
USING THERMAL AND RGB UAV IMAGERY TO MEASURE SURFACE FLOW 

VELOCITIES OF RIVERS 
 

 

 

 

A. Eltner 1, *, D. Mader 1, N. Szopos 2, B. Nagy 2, J. Grundmann 3, L. Bertalan 2 

 
1 Institute of Photogrammetry and Remote Sensing, Technische Universität Dresden, Germany - (anette.eltner, david.mader)@tu-

dresden.de 
2 Department of Physical Geography and Geoinformatics, University of Debrecen, Hungary - (bertalan, szopos.noemi, 

nagy.balint)@science.unideb.hu 
3 Institute of Hydrology, Technische Universität Dresden, Germany - jens.grundmann@tu-dresden.de 

 

Commission II, WG II/10 

 

 

KEY WORDS: image velocimetry, PTV, PIV, RPAS, TIR 

 

 

ABSTRACT: 

 

This study assesses the suitability to use RGB and thermal infrared imagery acquired from an UAV to measure surface flow velocities 

of rivers. The reach of a medium-scale river in Hungary is investigated. Image sequences with a frame rate of 2 Hz were captured with 

two sensors, a RGB and an uncooled thermal camera, at a flying height that ensures the visibility of both shores. The interior geometry 

of both cameras were calibrated with an in-house designed target field. The image sequences were automatically co-registered to 

account for UAV movements during the image acquisition. The TIR data was processed to keep loss-free image information solely in 

the water area and to enhance the signal to noise ratio. Image velocimetry with PIV applied to the TIR data and PTV applied to the 

RGB data was utilised to retrieve surface flow velocities. Comparison between RGB and TIR data reveal an average deviation of about 

0.01 m/s. Future studies are needed to evaluate the transferability to other non-regulated river reaches. 

 

 

1. INTRODUCTION 

The application of image sequences to measure flow velocities 

and eventually retrieve river discharge has received a recent 

increase in interest in the field of hydrometry due to the 

possibility to extend the application to unoccupied aerial vehicle 

(UAV) data. This can be especially useful in scenarios of 

observations in remote and inaccessible areas as well as during 

large flood events. The suitability to receive hydrometric 

information from videos has been illustrated for terrestrial 

cameras by various studies (e.g. Muste et al., 2008). And the 

extension to UAV imagery has been demonstrated in the last five 

years (e.g. Fujita et al., 2015). 

  

The exploitation of UAVs to measure hydrometric parameters 

has so far been focused on the application of RGB imagery as 

most UAVs are equipped with it. However, for instance in the 

case of the retrieval of surface flow velocities it is difficult to 

acquire the information across the entire river cross-section with 

RGB data due to potential clustering of particles to track and their 

usual concentration to the main flow. Nevertheless, especially at 

irregular river profiles complete velocity information is 

necessary to estimate the discharge reliably, which is a key 

parameter amongst others for hydrological and hydraulic 

modelling. Artificial seeding can circumvent this circumstance 

(Detert et al., 2017), but this is usually not possible in remote or 

extreme flood scenarios. Furthermore, the effect of different 

seeding methods on the accuracy of velocity estimations has been 

studied only in laminar, slow flow conditions (Pearce et al., 

2020). 

 

                                                                 
*  Corresponding author 
 

A possibility to densify the surface velocity measurements can be 

the application of thermal infrared (TIR) cameras. Lin et al. 

(2019) demonstrated the suitability of TIR imagery for surface 

flow velocity estimation with accuracies of up to 1 m/s in a 

terrestrial application, however relying on thermal tracers. The 

suitability to solely use the natural thermal signature of the river 

has been demonstrated by Kinzel & Legleiter et al. (2019) for 

UAV data. 

 

In this study, thermal and RGB image sequences, captured 

together from an UAV, are used to estimate river surface 

velocities to measure entire river cross-sections without the need 

for seeding. Particle image tracking methods (particle tracking 

velocity – PTV – and particle image velocimetry – PIV) are 

applied. Results are compared to each other. First, the study area 

is introduced. Afterwards, the workflow to acquire the data is 

described. Then, the applied methods are explained and finally 

the results are displayed and discussed. 

 

2. STUDY AREA 

The case study is located in North East of Hungary at the Sajó 

River near the city of Nagycsécs. The Sajó River is a meandering 

sand-bed river, where 40 % of the total river are under natural 

channel conditions without any river management works 

(Bertalan et al., 2019). The lack of an extensive levee system and 

bank protection led to the continuous change of channel 

morphodynamics resulting in bank erosion rates of 4-7 meters per 

year along the studied sub-reach (Bertalan et al., 2018). A 

detailed reconstruction of local flow conditions is vital to reveal 

the natural driving factors of these erosion processes. Surveys 

were performed along a 650 m long double bend-system of the 
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river (Figure 1). A nearly straight transition zone between two 

long meanders was chosen in anticipation of laminar flow 

conditions (water flows in layers that do not mix and therefore no 

turbulences occur) without strong secondary flow. The chosen 

segment of the river reach has an approximate width of 20 m and 

maximum depth of about 1.2 m.  
 

3. DATA ACQUISITION 

The data had been acquired during a field campaign in March 

2019. Imagery in the visible and thermal infrared range of the 

electromagnetic spectrum had been captured with an octocopter. 

 

3.1 RGB and TIR image sequences 

The image data acquisition was carried out with an UAV 

equipped with a RGB camera and a thermal camera (Figure 2). 

The frame of the CADMIC Goliath Coax 8 has four cantilever 

arms each with two coaxial mounted rotors. For direct 

georeferencing of the sensors the inertial navigation system 

Spatial from Advanced Navigation provides GNSS positions and 

orientation angles using a navigation filter1. The RGB camera is 

an industrial camera from Allied Vision Technologies with a 

resolution of 2048 px × 2048 px, a pixel pitch of 5.5 µm and a 

fixed focal length of 12.5 mm. As thermal camera a FLIR A65 

with a resolution of 640 px × 512 px, a pixel pitch of 17 µm and a 

fixed focal length of 13 mm was used. 

 

For data acquisition, the UAV was flown to a defined waypoint 

above the river at a height of about 60 m and kept as stable as 

possible to capture image sequences with a frequency of about 

2 Hz. This results in images of the river with a ground sample 

distance of 2.64 cm for the RGB camera and 7.8 cm for the 

thermal camera.  

 

Due to a missing stabilisation camera mount and the fact that the 

cameras are not synchronized to each other, both shores have to 

                                                                 
1 https://www.advancednavigation.com/products/spatial 

be visible in the images of both cameras for a pre-processing 

steps of stabilization and registration. Furthermore, eight ground 

control points (GCPs) were distributed along both shorelines for 

data georeferencing. The targets are designed specifically for 

thermal imagery. The targets are made of silver heat foil circles 

in front of black velvet tape squares to increase the contrast in the 

images for a better visibility (Westfeld et al., 2015). Thus, in the 

TIR images cold circles are shown in front of warm rectangles 

because the cold background radiation is reflected from the heat 

foil and the black velvet tape leads to high emission rates of 

thermal radiation. The same targets are also used as GCPs in the 

RGB images. The reference points are measured with dGNSS 

(STONEX S9I) with accuracies between 2 cm to 3 cm. 

 

 

Figure 2. Applied UAV with equipped TIR and RGB camera 

(red rectangle and lower right image clip). 

Figure 1. Location of the studied Sajo river reach in Hungary. The white arrow indicates the flow direction. 
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4. DATA PROCESSING 

To achieve the goal of automatic flow velocity measurement the 

following processing steps are needed. The image sequences 

were co-registered to account for UAV movements during the 

image acquisition. The thermal infrared data was further pre-

processed with a local histogram equalization algorithm to 

enhance the contrast of the measured river temperature 

(Figure 2). Thereby, the shore needed to be masked to avoid 

information loss in the water area due to a shore with 

significantly higher thermal contrast compared to the more 

homogeneous temperature values at the water surface. 

Subsequently, decreased signal to noise ratios, caused by the 

histogram equalization, are increased with low-pass filtering. 

Finally, image velocimetry was utilized considering particle 

image velocimetry for the thermal infrared data and particle 

tracking velocimetry for the RGB data. The data has been 

processed with commercial tools and with in-house 

implementations in Python and Matlab. 

 

4.1 Camera calibration 

If tracks of particles only cover short distances within the image, 

distortions of the camera exhibit a low impact at the estimated 

flow velocity. However, in this study the frame rate is low (2 Hz) 

and therefore large tracking distances are expected necessitating 

calibration of distortion parameters of the RGB and thermal 

camera. Furthermore, focal length estimates are needed for a 

correct scaling of the tracks. 

 

The calibration of the thermal camera required special markers, 

because the temperature gradient of black-white-paper makers is 

not sufficient for image point measurement. For this purpose, a 

combination of silver heat foil and black velour foil (same 

material as for the GCPs) is used for the target field (Figure 3).  

 

 

Figure 3. Calibration of TIR and RGB camera outside to 

enhance contrast of thermal targets. 

 

To increase the contrast, the calibration images of the target field 

have to be captured outside to ensure low grey values of the silver 

foil (i.e. cold background radiation). The transformation from the 

3D object point into the image coordinates is realized by the 

collinearity equation. The model is extended by the distortion 

correction parameters considering the radial symmetric and 

decentring distortion parameters (Brown, 1971) as well as the 

affinity and shear parameters (El-Hakim, 1986). Further 

information can be found in Westfeld et al. (2015). The results of 

the calibration are shown in Table 1. 

 

While the majority of the calibration parameters of the RGB 

camera could be estimated significantly, i.e. with the threefold of 

the standard deviation (with exception of C1 and C2), it is only 

the case for the focal length for the thermal camera. A similar 

effect for that thermal camera was also noticed in Lin et al. 

(2018). 

 

4.2 Referencing and co-registration of each image series 

In the first image of each image sequence, GCPs were measured 

manually in order to retrieve the exterior orientation of the image 

(EOR), which is needed later to scale the velocity tracks 

(section 4.4). First, a direct linear transformation is utilized to get 

approximate values of the position and orientation parameters. 

Then, adjusted spatial resection is used, with fixed interior 

orientation parameters, to estimate the EOR also calculating the 

accuracy for each estimated parameter. 

 
Camera RGB  Thermal  

 �̂�𝑖 �̂�𝑥𝑖
 �̂�𝑖 �̂�𝑥𝑖

 

c [mm] 12.63 5.48e-3 13.16 6.81e-2 

xh [mm] -2.23e-2 4.01e-3 -3.32e-2 6.51e-2 

yh [mm] 7.37e-2 4.43e-3 -1.21e-1 6.22e-2 

A1 [/] -4.92e-4 6.76e-6 -2.37e-4 1.35e-4 

A2 [/] 3.88e-6 2.00e-7 1.18e-5 5.29e-6 

A3 [/] 0.00 fixed 0.00 fixed 

B1[/] 3.45e-5 7.22e-6 -3.37e-5 1.45e-4 

B2 [/] 4.79e-5 6.48e-6 -5.50e-5 1.19e-4 

C1 [/] -1.92e-5 5.92e-5 6.81e-5 6.85e-4 

C2 [/] 5.75e-5 5.70e-5 -8.28e-5 6.74e-4 

Table 1. Results of camera calibration with the parameter �̂�𝑖 und 

the corresponding standard deviation �̂�𝑥𝑖. 

 

The co-registration of all subsequent images of the TIR and RGB 

sequence is executed to the initial frame of each series using an 

approach introduced in Eltner et al. (2018). This is necessary 

because the UAV was not equipped with a stabilizing camera 

mount and hence octocopter movements have to be compensated 

digitally for each image (Ljubičić et al., 2021). Tie points are 

detected as Harris features (Harris et al., 1988) and afterwards 

matched with the SIFT algorithm (Lowe, 2004). The matched 

features are used to estimate the homography and thus 

transformation matrix between each image and the initial image. 

For the RGB image sequence the estimated homography 

parameters are applied to transform and hence co-register each 

image to the first. For the thermal imagery a different approach 

is chosen and the calculated homography parameters are saved 

for further processing in the next step. 

 

4.3 Improving thermal signal to noise ratio  

Retrieving the thermal signal from the TIR images is difficult in 

riverine environments due to a weak contrast in the river and a 
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high contrast to the shore line as temperature differences are 

small in the water but strong between river and shoreline. The 

images are captured with 14-bit. However, the tracking of 

particles is performed with 8-bit images. Therefore, 14-bit 

images have to be converted into 8-bit images. Solely the relevant 

temperature range has to be determined to allow for a conversion 

without information loss and a high radiometric resolution 

(Figure 4). 

 

The water area is masked in the initial thermal image to enable 

that grey values are stretched to the temperature range only 

within the river. In a next step, the binary image is transformed 

to match the orientation of each subsequent (yet not co-

registered) image of the sequence using the inverse of each 

corresponding homography matrix. Then, the water area is 

clipped in the 14-bit image with the transformed masks to stretch 

the values to the minimum and maximum values within the water 

area in the 8-bit image to enhance the contrast and thus potential 

texture. These new images are transformed with the parameters 

of each homography to co-register them to the initial image. 

 

Although pixel values only cover water temperatures, image 

contrast is low because the thermal signal is weak in the water 

area. To further improve the signal-to-noise-ratio (SNR) several 

image processing tools from OpenCV are applied (Bradski, 

2000). First, an adaptive histogram equalization is used to 

improve the contrast locally (Pizer et al., 1987), amongst others 

to mitigate vignetting impacts. However, the contrast 

enhancement also increases the fixed pattern noise (FPN) 

significantly as the temperature differences in the river are close 

to the thermal sensitivity of the camera.  

 

Simple image processing steps are applied to decrease the noise. 

First, a fast Fourier transformation (FFT) is used to remove high 

frequencies to filter stripe noise. Afterwards, salt and pepper 

noise is eliminated with a median filter. Finally, the image is 

smoothed with a Gaussian filter to make the later PIV approach 

more reliable. In the future, more sophisticated spatial and 

temporal non-uniformity correction (NUC) approaches will be 

tested (e.g. Lin et al., 2018) but are not considered here for a first 

evaluation of how well RGB and TIR data can be used together 

for surface velocity estimation. 

 

4.4 Image velocimetry 

The filtered TIR images and the RGB image sequence are 

processed using different image velocimetry approaches 

implemented in the FlowVelo tool introduced by Eltner et al. 

(2020) to measure river surface velocities. PIV is applied to the 

TIR imagery. Therefore, a grid is generated that covers the area 

of interest with a sampling distance and template size of 30 

pixels. The Lucas-Kanade algorithm (Lucas & Kanade, 1981) is 

used to perform area based matching, minimising grey value 

differences within an optimization approach, to track thermal 

signals at the water surface. Resulting track vectors are filtered at 

each grid cell considering track directions and lengths (Eltner et 

al 2020).  

 

PTV is applied to the RGB imagery. First, features are detected 

with the Shi Tomasi algorithm (Shi & Tomasi, 1994) looking for 

points of large contrast to the surrounding. Afterwards, the 

detected features are searched for in the subsequent frames also 

using the Lucas Kanade algorithm. Finally, a local filter is 

applied that eliminates outliers via median filtering of the 

estimated velocities within a specified search radius of each 

tracked particle, which allows for the preservation of more 

complex velocity patterns.  

 

5. RESULTS AND DISCUSSION 

The accuracies of the spatial resection to estimate the poses of 

the RGB and thermal sensors during the acquisition of the first 

image of each sequence used for tracking are shown in table 2. 

The EOR of the thermal camera is estimated with a higher error 

mainly due to more difficulties during the identification of the 

thermal GCPs in the image. The image resolution is significantly 

lower compared to the RGB image resolution and thus targets are 

less reliable measured.  

 

Figure 4. Image processing workflow applying several contrast enhancement and noise filtering 

steps to improve the thermal signal. 
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The low frame rate is challenging for pattern or feature tracking 

for both, TIR and RGB, datasets due to a fast change of 

appearance of the water surface. Furthermore, the thermal signal 

is very weak, especially in the areas close to the left shore. 

However, in the river centre and near the right shore the SNR was 

sufficient to allow for velocity retrievals. The RGB imagery 

reveals a larger concentrations of trackable features in the centre 

of the river, which corresponds to the main flow, and near the left 

shore. The range of velocity values of the thermal data are smaller 

than of the RGB data, i.e. 0.84 m/s to 1.21 m/s and 0.45 m/s and 

1.41 m/s, respectively (Figure 5). However, the informative value 

of range comparison is limited because the PIV and PTV 

approach retrieve velocity information partly at different 

locations in the river reach.  

 

 X 

[m] 

Y 

[m] 

Z 

[m] 

ω 

[rad] 

φ 

[rad] 

κ 

[rad] 

TIR 0.32 0.37 0.04 0.006 0.005 0.001 

RGB 0.20 0.23 0.03 0.004 0.003 0.001 

Table 2. Standard deviation of estimated camera position and 

orientation parameters. 

 

The differences between the surface flow velocities from both 

image-based approaches are calculated to assess if PIV and PTV 

applied to TIR and RGB imagery, respectively, can supplement 

each other. Tracking results were compared where measurements 

of both approaches overlap. Nearest neighbours are searched for 

in both datasets within a radius of 0.5 m. The short search 

distance is chosen because velocities are inhomogeneous due to 

non-uniform flow conditions in the observed reach. The average 

difference and the standard deviation between PIV (applied to 

TIR) and PTV (applied to RGB) retrieved velocities amounts 

0.01 m/s and 0.23 m/s, respectively.  

 

The average PIV velocities are marginally larger than the PTV 

results, which is in contrast to other studies revealing that area-

based tracking approaches (i.e. PIV) underestimate velocities 

compared to feature-based approaches (i.e. PTV) because the 

latter method tracks single particles instead of relying on area-

averaged methods as in the former method (e.g. Lin et al., 2019, 

Tauro et al., 2017). However, these studies compare PIV and 

PTV applied to the same data source, which is contrast to this 

study. Furthermore, the high standard deviation of velocity 

differences indicates that it is not possible to state if either 

method over- or underestimates velocities.  

 

6. CONCLUSION 

In this study, the surface flow velocities of the river were 

measured with thermal image sequences using PIV and with 

RGB imagery using PTV, even with frame rates as slow as two 

images per second. However, challenging conditions due to very 

low contrast in the thermal images because of small temperature 

differences at the river surface limited the application of a TIR 

camera significantly. In future studies the signal to noise ratio in 

the thermal data should be further improved, amongst others 

considering systematic camera based noise removal with 

radiometric calibration approaches. In this study, the river reach 

revealed complex flow patterns due to secondary flows and non-

stationary conditions making the assessment with the reference 

less reliable, which is further indicated by the low average but 

high standard deviation of velocity differences between the RGB- 

and TIR-based tracking.  
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