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ABSTRACT:

Localization and navigation for autonomous underwater vehicle (AUV) has always been a major challenge and many situations
complex solutions had to be devised. One of the main approaches is visual odometry using a stereo camera. In this study, the
Intel T265 fisheye stereo camera has been calibrated and tested to determine it’s usability for localisation and navigation under
water as an alternative to more complex systems. Firstly the Intel T265 fisheye stereo camera was appropriately calibrated inside a
water filled container. This calibration consisting of camera and distortion parameters got programmed onto the T265 fisheye stereo
camera to take the differences between land and underwater usage into account. Successive the calibration, the accuracy and the
precision of the T265 fisheye stereo camera were tested using a linear, a circular and finally a chaotic motion. This includes a review
of the localisation and tracking of the cameras visual odometry compared to a ground truth provided by an OptiTrack V120:Trio to
account for scaling, accuracy and precision. Also experiments to determine the usability with fast chaotic motions were performed
and analysed. Finally, a conclusion concerning the applicability of the Intel T265 fisheye stereo camera, the challenges using this

model, the possibilities for low cost operations and the main challenges for future work is conducted.

1. INTRODUCTION

Performing reliable localization and navigation is well docu-
mented and investigated. But in highly unstructured underwa-
ter environments it remains very difficult. While localisation
and navigation in a structured environment can be easily ac-
complished by using a vision based approach, a laser based
approach or relying on the Global Positioning System (GPS),
these methods create significant challenges underwater. Local-
ization and navigation of an Autonomous Underwater Vehicle
(AUV) has to meet a lot of requirements to ensure the correct
movement of the robot in underwater environments. It is very
important to get reliable measurement in critical missions like
the detection of unexploded naval mines or mapping task in a
reef environment. Most techniques use an acoustic (Leonard et
al., 1998) or vision based approach (Dunbabin et al., 2006).

The Intel T265 is designed to capture the trajectory on land
through visual odometry. However, the goal is to be able to
use this stereo camera underwater as well. The main question
is to what extent this is possible and therefore also useful. In
this paper we look into the question of whether the Intel T265
can be adjusted by calibrating its fisheye camera so that it can
also be used for tracking underwater. And to what extent the
Intel T265 could be limited in its usability under water due to
problems that it also shows on land.

This paper evaluates the capability of the Intel T265 camera for
localisation and tracking in an underwater near range environ-
ment. It describes the experimental platforms, procedures and
then presents results for the reliability of the vision system. Fi-
nally, it evaluates the results for tracking and localisation with
the Intel T265 and examines the usability for underwater ap-
plications.

2. STATE OF THE ART

There are different approaches to localisation in an underwa-
ter environment. One of the difficult aspects of this endeavour
is that approaches that work on land not necessarily translate
that well into underwater environments. For example Global
Positioning System (GPS) will only work above water (Tarald-
sen et al., 2011), because of the disturbances under water, laser
based approaches tend to have difficulties as a result of the light
refraction.

One of the possibilities in this field lies with vision-based ap-
proaches of underwater localisation. But there are some re-
quirements to the successful use. Firstly the AUV has to travel
relative close to trackable features. Concluding that the visual
approach needs to be performed close to the bottom of the
ocean. Performing reliable localization and navigation is well
documented and investigated. But in highly unstructured un-
derwater environments it remains very difficult.

For the typical visual approach relatively clear shallow waters
and sufficient natural lighting is needed. Also the robot has to
be in a feature rich environment. It is most suited for about 1
m altitude above the ocean floor or near coral reefs. To eval-
uate the pictures of the cameras the detection of features is
needed. Features are a local, meaningful, detectable parts of
the image. The visual approach uses the Harris feature detec-
tion to automatically detect the features. This means the image
has to be filtered, the gradients of each pixel have to be com-
puted, a window around each pixel has to be constructed and the
determinants of the windows have to be computed. The Res-
ults are reliable and temporal stable features. After the features
are computed the algorithm searches for similar features using
the normalized cross correlation similarity measure (ZNCC).
Approximate epipolar constraints are used to prune the search
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Figure 1. Custom underwater camera housing for the Intel T256.

space and only the strongest corners are evaluated. If similar
features have been detected in both images of the stereo camera
and again one time step ahead in the next pair of pictures the
features create a 3 way match. Now these features get undis-
torted and their location is used to calculate the image motion.
The result of the differential image motion is now used to estim-
ate a feature’s three-dimensional position. This also calculates
the altitude above sea level. Now the motion of the vehicle is
predicted using an iterative least median squares method. This
results in a translation vector of the robot. The translation vec-
tor is now used to calculate the new position of the robot.

Another possibility is to use a SLAM Algorithm for the visual
approach. The main difference here is the fact that an IMU is
used in addition to the localization via visual odometry. In the
case that the visual odometry is not precise enough, this should
enable a correction to prevent errors. However, an IMU that is
too inaccurate can also have the opposite effect and lead to in-
accuracies and drifts due to the fusing of the data. A typical at-
tempt to counteract this is loop closing in the SLAM algorithm.

A fisheye camera is particularly suitable for underwater as well
as above water odometry. The main advantage is the large field
of view, which allows the camera to extract more features. This
is particularly advantageous in an underwater environment, as
the amount of features can be difficult. A disadvantage, how-
ever, is the great distortion of the camera, as this is required for
a good camera calibration. Otherwise, the distortion would lead
to great uncertainty and simply lead to error.

There are many different ways to calibrate a camera. In order
to decide which method is best, you first have to know the type
of camera and the distortion of the camera in order to select a
suitable one. In our case it is a stereo fisheye camera and the
calibration of the stereo fisheye camera in OpenCV is particu-
larly suitable. The algorithm implements not only the type of
camera but also the type of distortion required.

3. EXPERIMENT SETUP

The Experiments have been performed in an 7m by 2.4 by 2.4
water filled container (van der Lucht et al., 2019) The camera
used is an Intel T256 with an specially designed housing to pro-
tect the camera from water. The housing, seen in Fig. 1, consists
of a PET plastic shell with an acrylic glass flat port interface.
The T265 is a stereo camera from Intel. It has a size of 108 x
25 x 13mm and weighs about 55g. It was specially developed

Figure 2. Stereo camera view of the calibration process.

for visual tracking in space. For this, the T265 has two fisheye
cameras that can take pictures. It is also equipped with an In-
tel® Movidius ™ Myriad ™ 2 VPU, which already calculates
a highly optimized visual SLAM on the camera. This leads to
a very short delay and very efficient energy consumption. The
user can only access the results with software developed by IN-
TEL. These results include a relative position of the camera to
its starting position. The so-called visual odometry. This en-
ables the camera to be precisely positioned in the room as soon
as there are enough clues for the VISUAL-SLAM. The camera
also outputs a stream of both of its camera images. In addi-
tion, a gyroscope and an accelerometer are installed, the data of
which can also be read out.

The experiments are partitioned in two phases. Because the
camera is actually intended for use in air, it’s necessary to calib-
rate the camera first. Once the successful calibration the second
part of the experiments is the validation of the resulting accur-
acy underwater and the comparison between the calibrated and
non-calibrated camera.

3.1 Calibration Phase

The occurring refraction on the air-glass interface of the under-
water housing requires a new calibration of the camera para-
meters. A correct and high quality calibration of the camera
with special attention to the refraction parameters For this a
calibration structure is placed into the water. We use two dif-
ferent types of calibration targets for this type of applications.
First one is an planar chessboard pattern and the second one is
a corner shaped AprilTag pattern. To ensure the maximum pre-
cision, both patterns are float glass plates who are direct printed
with the associated pattern.

The images during the camera movement in front of the calibra-
tion patterns, seen in Fig. 3, are captured by an notebook under
usage of the ROS integration from the provided Intel Software.

3.2 Validation Phase

For the validation of the accuracy using the new calibrated Intel
T256 underwater, we placed some markers on top of the hous-
ing and used an external tracking system to capture a ground
truth trajectory. The tracking system we used is the OptiTrack
V120:Trio. This is mounted on an tripod and is placed next
to the container. In Fig.4 the intel housing with the mounted
markers is shown. The markers are above the water surface
during the whole experiments. For the experiments we used
three different moving patterns, linear, circular and chaotic. All
this movements have been performed with both, the calibrated
and non-calibrated camera. This allows us to compare the the
calibrated vs. non-calibrated camera to show the improvement
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Figure 3. Intel T256 moved in the water above the calibration
pattern during the calibration process.

Figure 4. OptiTrack V120:Trio markers mounted on top of the
housing to capture ground truth data during the experiments.

through the calibration and validate both against the OptiTrack
ground truth.

4. METHOD

First of all the Intel T265 has to be integrated into the sys-
tem. The experiment uses a Raspberry PI 4 Model B, that
runs a linux distribution that interfaces the camera both with
the program provided by Intel and a ROS environment. The
Intel T265 creates odometry data using an proprietary Visual-
Inertial-SLAM computed on two fisheye cameras and an IMU.
The Intel T265 is placed in a specially manufactured housing
for water protection, seen in Fig. 1, that later will be mounted
to a Bluerobotics BlueRov2.

First it is necessary to recalibrate the Intel T265 for the us-
age underwater to compensate the refraction at the air-glass and
glass-water interfaces of the T265 housing, seen in Fig. 1. To
achieve this, we take pictures, seen in Fig. 2 of a planar chess-
board and a 3d AprilTag (Olson, 2011) calibration target in a
water filled container (van der Lucht et al., 2019). The calib-
ration is done by the OpenCV fisheye stereo implementation
also used Abraham and Forstner (Abraham and Forstner, 2005)
method. Ensuring we validate the quality of the resulting cam-
era calibration.

This part explains the fisheye stereo calibration method of the
Abraham and Forstner (Abraham and Forstner, 2005) which is
also implemented by OpenCV. The Method uses traditional
algorithms from the field of photogrammetry andc omputer vis-
ion for calibration of fish-eye stereo”. (Abraham and Forstner,
2005) First of all in the first step pictures have to be taken and
automatic measurments have to be calculated. This means you
have to define a plane with target points that are known. Typ-
ical example are a chessboard pattern and AprilTags. In our
case both are printed on a glass plate. Then several images of
these planes have to be taken using the T265 camera. It must
be ensured that all images are taking using the raw images from
the Intel T265. Because the normal pictures are already cal-
ibrated through the calibration an Intel T265 get at the end of
its production process. If this images would be used only the
differences between the calibrations will be calculated. We en-
sure that the planes in the pictures cover nearly the whole field
of view and with different distances. The basic Math fo the
fisheye model will be described in the following part.

This basic equation describes the coordinate vector x(c) of a
point x in a reference frame that equals the a Point X in the
world coordinate frame after the application of an Rotation R
and a Translation T’

z(c)=RX +T , ey
with the coordinates

z=Xc(l), y=Xc(2), z=Xc(3) . 2)

The pinhole projection coordinates of the point z that is re-
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strained though the pinhole model by

x
a=—
z
_Y
b= 3)
r?=ad>+ b
0 = atan(r) .
The fisheye distortion is expressed by
7(0) = k10 + k20> + k30° + k30" + ... 4)
and the distorted point [z'; y'] is defined by
' = (0(d)/r)a
4)

For the last step the coordinates get transformed into their re-
spective pixel coordinates. These are described by [u; v] with

u= f(a)(@ + ay') + c(x)

6
v=f(z)y +cly) . ©

The next step is to approximate the values through direct solu-
tions. For this the software will find the points if interests in
the image that very from method to method, but have to be on a
plane. By processing a a modified Direct Linear Transformation
algorithm for each image a approximate The image processing
software performs the point numbering and measurement auto-
matically. Therefore, groups of four points are built twice on
each plane allowing an exterior and interior orientation are es-
timated, considering the equidistant projection model.

Now the camera can be calibrated. Using the approximated
points from the bundle adjustment non-linear iterative selfcal-
ibrating bundle adjustment the following can be calculated at
once:

e intrinsic parameter of the both cameras

e the extrinsic parameters

the relative stereo parameters

e estimated point coordinates

This algorithm minimizes the retrojection error taking into ac-
count the real measurements as well as the projection model.
With the help of the intrinsic and extrinsic parameters can cal-
ibrated There are two Calibrations done in this paper:

4.1 Chessboard Calibration

One way to calibrate the cameras is to use chessboard patterns.
The method used here already calibrates the cameras as a con-
nected stereo pair. For this purpose, several pairs of images
are first recorded, each showing the chessboard pattern in the
largest possible version. It is important to record the chessboard
pattern in as many positions as possible and to avoid excessive
changes in exposure in order to ensure the visibility of the pat-
tern. With the help of these image pairs, the algorithm now cal-
culates a calibration that is as precise as possible. This Method
uses the edges of the chessboard pattern as the measured points
that than are used in the above described algorithm.

4.2 AprilTag Calibration

The other way to calibrate the cameras is to use AprilTags. The
method used here already calibrates the cameras as a connected
stereo pair. For this purpose, several pairs of images are first
recorded, each showing the AprilTag pattern in the largest pos-
sible version. It is important to record the AprilTag pattern as
clearly as possible and to avoid excessive changes in exposure
in order to ensure the visibility of the pattern. With the help
of these image pairs, the algorithm now calculates a calibration
that is as precise as possible. These method uses the exact po-
sition of the AprilTag for the real measurements in the above
described algorithm.

4.3 Distortion

The Distortion used in the calculations is the one proposed by
Kannala and Brandt. (Kannala and Brandt, 2004) It uses a com-
bination of radial distortion and tangential distortion. With the
overall distortion

7(0) = k10 + k20” + ks0® + k30 + ..., )
the radial direction

5(0,0) =110 + 126° + 156°)

8
(i1cosp + i2sine + i3c0s2¢ + i45in2¢p) ®)
and tangential direction
5(0,9) =(m10 + m26° + m30°) ©

(jicosp + jasing + jscos2¢p + jasin2p) .

This distortion is needed for the Intel T265 and can be generated
by the OpenCV Software. This distortion also gets calculated in
the calibration and contains like shown a radial and tangential
coefficient taking into account that fisheye cameras are never
have a perfect radial distortion.

In the next step, the calibrated camera is placed underwater and
the tracking and localisation is activated. The trajectory and all
odometry data is logged. Ground truth data to validate the ac-
curacy of tracking and localisation of the Intel T256 under wa-
ter is captured using an external OptiTrack V120:Trio system.
The needed markers for the external tracking system are placed
on the outside of the housing and are always above the surface
of the water. This allows to record the trajectory of the Intel
T265 with high precision. The calibration between the coordin-
ate systems of the camera and the OptiTrack System is done by
an hand-eye calibration using an 3d AprilTag calibration target.
Thus it is possible to compare the trajectories, created by the
Intel 265 and the OptiTrack system and validate the accuracy
of the Intel 265 for the usage under water. For better compar-
ability we also record data in air to compare the accuracy of the
camera under normal conditions in air with the accuracy after
new calibration in water.

5. RESULTS

The results are structured in three parts according to the three
different movement patterns. For each movement pattern there
is a calibrated and a non-calibrated data record, turquoise col-
oured in the figures. Moreover ground truth data, captured by
the OptiTrack tracking system and coloured purple in the fig-
ures, exists and will be compared to the computed movement
by the Intel T256 camera.
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Figure 5. Tracking path for linear movement with calibrated

camera.
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Figure 6. Tracking path for linear movement with non-calibrated
camera.

5.1 Linear Motion

The first experiment uses a linear motion and shows that both
the calibrated and the non-calibrated camera are capable of
tracking this simple motion. But two major differences are
shown in between Fig. 5 and Fig. 6. While in Fig. 5 the path
is very straight and linear, one can see a lot of noise in Fig. 6.
This is mainly due to the calibration of the camera, since the
de-scaling of the image enables a clearer image and thus bet-
ter tracking behaviour for the camera. Furthermore you can see
a difference in the scaling of both paths. Covering the cam-
era with a glass plate increases the need for proper calibration,
while the water increases the focal length. This leads to an non-
calibrated camera calculating a shorter distance than the real
distance.

5.2 Circular Motion

The second experiment features a circular motion to simulate
a more complex movement. As seen in 7 and Fig. 8 both are
rather successful in tracking the circular motion. But two major
differences are shown in between Fig. 7 and Fig. 8. For one
Fig. 8 shows again a lot more noise in the path data, but Fig. 7
also shows noise. The noise in Fig. 7 is a result of the proper-
ties of the T265. The IMU inside the T265 is not very accurate.
If you move the camera to abruptly a SLAM-Error inside the
camera is produced. This result in a big uncertainty that has
to be counteracted by an good calibration or will be ultimately
resolved by the loop-closing feature of the camera. This ef-
fect is shown more detailed in the next subchapter. While the
calibrated path is straight one can see a lot of the noise in the
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Figure 7. Tracking path for circular movement with calibrated

camera.
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Figure 8. Tracking path for circular movement with
non-calibrated camera.
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Figure 9. Tracking path for free movement with calibrated
camera.

non-calibrated path. This is again mainly due to the calibra-
tion of the camera, since the de-scaling of the image enables a
clearer image and thus better tracking behaviour for the camera.
Another indicator again is the scaling of the path. While both
trajectories continued for a similar length. The non-calibrated
path remains shorter than the calibrated one.

5.3 Chaotic Motion

The last experiment combines the linear and circular movement
with some quick rotations. It shows that the stability of the
camera is the key for a successful tracking. Both experiments
create several SLAM-Error for both the calibrated and the non-
calibrated camera. As shown in Fig. 9 and Fig. 11 the calibrated
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Figure 10. Tracking path for free movement with non-calibrated
camera.
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Figure 11. Zoomed out tracking path for free movement with
calibrated camera.

camera shows a lot of SLAM-Errors but most of them get con-
tained within a reasonable radius and resolve back to the traject-
ory. Only one time the SLAM-Error is so big that the trajectory
drifts about 60 meters and has to be catched by the loop clos-
ing. The non-calibrated camera in Fig. 10 and Fig. 12 has even
bigger problems dealing with the SLAM-Errors. Every SLAM-
Error dooms the trajectory. There are two SLAM-Errors that get
resolved by the loop-closing but the 3rd SLAM-Error is fatal.
Without the proper calibration the error can not be stopped and
the trajectory shifts about 100 meters away and remains far of
the actual trajectory.

5.4 Error Sources

The Main source of error are the SLAM-Errors created by the
cheap IMU built into the T265. Earlier Version of T265 Soft-
ware where even more unreliable, most of the bigger SLAM-
Errors would result in a diverge into NAN values. Intel fixed
some of the problems in newer software version but the prob-
lem still exists in rare cases. In the version used in this ex-
periments most of the SLAM-Errors can be catched by a good
camera calibration.

In total the calibration absorbs the refraction effects by chan-
ging primarily the focal length and distortion parameters. This
makes for a significant change of tracking behaviour for the
T265 camera. First data suggests that the camera calibration
increases accuracy of the measurements. Using these measure-
ments it is possible to track the trajectory reliable for short dis-
tances. This will enable the system to operate as a valuable
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Figure 12. Zoomed out tracking path for free movement with
non-calibrated camera.

component for a future structured light mobile mapping sys-
tem. But the approach also requires enough trackable features
to work properly.

But there are additional error sources that have to be considered.
The T265 cameras internal V-SLAM algorithm may fail result-
ing in wrong trajectory data. Unfortunately, this error cannot be
fixed by the calibration as it is a software error in the Intel soft-
ware that runs on the T265. This is checked using the IMU and
mitigated by resetting the camera tracking. Consequentially the
results show that the T265 is capable to operate as the localisa-
tion and tracking system for underwater applications.

5.5 Conclusion

The Experiments show that the proper calibration of the stereo
camera of the T265 has a stabilizing effect on the trajectories
the camera can track. The fisheye camera model implemented
by Intel for this camera is able to absorb the refraction at the air-
glass and glass-water interfaces. Thereby the calibration can
reduce the noise for the trajectories in a significant way and
makes the T265 usable for underwater applications. There are
just some small misalignments between the ground truth and the
computed path left. But the limiting factor of the T265 is the
inaccuracy with the IMU. This error leads to many error inside
the tracking algorithm. The calibration can stabilize a lot, but
not all of this SLAM-Errors. The main achievement is the the
consistency in scale that can be reached with the calibration.

6. FUTURE WORK

Till this point the experiments using the T265 have been con-
ducted in a very small scale. So the next logical step is to valid-
ate the usability of the setup in a larger scale and over a longer
period of time. Most interesting is how the camera can scale
over a longer path, what the optimal height over ground is and
how fast the AUV can move without losing the trajectory. The
functionality will be tested with help of a BlueRobotics Blu-
eROV2. The laptop is then replaced by a small mobile pro-
cessor unit, which will also be under water. A Raspberry Pi 4.0
was selected for this task.
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