
MONITORING TERRAIN DEFORMATIONS CAUSED BY UNDERGROUND MINING 
USING UAV DATA 

 
 

G. Jóźków 1, A. Walicka 1*, A. Borkowski 1† 

 
1 Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences 

(grzegorz.jozkow, agata.walicka)@upwr.edu.pl 
† In memory of Professor Andrzej Borkowski who passed away on March 13, 2021 

 
 

KEY WORDS: UAS, photogrammetry, LiDAR, terrain deformations, monitoring, underground mining 
 
 
ABSTRACT: 
Underground mining causes terrain surface deformations that lead to various threats to the environment and people, thus a systematic 
deformation monitoring needs to be performed. This monitoring mainly focuses only on the vertical part of the deformation and 
remote sensing techniques are currently very often used for this purpose. The development of Unmanned Aerial Systems (UASs) 
open new possibilities in this context. Most commonly, the mapping UASs are equipped with RGB cameras but also other 
lightweight sensors are utilized. In this work, the usefulness of UAS photogrammetry and LiDAR data is investigated in the context 
of detection and measurement of terrain deformations caused by underground mining. The accuracy of the methods was compared in 
reference to TLS data. The UAS and TLS measurements were performed in 2018 and 2019 but the subsidence was also evaluated in 
regards to ALS data acquired in 2011. The standard methodology based on Digital Terrain Models of Difference (DoDs) was applied 
to detect the subsidence. The DoD analysis was restricted to the hard surfaces. The profiles along the roads were also analysed to 
validate the accuracy of the data. The analysis showed that the UAS photogrammetry enables to obtain less noisy data and more 
accurate results of the terrain subsidence measurement than the UAS LiDAR sensors. The comparison of the DoDs showed about 
33 cm subsidence between 2011 and 2018, which gives a subsidence rate of about 5 cm/year. The observed subsidence between 
years 2018 and 2019 was equal to about 5 to 15 cm depending on the measurement technique and investigated area. 
 
 

1. INTRODUCTION 

Underground mining causes various threats to the environment 
and people. One of such threats is deformation of the terrain 
surface, which is especially dangerous in urbanised areas as it 
can result in severe infrastructure damages. For this reason, it is 
necessary to conduct systematic monitoring of the terrain 
surface deformations in the vicinity of the mine. 
 
The terrain deformation can be measured using different 
methods and equipment, such as inclinometers, typical 
surveying techniques, and remote sensing techniques, including 
utilization of Interferometric Synthetic Aperture Radar 
(InSAR), Light Detection and Ranging (LiDAR) and 
photogrammetric data. Each of these methods has its own 
advantages and limitations. The traditional surveying methods, 
such as levelling or total station measurements are characterized 
by high accuracy of the results. However, their application in 
terrain deformation monitoring is limited by their small spatial 
resolution and time-consuming field work that is necessary to 
acquire the data. In contrast, the remote sensing techniques 
allow for fast acquisition of relatively accurate data with high 
spatial and temporal resolution.  
 
Recently, the InSAR technique is commonly applied to terrain 
deformation measurements (e.g., Pawłuszek-Filipiak and 
Borkowski, 2020; Zhu et al., 2020). InSAR allows for 
determination of vertical, relatively small deformations, with 
high accuracy, high time resolution, and even with no data 
acquisition costs. However, its application is limited to non-
vegetated areas and the results have low spatial resolution in 
comparison to other remote sensing techniques. In contrast, 
airborne LiDAR data has higher spatial resolution and is 
suitable even for forest areas, but its vertical accuracy is much 
worse. Moreover, execution of flights is expensive, which 
results in a very limited time resolution of the performed 

measurements. The monitoring costs can be reduced through the 
use of Unmanned Aerial Systems (UASs). Most of the mapping 
UASs are equipped with RGB cameras, and some of them were 
already used in determining terrain deformations for small and 
non-vegetated areas. Unmanned Aerial Vehicle (UAV) 
photogrammetry is commonly used in many applications related 
to terrain deformation analyses, such as monitoring of 
landslides (e.g., Balek and Blahůt, 2017; Lucieer et al., 2014), 
glaciers (e.g., Dall’Asta et al., 2017; Kraaijenbrink et al., 2016), 
or open-pit mines (e.g., Esposito et al., 2017). UAV 
photogrammetry is less frequently used to monitor the impact of 
underground mining on its adjacent areas. However, this 
problem was investigated by e.g., Puniach et al. (2021). 
Recently, also light-weight LiDAR sensors utilization for 
deformation monitoring using UASs have been investigated 
(Zieher et al., 2019). However, none of the above publications 
analysed the application of UAV-borne Laser Scanning (ULS) 
data to deformation monitoring in the underground mining area. 
Since deformations caused by underground mining occur on 
larger areas and result usually in terrain subsidence, the goal of 
this study is to assess the potential of both types of UAS data: 
images and LiDAR in the monitoring of terrain vertical 
deformations caused by underground mining. 
 

2. TEST SITE AND DATA ACQUISITION 

The test site is located in the Upper Silesia region (Poland) that 
is affected by many closed and active coal mines. Since this 
region is highly populated and urbanised, even small 
deformations may cause severe material loses. The test site is a 
suburb area (~ 0.25 km2) placed in the proximity of an active 
underground coal mine (Figure 1). Investigated area was not 
subjected earlier for detailed monitoring with respect to terrain 
deformations, however, some geodetic surveying (mainly 
geometrical levelling) conducted in this region mentions 
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progressive subsidence. Selected area covers the coal seam, thus 
larger deformations are expected after the extraction. 
 

 
Figure 1. Investigated area. 

The test UAS data was collected during three campaigns that 
took place in March 2018, September 2018 and June 2019. 
During the first campaign, the ULS data was collected using 
Velodyne HDL-32E laser scanner, and images were collected 
with Digital Single Lens Reflex (DSLR) camera. The same 
camera was used to collect data in the second campaign in 2018, 
however, flights with laser scanner were not executed in this 
campaign. During the third campaign, the ULS and 
photogrammetric data was collected using GreenValley LiAir 
50 system. During both campaigns, in which ULS data was 
collected, the Global Navigation Satellite System (GNSS) static 
data from a local base station was acquired for LiDAR data 
georeferencing. Ground Control Points (GCPs) for image data 
georeferencing were collected using GNSS real-time network. 
The same method was used for collecting check points. In 
addition, Terrestrial Laser Scanning (TLS) data was collected 
along the roads in July 2018 and July 2019 and Airborne Laser 
Scanning (ALS) point cloud collected in 2011 was acquired 
from the national database. The airborne LiDAR data was used 
as the first measurement to determine the amount of the 
deformation while TLS data was used to validate UAS data. 
 
2.1 UAS photogrammetric data 

UAS photogrammetric data in 2018 was collected with Nikon 
D800 DSLR camera equipped with 24 mm focal length lens and 
mounted on Aibot X6 V2 hexacopter (Figure 2). 
 

 
Figure 2. Aibot X6 V2 with Nikon D800 camera. 

In both UAS campaigns executed in 2018, images were 
collected along the same 4 parallel lines with planned image 
overlap equal to 90% and 45% along and across flight lines, 
respectively. The Ground Sampling Distance (GSD) was 
planned to 15 mm. The acquisition of images was executed in 

separate 7 flights due to several reasons. One of them was the 
relatively short flying time of the Aibot X6 V2 with the Nikon 
D800 camera. Note that maximal take-off weight of this drone 
is around 6.5 kg while the weight of used camera and lens is 
around 1.5 kg. Second reason were large differences of terrain 
heights (about 40 m, see Figure 1) that caused the need of 
performing flights at different absolute altitudes to keep 
overlaps and GSD close to planned values. This drone keeps 
constant altitude when it performs flight automatically from one 
to another waypoint even if these waypoints have different 
heights. The total number of collected images used in 
subsequent processing was equal to 689 and 551 for the spring 
and autumn campaign, respectively. Lower number of images in 
the second campaign was caused by smaller overlap between 
flights and performing two flight plans with one flight. All 
images were geotagged with the position determined by the 
drone on-board GNSS receiver. 
 
In 2019 UAS photogrammetric data was collected with Sony 
a600 camera equipped with 16 mm focal length lens (24 mm 
equivalent of full frame sensor). Although the field of view of 
used cameras and lenses were similar, parameters of the flight 
plans in 2019 were different since the flight plan in that year 
was prepared to collect images and LiDAR data during the same 
flights. The UAS photogrammetric data was collected in 2019 
for a slightly larger area in two separate flights, one with 7, 
second with 9 lines. Different number of lines was due to 
changes in terrain height. Similarly as for Aibot X6 V2, the 
drone used in 2019 also performs flight at constant altitude 
when it performs flight along a planned line. Different number 
of lines caused larger sidelap (~60%), but the endlap was 
slightly lower and equal to about 85%. The planned GSD was 
almost 20 mm. The total number of collected images was equal 
to 908. 
 
During all campaigns, GCPs and ground check points were 
measured with GNSS real-time network technique that allowed 
to determine coordinates with 3 and 5 cm accuracy for planar 
and vertical components, respectively. Most of the measured 
points were natural and only a few were marked in the field to 
keep appropriate distribution. The total number of measured 
points in both campaigns executed in 2018 was equal to 20 and 
40 GCPs and check points, respectively. However, one of 
measured GCPs in the second campaign was excluded from the 
processing due to its poor accuracy caused by the occlusion 
with tree foliage. In the third campaign (2019), the number of 
measured natural points was increased resulting in 24 and 56 
GCPs and check points, respectively. In addition, 6 GCPs were 
created from ULS data as a geometrical centre of a planar patch 
fitted to the point cloud representing a small flat object, e.g., 
picnic table in the garden. 
 
The photogrammetric data was processed using Agisoft 
Metashape (formerly Photoscan) Professional software. The 
accuracies of image block adjustments are shown in Table 1. 
Horizontal accuracies are similar for all campaigns, however, 
the difference in vertical accuracy is even 2.5 cm. The reason 
for this could be probably actual image overlap since the 
accuracy corresponds to the number of adjusted images. 
 

Campaign No of 
images 

Accuracy [cm] 
Horizontal Vertical 3D 

March 2018 698 2.7 3.8 4.6 
September 2018 551 2.8 5.2 5.9 
June 2019 908 2.7 2.7 3.8 

Table 1. Accuracy of image block bundle adjustment. 
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After the image block bundle adjustments, the dense point 
clouds were created. Next, the point clouds were classified to 
extract ground points and finally, Digital Terrain Models 
(DTM) of 2.5 cm resolution was created. In addition also 
orthomosaics were created from images collected in all three 
campaigns. 
 
2.2 ULS data 

UAS LiDAR data was collected using mid-shelf UAV-borne 
LiDAR systems based on Velodyne laser scanners. In the case 
of the campaign executed in 2018, the UAS was equipped with 
the Velodyne HDL-32E laser scanner, Sensonor STIM300 
Inertial Measurement Unit (IMU) and NovAtel OEM615 GNSS 
receiver with one antenna. The same, as in the case of RGB 
camera, UAV platform was used to carry this LiDAR system 
(Figure 3). The GreenValley LiAir 50 LiDAR system was used 
to collect data in 2019. This system has the Velodyne VLP-16 
laser scanner, KVH 1750 IMU and NovAtel GNSS receiver 
with two antennas. Both laser scanners have similar range, 
though HDL-32 has two times more laser diodes and larger 
vertical (in normal position) field of view than VLP-16. 
According to the specification, the navigational sensors used in 
the LiAir 50 system have better performance than those used in 
the Aibot X6 V2 system. This can be explained by dual-antenna 
GNSS sensor the IMU which has a Fiber Optic Gyro (FOG) 
instead of Micro Electro-Mechanical System (MEMS) 
gyroscopes. 
 

 
Figure 3. Aibot X6 V2 with Velodyne HDL-32E laser scanner. 

UAS LiDAR data in 2018 was collected only for the northern 
and central part of the investigated area according to the same 
flight plans as in the case of flights with RGB camera, but at 10-
15 m lower flying altitude. The ULS data was georeferenced 
according to typical workflow. After georeferencing, the point 
cloud was coloured (Figure 4a) with colours of the nearest 
points form dense point cloud created from UAS 
photogrammetric data. The average UAS LiDAR point cloud 
density in the central part of the investigated area was equal to 
800 pts./m2. ULS data collected in 2019 was georeferenced 
according to the same workflow and was also coloured with 
collected RGB data, however, the vendor provided software 
used to colour the point cloud seems to use orthomosaic for this 
purpose (Figure 4b). The average point cloud density for data 
collected in 2019 was significantly lower and equal to 
150 pts./m2. 
 
ULS data was subsequently processed to extract ground points 
and create DTM of 5 cm GRID size. Similarly as for dense 
point clouds, also Agisoft software for point cloud filtering and 
DTM creation was used. 

 
(a) 

 
(b) 

Figure 4. Part of UAS LiDAR point cloud collected in 2018 (a), 
and in 2019 (b). Left – colorized by RGB data. Right – shown 

in greyscale intensities. 

2.3 ALS and TLS data 

The Airborne LiDAR data collected in 2011 was obtained from 
the national database. This data was collected with the density 
of 12 pts./m2 and was classified and coloured with RGB aerial 
images (Figure 5). This point cloud was used to create a DTM 
of 25 cm GRID size (Figure 1) which was used as the reference 
surface for determining the amount of deformation. 
 

 
Figure 5. Part of ALS point cloud. Left – classified. Right – 

colorized with RGB aerial images. 

The TLS data was collected along the asphalt roads (Figure 6) 
in July 2018 and July 2019 using Leica ScanStation C10 
scanner. The data collected from separate stations was 
registered using targets placed in the field between 
neighbouring stations. In addition, during point cloud 
registration, also cloud to cloud constraints were added. These 
constrains were created between point clouds from all 
neighbouring stations which had sufficient overlap. After the 
registration the point clouds were georeferenced using points 
measured in the field with GNSS real time network technique. 
Detailed parameters of TLS data registration and georeferencing 
are shown in Table 2. The TLS point clouds were also classified 
to extract ground points, and the DTMs of 5 cm GRID size were 
created for roads and used to compare with UAS data. 
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Figure 6. Part of TLS point cloud collected in 2018. Point 

colours according to heights. 

TLS campaign 2018 2019 
Number of stations 26 29 
Total number of constraints used in registration 209 220 
Registration Mean Absolute Error [cm] 0.8 0.8 
Number of points used in georeferencing 95 57 
Georeferencing Mean Absolute Error [cm] 2.7 3.8 

Table 2. Parameters of TLS data registration and 
georeferencing. 

3. METHODS 

The goal of the investigation is to achieve the information about 
the deformation detected using UAS photogrammetric and 
LiDAR data. To better understand obtained deformations, the 
analysis of the data used and intermediate processing results 
should be helpful. Consequently, the analysis was executed in 
three steps: analysis of the data (point cloud), analysis of the 
DTMs, analysis of differential models which are basis for the 
determination of vertical deformations. 
 
3.1 Point cloud analysis 

In this step, the point clouds were investigated in terms of their 
differences and possible impacts to automatically created 
DTMs. The 65 meters long vertical cross-sections were created 
to validate the characteristics of the point clouds obtained by 
different techniques. The location of the cross section was 
selected to show point clouds for different objects (e.g., 
building, road, various vegetation). The cross-sections were 
created for classified data – for ALS data the fully classified 
point cloud was used, whereas for other data sets the point cloud 
was classified into three classes: ground, noise and other. The 
analysis of the prepared cross-sections will allow for the 
comparison of the noise level of the point cloud, evaluation of 
its completeness, and evaluation of the vegetation influence on 
the results.  
 
The point cloud noise level was also investigated based on the 
internal error of the point clouds. The internal error was 
calculated as Root Mean Square Error (RMSE) of fitting planes 
to two selected point clouds representing planar surfaces. The 
first surface was a flat roof of the building. To avoid the edge 
effect and possible errors and noises, only the points from the 
central part of the roof area of about 13 m2 were selected. The 
second surface was a part of a flat, concrete driveway with an 
area of about 22 m2. For each surface a plane was fitted using 
the least squares method and the RMSE of the distances 
between the points and plane were calculated. 
 

3.2 DTM analysis 

Since the investigation aims at the vertical deformations, the 
approach employing DTMs and differential DTMs was applied. 
The point cloud densities allowed to create DTMs with the 
GRID size of 5 cm and 2.5 cm for the UAS LiDAR and 
photogrammetric data, respectively. However, because of 
possible noises in the data, the high resolution DTMs may be 
very rough and negatively impact differential models. In 
addition, the deformations occur on larger area, thus they may 
be investigated using lower resolution DTMs. For that reason, 
DTMs of two different resolutions were created. In particular, 
DTMs of 5 cm GRID size were created from all UAS data and 
also TLS data. These models were subsequently resampled to 
the 0.5 m GRID size. To avoid the influence of the vegetation 
(missing ground points) during interpolation of DTM, the 
analysis of the model roughness was executed along terrain 
profiles in the well modelled areas, i.e., paved roads. 
 
3.3 Analysis of differential models 

The DTM of Difference (DoD) is a typical tool used for 
determining size of vertical deformations. However, besides the 
deformations caused by e.g., underground mining, the DoDs 
show also terrain height changes caused by other reasons, such 
as: 
• Intentional changes in the terrain surfaces (e.g., 

constructions, earthworks, etc.). 
• The data and its processing methods (e.g., data noise, points 

of low vegetation treated as ground points in 
photogrammetric models, interpolation and filtering 
methods).  

• The lack of points under the buildings and high vegetation. 
• The accuracy of the acquired data, including the accuracy of 

georeferencing data. 
 

Therefore, the reliable analysis of DoD in terms of deformation 
analysis can be performed only on not changed intentionally 
hard surfaces for which the DTM was created from reliable 
ground points. In the investigated area such surfaces are 
asphalt or concrete roads and driveways. Since the 
orthomosaics were available for all UAS campaigns as well as 
for ALS data acquisition, hard surfaces were identified in a 
pair of orthomosaics and a common polygon was extracted to 
evaluate differential models. Before this evaluation, the 
polygon was verified if the surface material shown in both 
orthomosaics is the same. Then, the existing DoD was cut to 
present only the verified surfaces. 
 
To further analyse the subsidence, the cross-sections of DoD 
were created along the selected hard surfaces. Then, they were 
analysed in the terms of subsidence value depending on the 
location and the capabilities of the collected data to evaluate 
the deformations. 

 
4. RESULTS AND DISCUSSION 

4.1 Point cloud analysis  

The performed investigation of the created cross-sections 
(Figure 7) enables us to draw the conclusions about the 
completeness and internal accuracy of the point clouds acquired 
using different measurement techniques. Since the TLS data 
was acquired along the roads, no points are expected behind 
obstacles or in vegetated areas near the roads. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 7. Vertical cross-sections with thickness of 0.5 m 
created for (a) photogrammetric data – March 2018, (b) ULS 

data – March 2018, (c) photogrammetric data – June 2019, (d) 
ULS data – March 2018, (e) ALS data – summer 2011, (f) TLS 

data – July 2019, (g) the cross-section placement. 

 
First, the analysis of the created cross-sections shows that all 
data sets obtained in summer are characterized by the lack of 
ground points under the vegetation. This is true for both ULS 
and ALS data and is caused by dense vegetation cover that 
prevents the laser beam from reaching the ground surface. In 
contrast, the measurements performed before growing season 
allowed us to measure points under the vegetation. However, it 
is not clear if the acquired points represent the terrain surface or 
maybe low vegetation that was left from the previous growing 
season (e.g., dry grass). What is more, in the case of ULS data 
collected in 2019, the points belonging to road, building walls 
and roof are missing. This is likely caused by the small albedo 
of these surfaces and higher flight altitude in 2019 than in 2018. 
Second, the internal error of the ULS point clouds is relatively 
high in comparison to the data acquired by other techniques. 
The high internal error manifests itself in a noticeably greater 
thickness of the cross-section lines. For instance, the building 
walls are thicker than in the case of other data sets, though ULS 
point clouds are much sparser than point clouds created by 
dense image matching. 
 
To further analyse the internal accuracy of the point clouds, the 
roughness parameter was evaluated. The roughness was 
calculated as the RMSE of fitting planes to two selected point 
clouds representing planar surfaces. The resulting RMSE values 
describe the internal accuracy of the point cloud (Table 3). 
 
Data Roof Driveway 

Points RMSE 
[mm] 

Points RMSE 
[mm] 

UAV images winter 
2018 

56392 15.4 35183 9.2 

ULS winter 2018 1050 64.0 14953 77.1 
UAV images summer 
2019 

4351 15.8 4643 15.8 

ULS summer 2019 5479 54.1 2835 54.2 
ALS 2011 212 19.7 336 11.1 
TLS 2019 7429 9.5 123077 9.8 
Table 3. Roughness of point cloud measured as the RMSE of 

fitting plane to point cloud for part of the roof (13 m2), and 
driveway (22 m2). 

The results of the experiments show that the calculated RMSE 
value varies from 9.2 to 77.1 mm in the case of driveway and 
from 9.5 to 64 mm in the case of roof depending on the data 
collection technique. The best accuracy was achieved by TLS 
data – the RMSE value was smaller than 1 cm. A slightly bigger 
RMSE value was obtained for UAS photogrammetric data. The 
resulting RMSE value was smaller than 2 cm, thus, it is 
considered satisfactory. The photogrammetric data collected in 
2018 is characterized by better accuracy than data collected in 
2019, because of the better geometric characteristics of the 
camera used. The lowest internal accuracy was obtained for 
ULS data – the RMSE value was equal to 5 – 8 cm, with a 
lower accuracy for data collected in 2018. This can be explained 
by the worse IMU accuracy of the system used in 2018. The 
achieved ULS data accuracy confirms the results obtained in 
Jóźków et al. (2017). 
 
4.2 DTM analysis  

The problem of DTM interpolation can be observed on DTM 
cross-sections (Figure 8). Moreover, during the DTM creation, 
the influence of the interpolation procedure is also enhanced by 
a problem of selection of appropriate resolution. High resolution  
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Figure 8. Example of DTM cross-sections for the data collected in 2019. 

of the DTM leads to high roughness of the cross-sections, 
especially in the case of ULS data. What is more, all the noise, 
which was not eliminated in the filtering procedure is clearly 
visible. Therefore, the models were up-sampled to 50 cm 
resolution using median filter. As a result, the smoothed DTMs 
were created. The presented cross-sections show high 
compatibility of the ULS models with the reference TLS data 
and the same shape of the DTM created from UAS 
photogrammetric data, though it is shifted of about 5 cm. The 
reason for this shift is likely the distortion of the 
photogrammetric model. The roughness of created 5 cm DTMs 
is visible the best on a horizontal hard surface, but such surface 
occurs only in the edge of the investigated area without GCPs. 
Thus, there were no constraints that could attract the 
photogrammetric model to the ground. The variance between 
models in other places may be different. More detailed 
discussion of the difference between models and the 
deformation is given in the next section. 
 
4.3 Analysis of differential models 

The DoD shows vertical changes of terrain height and is often 
used to determine vertical deformations. However, as 
mentioned earlier, beside vertical deformations, the DoD shows 
also changes in terrain height caused by other than deformation 
reasons, such as methods of data processing or the data 
inaccuracy. This is also visible in the DoD created for the 
investigated area (Figure 9). This model shows the subsidence 
in the whole area, though some of the areas show terrain uplift. 
The reason for this is the presence of human made changes 
caused by earthworks (in south), or by lack of ground points in 
the area covered by trees resulting in wrong DTM interpolation 
from photogrammetric data (in north). The reliable analysis of 
DoD in terms of deformation analysis can be performed only on 
not changed intentionally hard surfaces for which the DTM was 
created from reliable ground points. The example of DoD for 
the identified hard surfaces is shown in Figure 10. This model 
shows that the strongest subsidence of about 40-50 cm occurred 
in the central part of the area. The average subsidence of the 
investigated area in the period 2011-2018 was evaluated to 
about 33 cm, that gives about 5 cm subsidence each year. 
 
The subsidence was also investigated along 6 cross-sections 
created on paved roads. Figure 11 shows the cross-sections of 
50 cm DoDs created for the main road crossing the investigated 
area from west to east. The analysis shows that the height 
difference between years 2011-2018 and 2011-2019 varies 
depending on the location. The largest differences between 
different data type collected in the same or similar period occur 
typically on the edges of the profile. This can be explained by 

the distortion of photogrammetric models in the edges of the 
area due to lack of GCPs. Note that all DoDs created using 
photogrammetric data are distorted in the edges of the profile 
similarly with respect to DoDs created from using TLS data.  
 

 
Figure 9. DoD obtained from models created from UAS 

photogrammetric data collected in March 2018 and ALS data 
collected in 2011. 
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Figure 10. Example of DoD on hard surfaces created from UAS 

photogrammetric data collected in March 2018 and ALS data 
collected in 2011. 

 
The smoothest DoDs were achieved by TLS data, whereas the 
noisiest results are presented by ULS data. This effect is visible 
both in 2018 and 2019. Moreover, ULS data collected in 2018 is 
visibly shifted from the other data sets. The shift in the same 
direction is present in all of the created cross-sections though its 
value varies between the cross-sections. This is probably a 
combination of the ULS data noise (low internal accuracy) and 
a constant shift which could be an issue related to GNSS data 
processing. The ULS 2018 data represents smaller section 
because of the issues with GNSS and IMU on-board data that 
could not be integrated to obtain trajectory. The differential 
models created using UAS data collected in 2019 are locally 
distorted between 200-250 m of the cross-section, because of its 
partial coverage by trees, and consequently lower number of 
ground points and less accurate interpolation of the DTM.  
 
The cross-sections of differential models calculated for the data 
acquired using the same technique in two subsequent years are 
presented in the Figure 12. TLS data shows that during one year 
the subsidence along this profile was about 61 mm. The 
photogrammetric data shows larger subsidence equal to 80 mm 
on average. However, the larger subsidence can be justified by 
the fact that the photogrammetric data cover longer time period 
than the TLS data by 3 months. The subsidence along other 
profiles varies. The largest subsidence between 2018 and 2019 
occurred along asphalt road leading from the north to the centre 
of the investigated area. This subsidence was on average equal 
to 15 cm. Unfortunately, because of the shift in ULS data 
acquired in 2018, the calculated differences are not reliable. 
 

 

 
Figure 11. Example cross-sections of differential models created with respects to ALS data for the main road crossing the scene from 

west to east. 

 
Figure 12. Example cross-sections of differential models created for the same data type for the main road crossing the scene from.
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5. CONCLUSIONS 

The conducted investigation showed that UAS data collected 
with inexpensive sensors can be used for the monitoring of 
terrain vertical deformations caused by underground mining. 
The executed experiments showed that it is possible to detect 
medium scale deformations using UAV photogrammetry. 
However, the investigations need to be restricted to the non-
vegetated areas. In addition, the data should not be collected 
during growing season to keep its best quality. The ULS data 
occurred to be less accurate, thus sufficient to monitor higher 
magnitude of the deformations. The investigation showed that 
the main issue with the ULS data is high noise present in the 
point cloud. This is likely the result of the performance of used 
sensors, especially IMU. The reduction of the IMU weigh cause 
the need to use MEMS technology IMUs which performance is 
still insufficient. On the other hand, the use of multicopters 
which flights are very unstable in comparison to airplanes, 
require to use much better IMUs. Probably the quality of ULS 
data could be also affected by some noise caused by Velodyne 
laser scanners. However, the sensor development allows to 
believe that the performance of relatively inexpensive light-
weight scanners and IMUs will be increased. The higher 
accuracy of photogrammetric data was achieved thanks to large 
number of GCPs, however, UAS LiDAR technique does not 
require extensive field work to place markers and measure 
coordinates of GCPs. 
 
The performed analysis showed that the smallest roughness of 
the data was achieved by TLS technique, whereas the largest 
roughness was detected for ULS data. In summer, none of the 
techniques, including ALS, enabled us to detect the points under 
the vegetation. However, outside of the growing season, the use 
of ULS allowed us to detect more points under the vegetation 
than the UAS photogrammetry.   
 
The analysis of differential models enabled us to detect the 
subsidence of 33 cm between years 2011 and 2018, which 
results in subsidence equal to about 5 cm per year. Moreover, 
the performed experiments allowed for detection of the 
subsidence of about 5 to 15 cm between the years 2018 and 
2019 depending on the investigated area. The smaller 
subsidence values obtained by analysis of photogrammetric data 
can be ambiguous, because of the method accuracy. 
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