel] for the 
different datasets (see legend above) and tested methods. 

Figure 4: Average MTL for extracted tie points. ASLFeat, 
R2D2 and Key.Net+HardNet always show a higher MTL value 
with respect to the other learning-based methods. 

  

Figure 5: Computed 3D points (sparse cloud) within the bundle 
adjustment. In Paestum Wall Perpendicular + Oblique, 
ASLFeat, R2D2 and Key.Net+HardNet methods, having a 
higher MTL, create significantly fewer 3D points. 

Figure 6: RMSE [m] for the Neptune Temple datasets. In both 
cases (terrestrial and UAV), the RMSE variation is very limited, 
the different methods behave in a similar way, especially in the 
UAV dataset where the sensor-object distance is very high. 

  
Figure 7: RMSE [m] for the Ventimiglia Theatre dataset, with 
only nadir images (Nad) and with the inclusion of oblique 
images (Nad+Ob). The SuperPoint tests are performed with only 
cross-check (CC) instead of cross-check + ratio test (CC+RT). 

Figure 8: RMSE [m] for the Paestum Wall. SURF and R2D2 
produced a pronounced curvature/deformation - not visible from 
the MRE analysis – in case of only perpendicular images. The 
use of oblique images reveals a minimal RMSE differences 
between the various methods. 
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