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ABSTRACT:

Estimating the heights of objects in the field of view has applications in many tasks such as robotics, autonomous platforms and
video surveillance. Object height is a concrete and indispensable characteristic people or machine could learn and capture. Many
actions such as vehicle avoiding obstacles will be taken based on it. Traditionally, object height can be estimated using laser ranging,
radar or stereo camera. Depending on the application, cost of these techniques may inhibit their use, especially in autonomous
platforms. Use of available sensors with lower cost would make the adoption of such techniques at higher rates. Our approach to
height estimation requires only a single 2D image. To solve this problem we introduce the Monocular Object Height Estimation
Network (MOHE-Net) that includes a cascade of two networks. The first network performs the object detection task. This network
detects the bounding box of objects of interest. This information is then input to a second network to estimate the object height
and is a linear Multi-layer Perceptron (MLP). The linear MLP model models the camera-scene geometry and does not require
training or contain activation function as normal MLP did. The developed approach works for static camera set up as well as
moving platform. The proposed approach performs state-of-the-art and can be deployed for obstacle avoidance on autonomous
platforms. Our code is available at https://github.com/OSUPCVLab/Ford2019/tree/master/Moving%20Object%20Height%
20Estimation%20Network

1. INTRODUCTION

Object height has applications in a number of problem domains
including but not limited to autonomous driving, robotics and
visual surveillance. Once the object height information estim-
ated, this information can be used, for instance, to avoid obstacles
in autonomous driving scenarios to ensure the safety. Deploy-
ing a height estimation system requires two an object detection
module and a height estimation module , both of which are re-
quired to perform in real-time processing for time constraint
problems.

Arguably object detection can be considered a mid-level per-
ception problem required by many higher level tasks (Zou et
al., 2019). It has been an activate area of research for several
decades. The goal of object detection is to determine whether
instances of an object, such as person, car, truck, exists in the
image and return its location as an enclosing mask or bounding
box (Liu et al., 2020). Recently, deep learning techniques, in-
cluding but not limited to faster r-cnn, yolo series (Ren et al.,
2016, Redmon et al., 2016, Redmon and Farhadi, 2017, Red-
mon and Farhadi, 2018), have been shown to work compar-
atively far more accurate and faster than other traditional ap-
proaches based on such as SIFT, SURF and BRIEF (Lindeberg,
2012, Calonder et al., 2010, Bay et al., 2006)). Our proposed
object height estimation system adopts an existing pretrained
deep convolutional neural networks (Ren et al., 2016, Jocher et
al., 2020) to detect object instances with bounding boxes recor-
ded in monocular cameras.

We refer to the height estimation problem as the metric estima-
tion of the object height from the 2D bounding boxes. In partic-
ular, this step uses, backprojections of the pixel coordinates to

3D camera coordinates using view geometry modeled as MLP.
Considering 2D to 3D relation is projective and the object scale
is unknown, we introduce additional geometric constraints to
solve the problem. The first of these is the assumption that the
camera looks at piece-wise planar scene, such that normalized
Direct Linear Transformation (DLT) (Hartley and Zisserman,
2003) applies as shown in Fig. 1. Second, we assume the ob-
jects and image plane are standing upright and vertical to the
ground which generates a special geometry that will be dis-
cussed later in text.

Figure 1. An example image acquired from a monocular camera
mounted on a vehicle showing the road from the vehicle’s

perspective. Red lines indicate projective physical distance of
embedded camera and objects. Each red line has two ending
points. One is from camera outside the image. The other is

located from the object pixel coordinate. DLT utilized
relationships between points in projective coordinates and

geometry coordinates.
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Our main contributions to height estimation can be summarized
as follows:

– MOHE-Net requires only a monocular camera.

– It can estimate object height from both stationary and mov-
ing platform.

– The geometry is represented as an MLP to generate the
network cascade.

– It generates accurate results on the collected dataset. More
specifically, it achieves 5.08 cm mean error and 26.4 fps
speed.

The rest of this paper is organized as follows. Section 2 reviews
recent related work on object detection as well as height estim-
ation. Section 3 describes the problem and provides details of
proposed MOHE-Net. Section 4 introduces our collected data
and experimental implementation. Section 5 provides details
on the results.

2. RELATED WORK

Object height has been considered an important piece of in-
formation for autonomous systems and can be directly solved
using range systems estimation such as LIDAR or stereo cam-
era. Its importance stems from the fact that avoiding high or low
lying obstacles will reduce defects to the vehicle while ensuring
the safety of the passengers and the objects around the vehicle.
Below we will discuss the the two modules required for an end
to end system: object detection and height estimation.

Considering that the amount of work published on object de-
tection is vast, we will only consider more recent studies that
uses deep learning. With the introduction of regions to the
CNN architectures (R-CNN) (Girshick et al., 2014) object de-
tection methods have started to produce results significantly
better than traditional approaches. These developments can be
divided into two categories. The first category is a two-stage
approach which starts from a region proposal followed by clas-
sification and bounding box regression. The approaches in the
first category include R-CNN and its improved version, fast R-
CNN (Girshick, 2015) and faster R-CNN (Ren et al., 2016).
Fast R-CNN performs feature extraction as a whole, avoiding
independent feature extraction of each proposed region. Faster
R-CNN replaces selective search with a region proposal net-
work to generate proposed regions. The second category is a
one-stage approach which performs the classification and loc-
alization steps simultaneously via grid regression. Arguably
the most representative model for this category is the You only
look once (YOLO) variations (Redmon et al., 2016, Redmon
and Farhadi, 2017, Redmon and Farhadi, 2018, Bochkovskiy
et al., 2020, Jocher et al., 2020). Those models, typically, take
Pascal VOC (Everingham et al., 2010) and MS COCO (Lin et
al., 2014) for training and evaluation purposes. We adopted
the second category of approaches, and observed that using ex-
isting their pre-trained networks provided good accuracy and
speed for the object detection task in our approach.

Height estimation task estimates the height information by trans-
forming the image pixel coordinates to 3D coordinates (Hartley
and Zisserman, 2003). When an image of a scene is captured,
the depth information has lost. The estimation of the 3D ob-
ject characteristics, one has to backproject the image into the

3D space. Godard et al. (Godard et al., 2017) proposed an
unsupervised monocular depth estimation approach to predict
depth using a single camera. Zhou et al. (Zhou et al., 2017)
proposed an approach to recover depth information from 2D
motion information providing disparity. These methods, while
can be used for height estimation, cannot be used due to high
computational cost that recovers depth information for all the
pixels. The planarity condition of the scene also makes these
approaches impractical for height estimation. Our approach in
contrast uses the planarity condition directly (Abdel-Aziz et al.,
2015), to estimate heights of upright objects.

Many recent approaches (Mousavian et al., 2017, Wu et al.,
2019, Ke et al., 2020, Kundu et al., 2018) were proposed to es-
timate vehicle size (length, width and height) and 6-DoF. But
without exception, those approaches require estimation of cam-
era rotation and translation even though they use a monocular
likewise. What distinguish our approach from the others is that
we doesn’t require any estimation of camera pose but can estim-
ate over 80 object classes height accurately achieving real-time.

3. METHODOLOGY

For metric height estimation, the proposed MOHE-Net cascades
two neural networks as shown in Fig. 2. The first neural net-
work (OD-Net) detects object-instances among a set of objects
of interest. The second network (HE-Net) estimates metric height,
and is a designed multilayer perceptron (MLP) which contains
the geometry weights. HE-Net estimates the heights of all ob-
ject instances detected by OD-Net. The final output of MOHE-
Net contains metric locations and estimated heights of object
instances.

𝑂𝐷 − 𝑁𝑒𝑡

𝐻𝐸 − 𝑁𝑒𝑡

Figure 2. Object detection and height estimation pipeline.

3.1 Problem formulation

Let 4x1 tuple A = (I, S0, L, c0) defines imaged scene for the
ith frame, where I ∈ RH∗W∗3 is the image frame with width
W and height H, S0 represents the ROI, L0 = (l1, l2, ..., ln)
is the classes of objects of interest (COI), and c0 is the confid-
ence threshold of object detector. Objects not a member of COI
are ignored by MOHE-Net as well as objects with confidences
lower than c0.
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3.2 Object Detection Network

Object detection network is a pretrained CNN model with ob-
jects within the COI: Oi = fOD−Net(Ii). This network maps
the input image, Ii, to output Oi, where Oi is a 6xn tuple,
Oi = (bi,j,1, bi,j,2, bi,j,3, bi,j,4, li,j , ci,j), where bi,j,1 ∼ bi,j,4
are the upper left and lower right bounding box coordinates of
the detected objects, shown in Fig. 3. In this equation, the first
subscript i denotes the frame index, the second subscript j in-
dicates jth object-instance, the last subscript represents one of
the four sides of jth instance, li,j is OD-Net predicted label of
jth instance and ci,j represents its corresponding confidence.
Height estimation network only activates when li,j ∈ L and
ci,j ≥ c0. The implementation details of fOD−Net is given in
Section 4.

Figure 3. Object detection output generated by the detection
network in the form of a bounding box: bi,j,1, bi,j,2, bi,j,3, bi,j,4.

Marked two points (middle bottom and middle above) of the
bounding box represent object bottom and top, such that the

object height is the the length of the line connecting these two
points.

To represent object height in the image domain, the algorithm
selects two points, middle bottom point and middle above point
of the rectangular bounding box, referred to as the bottom point
and top point as shown in Fig. 3.

Pi,j,bottom = (
bi,j,1 + bi,j,3

2
, bi,j,2) (1)

Pi,j,top = (
bi,j,1 + bi,j,3

2
, bi,j,4) (2)

3.3 Height Estimation Network

To estimate the height of an object instance, we designed a task
oriented multi-layer perceptron (MLP) referred to as the HE-
Net that inversely project the bottom and top points from image
coordinates to the real world coordinates, Hi = fHE−Net(Oi),
where Oi is OD-Net output, fHE−Net mapped input Oi into
3xm (m ≤ n) tuple Hi, Hi = (hi,j , li,j , ci,j), satisfying li,j ∈
L and ci,j ≥ c0, and subscripts i,j are same as in Section 3.2.

The object bottom and top points are coplanar and lie on a plane
perpendicular to the horizontal road plane as shown in Fig. 4.
This coplanarity condition is denoted by the orange line and
is vertical to the road plane (black canvas). The two dotted
lines originating from the camera center (black point) represent
the backprojection from the image plane to object space. Dis-
tance between two parallel planes is referred to as parameter z
on camera z direction shown in Fig. 5, also called object depth
estimation. In our data collection, a single camera is mounted
on the vehicle for collecting dataset. We defined spatial xyz axis
to be right, down and forward direction with respect to vehicle
moving forward.

Figure 4. A diagram demonstrates HE-Net inverse projection
process. Lilac and blue canvases respectively represent image

plane and object plane vertical to the horizontal road plane
(black canvas). Two dotted inverse projection lines originating

from camera pinhole (black point) project object through image
plane back to object plane at a distance of z.

Let (u, v, 1) be the homogeneous coordinates of x in image co-
ordinates and X = (XW , YW , ZW , 1) be the corresponding
homogeneous coordinate in the real world. Given the camera
intrinsic matrix K and the pose of camera in world coordinate
frame in ith video frame (R, T ) ∈ SE(3), the geometric rela-
tionship between x and X is:

x = K[R, T ]X (3)

In fact, object height is the same in both camera frame and
world frame. The proposed MOHE-Net estimates object height
in camera coordinate to avoid estimating the motion of cam-
era, which is (R, T ) of equation (3). Given (XC , YC , ZC , 1) the
camera frame homogeneous coordinate, the projection from 3D

X

Y

Z

Figure 5. Dataset collection platform with predefined camera
coordinates with respect to vehicle moving forward direction, x,

y and z axis point at right, down and forward directions.
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point in camera coordinate frame to image plane is:

z

u
v
1

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0



XC

YC

ZC

1

 (4)

and the inverse projection from image plane to camera coordin-
ate frame is:

XC

YC

ZC

1

 = z


1/fx 0 −cx/fx
0 1/fy −cy/fy
0 0 1
0 0 0


︸ ︷︷ ︸

Kinv

u
v
1

 (5)

𝑥1𝑦1𝑥2𝑦2

𝑃𝑏𝑜𝑡𝑡𝑜𝑚

𝑃𝑡𝑜𝑝

𝑃𝑡𝑜𝑝,3𝐷,𝑁

𝑃𝑏𝑜𝑡𝑡𝑜𝑚,3𝐷,𝑁

𝑧

𝐾,𝐷

𝐻3∗3
𝑃𝑏𝑜𝑡𝑡𝑜𝑚,3𝐷

𝑃𝑡𝑜𝑝,3𝐷

𝐻𝑒𝑖𝑔ℎ𝑡

𝐾,𝐷

Figure 6. HE-Net flowchart. x1y1x2y2 is bounding box location
in image. Pbottom and Ptop represent object bottom and top

pixel location. Respectively, Pbottom,3D,N and Ptop,3D,N are
depth-normalized 3D points in camera coordinate frame. z is

object estimated depth. Pbottom,3D and Ptop,3D are estimated
inverse-projected points in camera frame.

where Kinv is the inverse camera intrinsic matrix. We took a
short video with a 6 × 9 chessboard, to calibrate camera in-
trinsic matrix K and distortion coefficients D using chessboard
calibration algorithm developed by OpenCV library (Bradski,
2000). Apart from Kinv , object depth, parameter z denoted as
the distance between parallel image planes and object plane in
Fig. 4, is also needed for image point inverse projection. In
our proposed HE-Net, we implement DLT for estimating object
depth, parameter z. This will be discussed later in Section 3.4.

Overall HE-Net is a handcrafted linear MLP, whose flowchart
is shown in Fig. 6. The MLP has K,D as its pre-trained weights,
inversely projects object bottom point and top point on image
plane back to 3D depth-normalized camera coordinate frame,
denoted as Pbottom,3D,N and Pbottom,3D,N . The subscript N
indicates point depth-normalized. With estimated object depth,
parameter z in equation (5), those two points are denormal-
ized back to 3D camera frame. Object height is the distance
in the vertical direction from the bottom point (Pbottom,3D) to
top point (Ptop,3D), also shown in Fig. 4.

3.4 Object Depth Estimation

In our above mentioned HE-Net, we applied DLT to estim-
ate parameter z. In Fig. 7, there are 36 cone markers on the
ground within ROI or on its margins. Those markers on the
ground plane have 2 degree of freedom, x and z. When col-
lecting dataset, we firstly measure markers coordinates with
respect to the mounted camera as the origin projecting on the
road plane and defined as PC = (pC,1, pC,2, ..., pC,36), where
pC,i = (xi, zi, 1). Then, we manually picked up those makers
on image plane and recorded their homogeneous coordinates as
PI = (pI,1, pI,2, ..., pI,36), where pI,i = (ui, vi, 1).

Normalization is basically a preconditioning to decrease condi-
tion number of the matrix PC and PI . Assuming TC and TI

are normalization matrix to normalize PC and PI respectively
to P̂C and P̂I in camera coordinate frame and image coordin-
ate frame with mean 0 and standard deviation

√
2, we estimate

homography matrix h3×3 as:

P̂C = h3×3 ∗ P̂I (6)

Matrix h3×3 is estimated based on normalized points, P̂C and
P̂I . Taking matrix denormalization, H3×3 will be:

PC = TC
−1 ∗ h3×3 ∗ TI︸ ︷︷ ︸

H3×3

∗PI (7)

Given object bottom point Pi,j,bottom = (u,v,1) in Section 3.2,
we are able to estimate parameter z as:x

z
1

 = H3×3

u
v
1

 (8)

where z in equation (8) would be applied into inverse projection
equation (5) in Section 3.3 as object depth in camera frame.

4. EXPERIMENT DESIGN

To evaluate the performance of the MOHE-Net, we conducted
threee case studies. In case I, objects and the platform are both
stationary. The relative distance between objects and platform
remains the same. We measure ground truth height for all ob-
jects within ROI, which range from 20 cm inches to 180 cm. In
case II, we keep the platform motionless and a person 183cm
high is walking within ROI. The person walks from the left to
the right, from the close to the distant. In case III, platform as
vehicle is moving forward so that more object instances are on
camera.

Figure 7. Camera view from monocular camera mounted on the
vehicle. Red polyline is the margin of ROI. HE-Net will be
activated only objects whose bottom points are within ROI.

Cones on the ground are markers for homography estimation.

For collecting dataset, we mounted a monocular camera on top
of a moving vehicle. The z-direction of the camera in Fig. 5
aligned with vehicle moving forward direction. Its front view is
shown in Fig 7 without any occlusion. The MOHE-Net design
requires calibration of the vehicle mounted camera to estimate
homography matrix. In order to calibrate, we uniformly placed
36 red cones at measured locations and use the red polylines to
denote the ROI margins. The homography estimation is then
achieved using Random Sample Consensus (RANSAC) (Fisc-
hler and Bolles, 1981) that minimizes overall geometric error.
The coordinates of these points are also marked in images. Vehicle
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mounted camera recorded image sequence with 20 frame per
second (fps) and the resolution of images are 1280× 720.

The proposed MOHE-NET pipeline consists of object detection
and height estimation. For object detection, we adopted Faster
r-cnn (Ren et al., 2016) and YOLOv5 (Jocher et al., 2020). Fig.
3 shows as example object detection via YOLOv5. Both detect-
ors could detect and classify up to 80 object classes achieving
real-time performance. In the experiment, we set the confid-
ence threshold to c0 = 0.25. The second component of the
pipeline, HE-Net, uses the estimated camera intrinsic matrix K,
distortion coefficients D and H3×3 matrix to assign the MLP
weights. We additionally introduce the ROI map shown in Fig.
7 in the HE-Net to reduce computation time and increase infer-
ence speed.

5. RESULTS

We discuss two different aspects of results generated by MOHE-
Net, the accuracy and speed. In either case the output of MOHE-
Net is predicted objects heights within ROI shown in Fig. 8. We
note that all experiments are conducted on NVIDIA Titan V.

In the first case study dataset, objects (such as bottles, chair,
sports ball) are statically placed on the ground (see Fig. 8).
Object height predictions and ground truths are summarized in
Table 1. As can be observed the errors for different objects
range from 0 to within 6 centimeters. We observed that, the
MOHE-Net with YOLOv5+OST as its object detection back-
bone has accurately estimated object heights no matter they are
tall or short.

Category Predicted Height1 Ground Truth1 Error1

Bottles2 22.4 20.3 +2.1
Chair 44 40 +4.0

Suitcase 53 48 +5.0
Sports Ball 25 25 0

Person 177 183 -6.0
1 In centimeter(s)
2 Averaging all bottles’ estimated heights.

Table 1. Object height predictions and ground truths

In case study II, the height estimation is performed sequentially.
Fig. 9 shows predictions registered on the ground truth for one
of the backbones used in the study. The statistical analysis for
all other backbones is tabulated in Table 2. We observe that
as the gait of the person is moving up and down as the person
walks our approach provided a range of height estimation with
a 5.09 cm mean error. The gait change is manifested in the plot
as a sinusoidal variation as shown in Fig. 10. Among the se-
quential predictions, there are several errors which we point out
with arrows in Fig. 10. The main reason for these errors is that
our approach relies on monocular camera, such that appearance
changes affect height estimation. Fig. 11 respectively shows
MOHE-Net estimated person’s heights. Low contrast between
person’s appearance and background and occlusion negatively
result into those abnormal predictions.

Category Mean1 Mean(%) Std1 Error Min/Max1

Person2 5.09 2.78 5.87 -19.0/14.0
1 Centimeters
2 The person in the dataset is 183 cm tall.

Table 2. Statistic Analysis

In case study III, vehicle mounted camera moves with the plat-
form. Region of interest simultaneously changes as platform
moving forward. Many objects comes in and out ROI, as shown
in Fig. 13. In each row, there are several vehicles within ROI
are estimated height. For instance, totally four vehicles within
red polygons are estimated height. From our perspective, in the
last row, the silver wagon looks close to its right one but higher
than the other two. Predicted heights displayed on in the blue
box in meters match our judgement.

The computational bandwidth for autonomous vehicles is con-
sumed by many tasks the vehicles is performing every second.
Hence, the speed of object height estimation is a key factor in
algorithm evaluation. Aside from the quantitative comparisons,
we also compare the speed of the entire architecture when the
object detector is changed in the MOHE-Net pipeline. The res-
ults for Faster r-cnn, YOLOv5 and its variants are shown in
Table 3. The table shows total parameter count, height estim-
ation error and speed of the pipeline respectively. The results
in the table are also ploted in In Fig. 12. The architecture with
lower error and faster speed is observed for MOHE-Net with
YOLOv5x+OST as object detection backbone and has real-time
performance.

Model Mean Error Speed FPS Params
(cm) (ms)

Faster r-cnn 7.52 83.45 11.98 -
YOLOv5s1 8.82 14.93 66.97 7.3M
YOLOv5m1 7.82 18.68 53.52 21.4M
YOLOv5l1 7.70 21.88 45.71 47.0M
YOLOv5x1 7.06 25.29 39.54 87.7M

YOLOv5x+TTA2 5.87 68.36 14.63 87.7M
YOLOv5x+OST3 5.08 37.87 26.40 87.7M
1 Normal test take image size 640 pixels.
2 Test Time Augmentation (TTA) increases the image size by about

30%. It typically takes about 2-3X the time of normal inference.
3 Original Size Test (OST) increase the image size to its original size,

which is 1280 pixels in our experiment.

Table 3. Speed Analysis

CONCLUSIONS AND FUTURE WORK

In this paper, we achieved object height estimation from mon-
ocular image sequence using a cascade of neural networks that
encodes the view geometry. The cascade architecture referred
to as the MOHE-Net is evaluated for its accuracy and speed in
autonomous vehicle setting and is observed to achieve state-of-
the-art accuracy. The proposed MOHE-Net cascade contains
an object detector network and a height estimator network and
perform real time estimation of height of all objects in the field
of view.
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Figure 10. Person’s estimated height over frame. Yellow line is ground truth.
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Figure 11. Three predictions scenes corresponding to the
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Figure 13. Platform moves and objects within the red polygons are estimated height. Heights are also displayed in the blue boxes in
meters, matching judgements we made on vehicles appearance.
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