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ABSTRACT:

Background subtraction aims at detecting salient background which in return provides regions of moving objects referred to as
the foreground. Background subtraction inherently uses the temporal relations by including time dimension in its formulation.
Alternative techniques to background subtraction require stationary cameras for learning the background. Stationary cameras
provide semi-constant background images that make learning salient background easier. Still cameras, however, are not applicable to
moving camera scenarios, such as vehicle embedded camera for autonomous driving. For moving cameras, due to the complexity of
modelling changing background, recent approaches focus on directly detecting the foreground objects in each frame independently.
This treatment, however, requires learning all possible objects that can appear in the field of view. In this paper, we achieve
background subtraction for moving cameras using specialized deep learning approach, the Moving-camera Background Subtraction
Network (MBS-Net). Our approach is robust to detect changing background in various scenarios and does not require training on
foreground objects. The developed approach uses temporal cues from past frames by applying Conditional Random Fields as a part
of the developed neural network. Our proposed method have a good performance on ApolloScape dataset (Huang et al., 2018) with
resolution 3384 × 2710 videos. To the best of our acknowledge, this paper is the first to propose background subtraction for moving
cameras using deep learning.

1. INTRODUCTION

Primary goal of background subtraction is to find moving ob-
jects based on their differences from the salient background
which is learned from a stream of images. This task can be
considered as classification of each pixel as background or fore-
ground that can be designated as a pixel-wise binary semantic
segmentation task. Generalizing this binary segmentation to
more than two classes, aka. semantic background subtraction,
has shown to improve the performance of background subtrac-
tion. These methods aim to finally label pixels into a num-
ber of moving object regions (Cioppa et al., 2020, Braham et
al., 2017). Apart from background subtraction, another body
of work directly detect the objects for each frame (Yokoyama
and Poggio, 2005). These object detection methods are widely
used in low-level computer vision tasks such as video surveil-
lance, robotics and authentication systems. Modern object de-
tection methods seek to locate object instances by learning pre-
defined categories from images (Liu et al., 2020, Redmon et al.,
2016, Redmon and Farhadi, 2017, Redmon and Farhadi, 2018).
Considering that there can be thousands of different object cat-
egories, these methods cannot be generalized. Increasing these
known object categories indefinitely not only increases compu-
tational cost but also the complexity of the model used to learn
these categories. In fact, for some problems, knowing the cat-
egory of the object is not be important: for autonomous vehicle
scenarios, obstacles on the roads are important and they can be
in any form from among thousands of different categories of
objects one can think of. Hence, distinguishing between back-
ground and foreground becomes more important and is a liab-
ility for autonomous driving. Especially, during autonomous
driving, the vehicle cameras provide images that contain back-
ground region build up of sky, buildings, lanes, trees and the

road itself among others. One can arguably conjecture that the
number of categories appearing in the background is signific-
antly limited compared to that of object categories. Therefore,
learning the background, hence the background subtraction is a
more efficient and feasible task. In this work, we model the
background using convolutional neural networks (CNN) that
has been successfully applied to image segmentation among
others to model complex and recessive relationships between
the inputs and outputs (Vemulapalli et al., 2016).

Labeling pixels as background or foreground may introduce
spurious regions and noisy labels that can be reduced by im-
posing spatial and temporal regularization. Conditional Ran-
dom Fields (CRFs) has been used generally for spatial regu-
larization purposes as a probabilistic graph model (Lafferty et
al., 2001). While there have been other regularization solu-
tions introduced in the past, such as Hidden Markov Models
(HMMs) (Krogh et al., 2001) and stochastic grammars (Zhu et
al., 2007), CRFs offers a directed probability graph model to
relax strong and causal dependence assumptions between cur-
rent frame and its previous adjacent frame(s). In this study,
we introduce the CRFs as temporal regularization to ensure the
background information learned in the previous frames is car-
ried over to the current CNN output. This introduction is critical
as the past data contains important temporal cues that help re-
fine the current result which in return would improve the back-
ground subtraction accuracy. Additionally, adopting CRFs as
a CNN layer would keep the end-to-end solution of the CNN
based approaches.

Another important consideration in background subtraction is
the loss function minimized. In a typical Gaussian Mixture
Model, maximum likelihood minimization estimates the mix-
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ing parameters and the model parameters. In neural networks
a number of generic differentiable loss functions have been in-
troduced. While they generally work well, they do treat hard to
learn or easy to learn examples the same. Focal Loss introduced
in (Lin et al., 2017) is an advanced loss function by reshaping
the standard cross entropy loss. Focal Loss assigns dynamic
weights to all samples. For easy examples with high confid-
ence, it down-weights the loss. This treatment avoids easy to
learn examples that are dominant and makes the loss function
focus on training hard examples so that to accelerate network
convergence and improve network accuracy at the end. Hence,
in our approach we adopt Focal Loss for learning process

Our main contributions to background subtraction are summar-
ized as follows:

– Most background subtraction approaches require station-
ary cameras. Our approach is among the few that performs
background subtraction for moving-camera where the sa-
lient image regions constantly change;

– We introduce a temporal regularization through CRFs layer
to rectify the end-to-end CNN solution by modeling inter-
actions between previous frames and current CNNs out-
put. CRFs layer in MSN-Net has improved the perform-
ance from 68.35% to 76.06% on foreground and 96.64%
to 97.53% on background.

– We apply Focal Loss to assign all training samples dy-
namic weights to avoid easy examples establishing dom-
inance over the loss.

– We propose MBS-Net that achieves impressive results on
the benchmarks of ApolloScape dataset. More specific-
ally, we achieve 97.53% Mean IoU on background and
76.06% on foreground.

The rest of this paper is organized as follows. Section 2 reviews
recent related work in background subtraction. Section 3 states
the problem we have on current approaches. Section 4 detailed
illustrate our proposed MBS-Net. Section 5 shows our experi-
ment results and the ablation study of our proposed MBS-Net.

2. RELATED WORK

Background subtraction has been an active area of research for
a long time. There are several baseline methods such as the
Gaussian Mixture Model (Zivkovic, 2004), Principle Compon-
ent Analysis (Guyon et al., 2012) and its variants, Kernel Dens-
ity Estimation (Mittal and Paragios, 2004), and Mean Shift (Pic-
cardi, 2004). While these techniques have been used over the
past two decades they do not typically apply spatial and/or tem-
poral regularization to labeled pixels. Zamalieva (Zamalieva et
al., 2014) introduced the motion, appearance, temporal and spa-
tial regularization in the labeling cost which they minimized us-
ing graph-cut. While their method works with nominal camera
motion it suffers from larger camera motions due to the optical
flow estimation step that requires small camera motion.

Aside from more traditional background subtraction algorithms,
deep learning have also been used in more recent papers. These
techniques build on the development of CNNs over the past dec-
ade. While there is a large body of work on object detection and
tracking in the published literature, we will cite only a few as
representatives of their categories as they relate to background

subtraction. Considering background subtraction provides re-
gions of moving objects, one can use deep learning to detect
and track the objects directly. Wang (Wang et al., 2019) pro-
posed object tracking aiming at predicting trajectories of mul-
tiple targets in video sequences. Girdhar (Girdhar et al., 2018)
performs object detection in video by building on achievements
in human detection and video understanding. Alternative to ob-
ject detection and tracking another approach one can consider
is semantic scene segmentation. In (Long et al., 2015, Ron-
neberger et al., 2015, Chen et al., 2017), authors semantically
segment an image which provides enclosing boundaries of the
objects in the scene as well as the clutter region which can be
vaguely considered as the background. While the goal is dif-
ferent, video scene parsing can also be considered as a way of
detecting objects in the video. Among others, scene parsing
can be performed based on optical flow estimation (Gadde et
al., 2017, Kroeger et al., 2016), recurrent neural networks (Ho-
chreiter and Schmidhuber, 1997, Fayyaz et al., 2016) and con-
volutional networks (Shelhamer et al., 2016).

For most training datasets, imbalance between easy and hard
examples, as well as, negative and positive examples are com-
mon problems. These two problems always happen for data-
sets that can be used in moving-camera background subtraction
where the background mostly is composed of sky and buildings.
A common treatment is to modify and customize loss function
to focus the loss on the harder training examples. In recent
years, some novel approaches have been proposed to release
this imbalance problem including Online Hard Example Min-
ing (Shrivastava et al., 2016), gradient harmonizing mechanism
(Li et al., 2019), and Focal Loss (Lin et al., 2017) introduced
by Lin et al.. Those proposed loss functions are originally pro-
posed for object detection, which has serious imbalance as only
few proposals contain objects over millions of candidate pro-
posals. Therefore, we here firstly introduce their approaches
to our background detection problem. Experiments indicate it
benefits our training process as well as the network predicted
output.

Our proposed MBS-Net in the paper, modifies the BiSeNet net-
work architecture(Yu et al., 2018). The BiSeNet generates one-
stage output from two paths within the architecture, the spatial
path and the context path, to preserve image size and provide
large receptive field. MBS-Net shares three main modifications.
First, we use Focal Loss during training training process, which
distributes dynamic weights for all examples and makes hard
examples to be dominant during training. Then we introduce
upsampling of fused feature map(s) back to the original input
size. Finally, we add CRFs to the network to achieve temporal
regularization by sharing previous frames labeling constraint
with current CNN output.

3. PROBLEM STATEMENT

We seek to achieve background subtraction by using vehicle
embedded cameras. As the vehicle moves, the camera sees a
new scene and the background changes. The motion of the cam-
era is dependent on the vehicle motion which can be forward or
backward while turning or going straight. These motion types
provides geometric conditions on the types of images acquired.
In Figure 1, we show an example road scene acquired from a
vehicle mounted camera. The same figure also shows the back-
ground reference in gray color where the labeling criteria for
background include sky, buildings, road, lane signs and trees.
The remaining regions including pedestrians, vehicles in the
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reference image correspond to other objects indicated as fore-
ground.

Figure 1. Top image is an example frame acquired from a
camera mounted on a vehicle showing the road scene from
vehicle’s perspective. The bottom image is a background

reference with pixel-wise labels; gray part indicates background
and black part indicates foreground.

A sequence of frames acquired from the vehicle camera con-
tains redundancy and temporal cues that provide important con-
straints on the solution. Fusing the temporal cues mainly in-
troduces two advantages. First, temporal cues carry semantic
information, when utilized would improve the background sub-
traction performance. Second, it regularizes the labeling pro-
cess and provides coherency that smooths the generated labels
in time axis. The proposed semantic segmentation network,
MBS-Net, and others in the literature, do not consider regular-
ization in spatial and time domains. The vanilla application of
these approaches to the background subtraction problem, where
the acquired image sequence contains visual shakes, creates
many spurious regions that are incorrectly identified as back-
ground or foreground. These spurious labels also are observed
due to other reasons which can be removed using the temporal
information. Based on these advantages of the temporal inform-
ation, MBS-Net introduces the temporal regularization in the
background estimation step.

4. MOVING BACKGROUND SUBTRACTION
NETWORK ARCHITECTURE

The proposed MBS-Net has Convolutional Neural Network
BiSeNet (Yu et al., 2018) as its backbone architecture. The use
of CRF introduces the temporal regularization to background
estimation and overcomes spurious regions and the effects of
camera shakes during vehicle is in motion. MBS-Net also ad-
opts Focal Loss in order to tackle the sample imbalance prob-
lem.

4.1 Convolutional Neural Network Architecture

The MBS-Net is built on the BiSeNet architecture. The BiSeNet
includes a spatial path, a context path , an attention refinement
module and a feature fusion module. In this paper, the temporal
regularization is introduced by modifying this architecture. The
structure of the MBS-Net architecture is illustrated in Fig. 2.

In this architecture, the spatial path preserves the spatial size of
the original input image. It extracts feature maps that are 1/8 of
the original image size by cascading three 2D convolution lay-
ers with stride = 2. Therefore, the spatial path encodes spatial
information with many details preserved in large sizes feature
maps. In contrast to spatial path, the context path perceives
sufficient details for large receptive fields at the pixel level.
With respect to the consideration of having large receptive fields
versus high computational cost, we adopted light-weight mod-
els of Xception(Chollet, 2017) and MobileNet(Howard et al.,
2017). Once the embedding is completed, the attention refine-
ment module refines the extracted context by integration of spa-
tial and contextual information. This step is followed by the
feature fusion module that integrates the two paths and encodes
the integrated feature maps back to input image size.

4.2 Conditional Random Fields

The architecture introduced in Fig. 2 contains a specialized
fully connected layer operating on the time axis to ensure con-
sistency in labeling for the image sequence. This fully connec-
ted layer acts as CRF that models the interaction between the
current frame and a set of previous frames. In context of deep
learning, CRFs have been used to improve spatial model inter-
actions between respective input image and output labels (Chen
et al., 2017). While there are similarities, our approach to CRF
is different and they model the interactions in time axis. This
application requires changes to the model and the kernels used.
Specifically, the kernels in our work become:

k(fi, fj) =w(1)exp(−|Pi − Pj |
2

2Θα
2 − |li − lj |

2

2Θβ
2 )+

w(2)exp(−|Pi − Pj |
2

2Θγ
2 )

(1)

where the first kernel models temporal interactions where the
pixels (denoted as P ) and past labels (denoted as l) are used;
and the second kernel models spatial interactions. The hyper
parameters Θα, Θβ , Θγ control the ”scale” of the kernels and
remains constant on training. One can observe that the larger
these parameters are, the more likely the corresponding fea-
tures get ignored. w(1) and w(2) are compatibilities, deciding
how much is learnt between the two separate kernels. The lar-
ger the compatibility is, the more its corresponding kernel gets
weighted.

4.3 Focal Loss

Modern object detection mainly has two sub-branches includ-
ing one-stage and two-stage approach. In two-stage approach,
the first stage generates a sparse set of candidate proposals and
the second stage classifies them. One-stage approach combine
the above two stages as one at the same time. Thus one-stage
object detection has an extreme candidate location imbalance
between object and non-object samples on training. These de-
tectors would evaluate 104 − 105 candidate-proposals but only
few of them contain objects. Similar to the dilemma one-stage
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8x Bilinear 
Interpolation
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(b) Attention Refinement Module

(c) Feature Fusion Module

(a) MBS-Net Architecture

Figure 2. Overview of MBS-Net Architecture. (a) MBS-Net Structure including temporal regulation; (b) attention refinement module
structure (c) feature fusion module structure.

object detection faced with, we also need to tackle the sample
imbalance problem. In our training dataset, the ratio of back-
ground and foreground samples reach 10 : 1 or so. The focal
Loss is originally designed for one-stage object detection (Lin
et al., 2017), which has a better trade-off between speed and ac-
curacy compared with two-stage methods. Traditionally, wei-
ghted cross-entropy loss function in (2) is applied in classifica-
tion problem:

CE(pk) = −αklog(pk) (2)

where pk (pk ∈[0,1]) represents softmax probability of the sample
belonging to ground-truth class k and αk (αk ∈[0,1]) specifies
predefined weight of class k. While α balances the contribu-
tion of background and foreground examples, all samples in
the same class are still of same significance, no matter how
easy/hard those samples are. As training going further and
deeper, the easily classified pixels grow up to be the majority
of the loss and will dominate the back-propagation gradients.
This could impede even stop neural networks learning dataset.
Lin et al. (Lin et al., 2017) proposed Focal Loss which intro-
duced dynamic weights for all samples to reshape the loss as:

FL(pk) = −αk(1− pk)γ log(pk) (3)

where γ is focus parameter γ ≥ 0. Focal Loss is able to down-
weight easy pixels as probability pk get close to 1. For example,
when γ=2, a pixel k classified with pk=0.9 would contribute the
loss just 1/100 compared with that in CE loss. The pixel contri-
bution keeps almost same when pk → 0. Therefore, by reshap-
ing CE loss, Focal Loss could adjust hard-classified pixels to be
dominant of the loss. Specially, FL loss is equivalent to CE loss
when γ=0.

5. EXPERIMENTS

In our implementation, we introduced the Xception39 into Spa-
tial Path of BiSeNet. Using this code with other changes includ-
ing Focal Loss, CRFs temporal regulation layer and Deconvo-

lution upsampling technique, we evaluate its performance on
ApolloScape road02 seg dataset, which is avaiable from Apol-
loScape website. It contains 25 snippets and 11435 continu-
ous frames in total. We manually divided them into training,
validation and testing datasets, which respectively have 7923,
1200 and 2312 frames. Besides, all frames are fine annotated
have a resolution of 3, 384 × 2, 710, in which each pixel is
annotated to 25 different predefined labels by 8 groups, listed
in Table 1. In Section 5.1, we introduce ApolloScape data-

Category Class
Sky sky

Movable objects car, car group
motorbicycle, motorbicycle group

bicycle, bicycle group
person, person group

rider, rider group
truck, truck group

bus, bus group
tricycle, tricycle group

Flat road
sidewalk

Road obstacles traffic cone
road pile

fence
Roadside objects traffic light

Void pole
traffic sign

wall
dustbin

billboard
Building building

bridge
tunnel

overpass
Natural vegetation

Table 1. Class Definitions

set and provide experiment details. In section 5.2, we report
Mean-Intersection-over-Union (mIoU) accuracy and frame(s)
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per second (fps) speed results on the ApolloScape testing data-
set. At the end, Section 5.3 investigates the effect of fully con-
nected CRFs, Focal Loss and Bilinear Interpolation Upsampling
approaches by ablation study.

5.1 Implementation details

ApolloScape datasets are first released by Baidu Research con-
taining 140K time dependent images and corresponding semantic
pixel-level labels. These datasets are collected in various cit-
ies in recent years in China, aiming to increase its variability
and complexity of urban street views(Huang et al., 2018). Each
frame is acquired one meter apart with the equipped vehicle
keeping velocity of 30 km/h. All frames in each snippet are
time dependent. Considering that the goal of this paper is to de-
tect background and foreground regions from images acquired
by a moving camera, we fuse all classes into background and
foreground; such as sky, building and road become background
and denoted as 1; and everything else including all moving ob-
jects become foreground and are labeled as 0.

In our tests, traditional mean subtraction and standard normaliz-
ation methods are not used due to the fact that the batch normal-
ization(Ioffe and Szegedy, 2015) layers normalize feature maps
inside the mini-batches. There are over 11k frames in our pre-
processed ApolloScape dataset. This rich set of fine-annotated
frames removes the typical requirement for traditional data aug-
mentation such as random flip and random crop. Therefore, we
only employ a sequential crop and resize operations including
cropping frame resolution from 3384 × 2710 to 960 × 1600
and resizing it to 240 × 400 to keep the object shapes, cut the
computational cost and save GPU memory.

Using this dataset, we implemented the MBS-Net architecture
which contains three convolutional layers with stride=2 in its
Spatial Path, and a pretrained Xception39 model in Context
Path. The model uses Attention Refinement Module and Fea-
ture Fusion Module (FFM) to refine and fuse feature maps gen-
erated from the two paths. The output of FFM is 1/8th of the
input image. The bilinear interpolation is then used to enlarge
the output map back to the original image size. Finally , CRF
layers are enforced as a temporal regularization layer within
MBS-Net and they model interactions between current frame t
and previous n frames. In the experiment, with the considera-
tion of short-time dependency and long-time independency of
video frames, we set n=1 and repeat the boundary frames within
each snippet. Note that, the CRFs layer is only activated during
testing.

Our implementation uses Adam optimizer with initial learn-
ing rate η0 = 3e−3, and applies ”step-wise decay” learning rate
strategy into training process, where the initial learning rate de-
cay with power 0.9 every 2 epochs η = η0 ∗ 0.9b

n
2
c. The Focal

Loss is initialized with α0=0.75, α1=0.25 and γ=1. Mini batch
size is set batch size=8 due to GPU memory limitation.

In testing phase, we use use crf to decide whether activating
CRFs layer or not. Once use crf =True, CRFs would be em-
ployed with predefined hyperparameters w(1)=0.5, w(2)=3.5,
Θα=Θγ=(2,2) and Θβ=2. Those hyperparameters are obtained
by our empirical studies.

We note that training and testing implementations are conduc-
ted with PyTorch on NVIDIA Titan V.

5.2 Results

The computational bandwidth autonomous vehicles is constraint
due to other tasks the vehicles is performing every second. Hen-
ce, the speed becomes a key factor to algorithm evaluation.
Aside from the quantitative comparisons, for this stated reason,
we conduct experiment to compare different backbones archi-
tectures shown in Table 2. In our test, the fastest results are
optained at 305fps using ResNet18 as the base-model.

In Table 2, we compare the speed of MBS-Net with several dif-
ferent popular basemodels. We count MBS-Net total paramet-
ers under each basemodel, as well as its speed with and without
activating CRFs layer respectively. All experiments are con-
ducted on NVIDIA Titan V.

Base-Model Params Num Speed1 Speed with CRFs2

(fps) (fps)
GoogleNet 8,784,290 162.3 3.2
Xception39 28,019,986 187.2 3.3
MobileNet 4,279,034 190.7 3.2
ResNet18 12,410,754 305.3 3.6
ResNet34 22,518,914 224.5 3.2
ResNet50 31,246,466 184.0 3.3

ResNet101 50,238,594 114.6 3.3
1 These results are testing the speed without activating fully connec-

ted CRFs.
2 Fully connected CRFs layer is activated and final output is evaluated

on current network output and previous 1 frame.

Table 2. Speed Analysis

For all experiments in Table 2, input image has the resolution
of 240*400 for fair comparison. In this speed experiment, we
don’t apply any loss function or measure matrix for simulating
real-scene practice.

Aside from achieving high throughput, we have also achieved
the state-of-the-art accuracy in quantitative analysis. Among
the variants of ResNet basemodels, we pick ResNet50 as it
outperformed others in the experiments. We have also tested
GoogleNet, MobileNet and Xception39 as a part of the MBS-
Net architecture, and selected Xception39 as in our final design.
In order to have a fair comparison, we test ResNet50 and Xcep-
tion39 basemodel MBS-Net on the above mentioned test dataset
and compute Mean IoU with activating and deactivating CRFs
layer, shown in Table 3.

In Table 3, we assess the accuracy within two best performed
basemodels, ResNet50 and Xception39. Mean IoU of back-
ground and foreground is computed with activating and deactiv-
ating CRFs layer under the two MBS-Net basemodels. It can be
observed that the CRFs significantly improves foreground de-
tection for the Xception39 architecture (highlight row). We may
also notice that CRFs layer slightly improves foreground detec-
tion for ResNet50 architecture. This is because ResNet50 based
MBS-Net is more powerful on detecting boundaries between
foreground and background, and CRFs as temporal regulation
approach contributes mainly on boundaries regulation in the
same way.

5.3 Ablation study

This section demonstrates the performance of several compon-
ents including CRFs layer, Focal Loss and Bilinear Interpora-
tion Upsampling. To deliver a fair and clear comparison, Xcep-
tion39 is used as the basemodel of MBS-Net and ApolloScape
road02 seg test dataset is the evaluation dataset.
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BaseModel Mean IoU(%)1 Mean IoU(%) w/. CRFs

BG2 FG3 BG FG
Xception39 97.38 68.35 97.46 76.06
ResNet50 97.75 75.08 97.71 75.78
1 Without CRFs
2 Background
3 Foreground

Table 3. Accuracy Analysis

CRFs is a necessary part of the MBS-Net and has been origin-
ally used for image semantic segmentation without considering
temporal regularization. There is a large improvement, CRFs
in MBS-Net has improved the performance from 68.35% to
76.06% on foreground and 96.64% to 97.53% on background,
as shown in Table 3 highlight row. Quantitatively, these results
are important as shown in Fig.3 and Fig.4.

To overcome dataset imbalances, and improving accuracy, MSB-
Net assigns dynamic weights for all examples. For some hard
examples with low probability leading to misclassification, we
assign higher weights than other easy examples. Compared
with traditional crossentropy loss, Focal Loss shares two main
advantages based on our experiments. On the one hand, it accel-
erates our MBS-Net convergence reflecting on test Mean IoU.
With CE Loss and Focal Loss, MBS-Net respectively achieves
73.33% and 74.56% on foreground after first 10 training epochs.
On the other hand, Focal Loss achieves higher Mean IoU by ef-
ficiently mining hard examples. Compared to CE Loss, Focal
Loss improves the performance from 75.07% to 76.06%.

Our final ablation study is on Bilinear Interpolation Upsampling.
Upsampling layer is designed to increase resolution of fused
feature maps to the original input image. Some existing ap-
proaches include Bilinear Interpolation, pooling indices mem-
orization, deconvolution, etc. Different from the other two ap-
proaches, pooling indices memorization requires sharing those
pooling indices from encoder feature map(s) with correspond-
ing feature map(s) in decoder (Badrinarayanan et al., 2017). As
discussed in Section 4.1 stated, Spatial Path (SP) in MBS-Net
cascades three Conv+BN+Relu blocks with stride=2 so which
downsamples images to 1/8th of input image. Hence, pooling
indices memorization will not be an alternative approach be-
cause of the loss of pooling indices information.

Table 4. Bilinear Interpolation Upsampling Ablation Analysis

Upsampling Approach Additional Mean IoU2 Speed3

Approach Params1 (%) (fps)
Bilinear Interpolation - 68.35 187.2

Deconvolution 66 66.80 165.5
1 Additional params represents increased parameters num compared

to Bilinear Interpolation approach.
2 Accuracy performance is evaluated on foreground category only.
3 Speed is evaluated without activating CRFs layer.

Here we mainly compare the performance of Bilinear Interpol-
ation and deconvolution, as shown in Table 4. Bilinear Interpol-
ation outperforms Deconvolution approach both on speed and
accuracy without introducing additional parameters.

CONCLUSIONS AND FUTURE WORK

In this paper, we introduced MBS-Net that modifies an exist-
ing semantic segmentation CNN architecutre by including addi-

tional steps and layers to ensure temporal regularization is per-
formed in the background labeling process. The temporal reg-
ularization step combined with spatial regularization have been
tested on the ApolloScape benchmark dataset and is shown to
achieve good results. We apply Focal Loss which reshapes cross
entropy loss in order to focus on hard to learn examples during
training. We also design ablation study to investigate their ef-
ficacy showing that it can achieve state-of-the-art accuracy and
speed. Reward mechanisms such as the ones used in reinforce-
ment learning is an ongoing research.
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