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ABSTRACT:

In intelligent transportation systems (ITS), it is essential to obtain reliable statistics of the vehicular flow in order to create urban
traffic management strategies. These systems have benefited from the increase in computational resources and the improvement
of image processing methods, especially in object detection based on deep learning. This paper proposes a method for vehicle
counting composed of three stages: object detection, tracking and trajectory processing. In order to select the detection model
with the best trade-off between accuracy and speed, the following one-stage detection models were compared: SSD512, CenterNet,
Efficiedet-D0 and YOLO family models (v2, v3 and v4). Experimental results conducted on the benchmark dataset show that the
best rates among the detection models were obtained using YOLOv4 with mAP =87% and a processing speed of 18 FPS. On the

other hand, the accuracy obtained in the proposed counting method was 94% with a real-time processing rate lower than 1.9.

1. INTRODUCTION

Through vehicle detection and counting, it is possible to estab-
lish traffic conditions, lane occupancy and congestion levels on
highways. This information is a fundamental pillar in Intelli-
gent Transportation Systems (ITS). ITS integrates several tech-
nologies into a single management system, such as automatic
license plate recognition, traffic signal control systems, speed
estimation and incident analysis (Zhang et al., 2011).

Most of the methods for vehicle detection and counting in ITS
are based on hardware or software systems. Among hardware-
based systems, inductive loops, piezoelectric sensors or ultra-
sonic detectors are commonly used. Although hardware solu-
tions have a higher counting precision than software solutions,
these sensors have limitations to obtain detailed information on
the behavior of the vehicular flow, in addition to being intrusive
and presenting high costs of installation and maintenance. On
the other hand, software-based systems, especially video-based
methods that perform image processing (computer vision) have
started to stand out because it is an inexpensive, non-intrusive
approach that have proven to be successful (Song et al., 2019).

The efficiency of computer vision systems for vehicle counting
is largely related to good detection. Many researchers have used
different methods for this task, among which are: (i) appearance
based detection methods, (ii) motion-based detection methods
and (iii) detection models based on deep learning. Appearance-
based methods perform detection using low-level features such
as: symmetry, color, shape, texture, and edges. These features
are generally extracted using Scale Invariant Feature Transform
(SIFT) (Juan and Gwun, 2009), Histograms of Oriented Gradi-
ent (HOG) (Dalal and Triggs, 2005) and Haar-like (Mita et
al., 2005), and then they are classified using machine learning
methods such as Support Vector Machines (SVM) or Adaboost
(Feature + Classifier). Motion-based methods perform detec-
tion when there are changes in the pixel values of the image,
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separating the foreground objects from the static background.
These methods can be divided into three categories: frame dif-
ference methods or thresholding-based methods, optical flow
method and background subtraction method. The models based
on Deep Learning (Convolutional neural network-CNN'), per-
form detection in a more sophisticated way using deep archi-
tectures with the ability to learn complex features from images
(Zhao et al., 2019).

Detection based on appearance and movement is most affected
by problems associated with variations in scale and illumina-
tion. On the other hand, CNN-based methods present a cer-
tain degree of invariance to these problems and they are able to
perform detection and classification of multiple object categor-
ies with high performance (Zhao et al., 2019). Object detec-
tion using CNNs can be categorized into two types: (i) regions
proposal-based method (two stage) and (ii) proposal-free meth-
ods (one stage).

Proposal-based methods generate a set of proposal regions that
may contain the objects of interest from an input image. Then
the features of the regions are extended by a CNN. The clas-
sification of each of the regions in their respective classes is
performed using a model based on machine learning. Among
the most representative models of regions proposal-based are:
R-CNN (Girshick et al., 2014), Fats R-CNN (Girshick, 2015),
Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al.,
2017). Although these models present high precision in detec-
tion and location, their great disadvantage is that they require
high computational costs that do not allow them to be imple-
mented in practical real-time processing systems (Zhao et al.,
2019).

On the other hand, proposal-free or one-shot (one-stage) meth-
ods are considered real-time detectors. These methods perform
object detection as a global classification/regression problem,

1" CNN is one the most important and most successful methods of deep
learning in the field of image analysis
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directly mapping the bounding box and class probabilities of
the feature maps generated by a single network. This approach
entirely removes the region proposal step and subsequent pixel
resampling steps, greatly reducing the processing time. Among
the main one-stage methods are: SSD (Single Shot Multibox
Detector) (Liu et al., 2016a), RetinaNet (Lin et al., 2017) and
YOLO family detectors (You Only Look Once) (Redmon et al.,
2016).

Due to the characteristics of the structure of one-stage methods,
they present a low computational cost. However, the level of
precision decreases depending on each model. Finding a bal-
ance between these two factors (precision and computational
cost) is not a simple task, it strongly depends on the purpose of
each implementation. Additionally, detection methods, espe-
cially in vehicle counting tasks, face many challenges, such as
differences in perspectives, occlusions, illumination effects, and
many more (Ciampi et al., 2018). Considering these factors,
the main objective of this work is to propose a vehicle count-
ing method able to minimize these problems, performing track-
ing and re-identification tasks on roads with high traffic flow.
To do this, a detection model is first identified that presents a
trade-off in terms of precision (mAP - mean Average Precision)
and speed (FPS - Frame Per Second). Different one-stage de-
tectors were compared: SSD512, YOLOV2 (Redmon and Far-
hadi, 2017), YOLOV3 (Redmon and Farhadi, 2018), YOLOv3-
SPP (with spatial pyramid pooling operator (He et al., 2015)),
and three recently proposed state-of-the-art detectors, Center-
Net (Zhou et al., 2019), EfficienDet(DO0) (Tan et al., 2020) and
YOLOv4 (Bochkovskiy et al., 2020). This model is then used
in the proposed counting method.

2. RELATED WORK

Vehicle counting using computer vision has been approached
with different techniques. As mentioned above, the meth-
ods generally used for counting can be classified into three
groups, feature-based methods, motion-based methods, and
Deep Learning-based methods. Concerning the related works,
the methods based on CNN have presented high performance
in techniques for counting vehicles. In this context some works
that perform the detection and counting of vehicles based on
CNNs are presented.

In (Zhang et al., 2017) a technique is proposed that integ-
rates a novel FCN-rLSTM network architecture to jointly es-
timate vehicle density and vehicle count by connecting Fully
Convolutional Neural (FCN) networks with Long Short Term
Memory (LSTM) networks in a residual learning fashion. The
FCN makes the prediction of the pixels that the vehicles repres-
ent and LSTM learns the dynamic space-time of the scenario.
Works such as (Lin and Sun, 2018) and (Asha and Narasim-
hadhan, 2018) perform vehicle counting using the YOLO detec-
tion model in a simple vehicular traffic scene. In these works,
rules based on the coordinates of the bounding boxes in each
video frame are proposed for counting using a virtual line. In
(Hardjono et al., 2019) a comparison between classical im-
age processing techniques and the YOLOV2 model for vehicle
counting is presented. Results of this study conclude that the
lowest counting error (-0.8) was obtained with YOLOV2.

In (Chen et al., 2018), a method for vehicles counting and track-
ing using the SSD detection model is presented. The center po-
sition of the vehicles was used to count each time they crossed
a virtual line. The tracking was performed using the minimal

Euclidean distance between centers for consecutive frames. A
comparison between the SSD and GoogleNet models is presen-
ted in (Szegedy et al., 2015). These models are evaluated
in terms of detection and counting accuracy for two classes:
vehicles and people. The proposed algorithm uses the centers
of the objects for their respective counting and tracking. The al-
gorithm was evaluated on 5 videos of a one-way highway with
low traffic flow, obtaining a counting accuracy of 95% and 83%
for the two models, respectively.

(Dai et al., 2019) proposes a vehicle counting and tracking tech-
nique based on YOLOv3 and a Kernelized Correlation Filter
(KCF). The KCF performs tracking with a matching method
between bounding boxes provided by YOLOv3. This matching
of the boxes is done for consecutive frames. The authors re-
port an average counting accuracy of 90% in three different test
scenarios; however with the increase of vehicles, the tracking
accuracy begins to decrease. In (Song et al., 2019) a method
is proposed for the problem in detecting and counting small
vehicles, this method foregrounds the surface of the highway
dividing it into a remote area and a proximal area. These areas
are the inputs of the YOLOvV3 model for the detection of the car,
bus and truck categories. Finally, the ORB algorithm is used to
obtain the number of vehicles with their respective trajectories.
The average count accuracy was 93.2% in four low traffic flow
test scenarios.

(Santos et al., 2020) proposes a system that uses YOLOvV3
for object detection and DeepSORT for multiple object track-
ing. The authors use the identifier assigned by DeepSORT
to count in a single category, reaching a 90% count accuracy
in two low traffic flow test videos. The system was affected
by identity changes of the same vehicle due to detection fail-
ures or occlusions. In (Mandal and Adu-Gyamfi, 2020) they
proposed a Detection-Tracking based Vehicle Counting Frame-
work. The authors combined different one-stage detection mod-
els (YOLOv4, EfficientDet, Detectron2, CenterNet) with object
tracking algorithm models (SORT, KloU, IoU, DeepSORT),
with the aim of identifying the best combination that allows
obtaining the better counting results. The proposed frame-
work assigns an identifier to each vehicle based on the in-
formation from the tracking algorithms and the coordinates of
the bounding boxes provided by the detection models. The
experimental results of this study demonstrate that YOLOv4
and DeepSORT, Detectron2 and DeepSORT, and CenterNet
and DeepSORT were the most ideal combinations for count-
ing tasks. The performance of this framework was affected by
occlusions and lower visibility that created identity changes and
counted vehicles more than once.

3. METHODOLOGY

This section presents a description of the dataset created for
the training and evaluation of the detection models, together
with its evaluation metrics. Additionally, a description of the
framework proposed for vehicle counting is made.

3.1 Dataset

The dataset is composed of 4300 RGB images captured on the
highways of the city of Florianopolis-Brazil, at different times
of the day. A Fujifilm FeniPix SL 300 digital camera was used
to capture the images, with a resolution of 1280 x 720 pixels. To
obtain the images, 9 different places of the city with dynamic
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vehicular flow of the classes of interest were considered. In de-
tail, the images are captured at an average height of 4 meters
with a general perspective of the highway, thus guaranteeing
images with great variability, such as multiple orientations, dif-
ferent aspects, shadows, changes in lighting and different levels
of vehicular congestion (Figure 1).

Figure 1. Some images from the dataset under different
scenarios.

The dataset was manually labeled in five categories: car, bus,
truck, van and motorbike with a total of 32672, 1574, 2818,
1605 and 4194 labels, respectively. One of the main dataset
features is the vehicle size. This size varies from 40 pixels for
small vehicles to 6992 pixels for large vehicles. This feature
allows to establish the models that present limitations in the
object detection with different sizes. Figure 2a shows some ex-
amples of the vehicle categories on this dataset and Figure 2b
shows the number of labels per category used for training and
test.

W Train W Teste

Number of labels

- -
bus ek mororbik
Vehicle category
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Figure 2. Dataset categories and number of labels.

3.2 Evaluation metrics

The precision, recall, F1 score, and mAP metrics were used to
evaluate and compare the performance of the detection mod-
els. Precision refers to the percentage of predictions that are
relevant instances. The recall measures the percentage of the
model’s ability to classify all samples that are positive within
the dataset’s ground truth. F1 score is the weighted average of
precision and recall and allows to identify the model with the
best balance between these two metrics.

The mAP is one of the main standard metrics used for the eval-
uation of different object detection models (Liu et al., 2020).
The mAP is calculated based on the average of the AP (Aver-
age Precision) for all object categories. The AP is the area under
the precision-recall curve on the IoU (Intersection over Union)
that measures the overlap between ground truth and model pre-
diction. Mathematically the definition of precision, recall, F1
score and mAP are shown in Equations 1 to 4, respectively.
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Here, the TP (True Positive), FP (False Positive), and FN
(False Negative) represent right detections, wrong detections
and missed detections, respectively. N is the number of cat-
egories.

3.3 Proposed framework

Figure 3 shows the proposed framework for vehicle detection
and counting. There are three main stages in this framework:
object detection, tracking, and trajectory processing. Object
detection is performed to obtain the bounding box and the clas-
sification of each object in the frame. Tracking is used to de-
termine the trajectory of each object in the video sequence. The
trajectory processing allows to obtain a result of the trajectories
made by the objects from an analysis by regions.

Trafic Video Input Vehkle Detection Output Vehicle Counting and Tracking Output
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Figure 3. The proposed framework for detection and counting
vehicles.

3.3.1 Object detection: This study used YOLOv4 to per-
form the detection. This model obtained the best results in
terms of precision and speed based on the results of this re-
search (section 4.1).

YOLOV4 represents a continuous improvement of the YOLO
family. The detection principle in the YOLO models is the
same, they divide the input image into an SxS grid and each
cell in the grid is responsible for predicting the objects (Figure
4). If the center of the object is in a cell of the grid that cell
is responsible for the detection of that object. Each cell of the
grid predicts B bounding boxes with their respective confidence
scores and simultaneously the probabilities of the categories of
the objects (for each cell there is one probability by category).
As the input image is divided into a grid, an object can oc-
cupy more than one cell, generating several duplicate bounding
boxes for the same object. These redundant bounding boxes are
filtered using the Non-Maximum Suppression (NMS) method
(Rothe et al., 2014) which generates a single bounding box for
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each object. In the YOLOvV3 and YOLOV4 versions, three grids
of different sizes (13x 13, 26x26 and 52x52) are used for de-
tection at multiple scales.

SxSGrade

Input image

Final detection

Class probability map

Figure 4. The detection principle of the YOLO model.

The YOLOv4 CSPDarknet53 network is mainly based on the
Darknet-53 network of YOLOv3 with the integration of new
convolution blocks, Spatial Pyramid Pooling (SPP), Path Ag-
gregation Network (PANet) and Cross Stage Partial Connec-
tions (CSP). The SPP block is used to increase the receptive
field and improve the extraction of the most significant features
at various levels through the combination of space pyramids.
The PANet block allows the bottom-up and top-down feature
maps to be concatenated before entering the convolution blocks.
CSP is integrated to enhance the variability of the learned fea-
tures within different layers, by separating the feature maps by
means of a partial dense block and the partial transition layer.
Additionally, YOLOV4 presents two packages that integrate a
set of techniques that facilitate detector training, Bag of Free-
bies (BoF) and Bag of Specials (BoS). These techniques in-
clude: Complete Interaction over Union (CloU) and Distance
Intersection over Union (DIoU). CloU is used to improve the
precision in the bounding box regression and DIoU is used as
an NMS method to eliminate redundant bounding boxes based
on the minimum distance between boxes.

YOLOV4 provides an output vector with six values <x, y, w,
h, class, confidence> where (x, y) denotes the location of the
center of the bounding box in the image, (w,h) represents the
width and height of the predicted box, class and confidence are
the type and score of the detected object, respectively.

3.3.2 Tracking: To achieve successful vehicle tracking,
data association methods are required to relate the vehicles de-
tected in the current frame to those in the previous frames. In
this work, two methods were implemented to perform the track-
ing, the DeepSORT method and a verification method.

The DeepSORT method integrates a motion estimation based
on Kalman filtering with deep appearance features to track mul-
tiple vehicles across video frames. This method maintains the
vehicle’s identities regardless of scale and orientation changes.
Because DeepSORT was originally designed for human identi-
fication (Wojke and Bewley, 2018), it was necessary to train the
CNN architecture (wide residual network) on a new Vehicle Re-
id (VeRi) dataset available in (Liu et al., 2016b). This dataset
was created with vehicular traffic videos captured by 20 surveil-
lance cameras.

The DeepSORT method receives the object bounding box in-
formation provided by YOLOv4 and obtains the following

parameters as output: < z,y,w,h,z,y,w, h >. Where
&, 9y, w, h are the first-order derivatives of the z,y, w, h para-
meters in consecutive frames provided by the Kalman filter.
These coordinates, together with the appearance features from
the pixels inside the bounding boxes, form the observations re-
quired to update the vehicle’s state, where each one is associ-
ated with an Id.

The verification method is designed to confirm the identific-
ation of the vehicles at the scene. From the bounding boxes
and Ids provided by DeepSORT, the center (cz,cy) of each
vehicle is calculated. This information is stored in a vector
<(czxo, cyo, Ido), ...(cTn, CYn, Id,)> , where n is the number
of vehicles detected in the frame. Then, the Euclidean Dis-
tance between each center detected in the current frame with
the center associated with the same Id in the previous frame is
calculated as shown in the Equation 5.

Distance = \/(:L‘fd — wfd)z + (Z/fd - yfd)Q (5)

where x,, y5, refer to the coordinates of the center point of the
current vehicle and z?,, 37, the coordinates of the center point
of the vehicle in the previous frame with the same Id. It is veri-
fied if the distance is less than the threshold? (h = 90). If this
condition is satisfied it is possible to confirm that the Id in ques-
tion belongs to the same vehicle. On the contrary, the Euclidean
distance of the evaluated center with all the centers detected in
at least five past frames is calculated. Here, two situations can
arise: situation 1, that there is no relation Distance < h with
any past center, in this case the detection of a new vehicle in
the scene is confirmed; situation 2, that there is a distance less
than the threshold h between two centers, in this case the same
Id of the corresponding center is assigned. This last situation
minimizes problems associated with detection failures by the
YOLOV4 model or occlusions between objects.

3.3.3 Trajectory processing: The purpose of trajectory

processing is to monitor and quantify vehicle categories in re-
lation to their trajectories at the scene. For this, a set of input
regions (Ir) and output regions (Or) were defined. These re-
gions are created based on the geographical characteristics of
the scene and are constant throughout the processing. From
these regions it is possible to determine the displacement (dis)
made by each vehicle in the scene, as shown in Figure 5.

Figure 5. An example of the definition of regions for monitoring
the movement of vehicles.

2 This threshold was defined based on experiments performed to determ-
ine the minimum distance associated with the same vehicle in consec-
utive frames.
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The first step in the trajectory processing consists of identifying
the output region of each vehicle, for this, the following condi-
tion is evaluated:

Ir={Id¢ D |Vig=n € l..n: Pt < Pc < Pbr}  (6)

where Pc represents the center of the vehicle, Pt and Pbr rep-
resent the top left and bottom right points of the region R, re-
spectively and D is a dynamic list that stores the tuple (Id, Ir)
each time a vehicle is identified in an input region. The condi-
tion Id ¢ D ensures that the Id vehicle is stored only once in
the input region where it was initially identified, preventing the
same vehicle from being counted more than once.

The next step in trajectory processing is to identify the output
region of the vehicles based on the evaluation of the following
condition:

Or={Id € D |Vig=n € 1..n: Ptl < Pc < Pbr} (7)

In this case, only the vehicles that were identified in an input
region are evaluated, that is, that meet the condition Id € D.
If a vehicle is detected in an output region, the displacement
(dis_Ir_Or) made by the vehicle is determined with the /r and
Or information. Once a displacement has been defined, the
vehicle counter is increased by one in their respective class and
type of displacement.

4. EXPERIMENT AND ANALYSIS OF RESULTS

This section consists of three parts. The first part evaluates the
CNN-based one-stage detection models on the created dataset.
The second part presents the analysis of the algorithm results
for vehicle counting in four test videos. Finally, a runtime
analysis of the framework is performed. All models were run
on a computer with Intel Core i5-9300H 2.4 GHz quad-core
CPU with 8 threads, an NVIDIA GeForce GTX 1060 Intel
UHD Graphics 630 GPU and 4 GB of RAM. Among the soft-
ware packages installed on this computer include Windows 10,
Python 3.7, TensorFlow 2.0, PyTorch 1.5, OpenCV 4.4, and
CUDA 10.2.

4.1 Object detection experimental

One of the main aims of this paper is the selection of a detection
model with a trade-off in terms of precision and speed that can
be used in the proposed method. For this, the following detec-
tion models were compared: SSD512, CenterNet, Efficiedet-
DO, the YOLO family models, including YOLOv2, YOLOV3,
YOLOV4 and YOLOvV3-SPP.

The CNNs require a large amount of data for training before
reaching a degree of generalization. Commonly, CNNs are
trained on generic dataset such as COCO (Lin et al., 2014) or
PASCAL VOC (Everingham et al., 2010) and are then adjus-
ted for another domain of interest. This process is known as
transfer learning, where the features learned by the CNN of a
source domain (generic dataset) are transmitted to a different
destination domain (custom dataset) (Yosinski et al., 2014). In
this context, transfer learning was used to train the detection
models from the weights obtained on the COCO dataset.

The training of the models was performed for 250 epochs us-
ing a learning rate of 0.001 with a batch size of 16. The input
size of the models was set to 512 x 512 pixels and the sizes
of the anchor boxes were adjusted based on the dataset. To
avoid overfitting problems, data augmentation techniques were
used during the training, including vertical flip, horizontal flip,
changes in brightness and variations in scale (zoom).

The results obtained by each detection model are shown in
Table 1. The most recent state-of-the-art detectors Center-
Net and YOLOv4 obtained the best mAP, with 85.2% and
87%, respectively. YOLOv4 was the best detector among
the models with 2% and 3% gain relative to CenterNet and
YOLOv3. YOLOvV3-SPP obtained a mAP=83%, 2% lower
than YOLOv3. On the other hand, YOLOV2 provided the
poorest results (mAP=68%) among the YOLO family models.
SSD512 reached a mAP=70.56%, beating EfficienDet-D0 by
36%, which was the model that obtained the lowest percentage
in all metrics, with a mAP=45%. In relation to the processing
speed, all the models on average reached from 14 FPS to 18
FPS, except for YOLOv2 with 40 FPS.

Models P R FI mAP | FPS
SSD512 85.1 | 780 | 81.3 | 70.56 | 14.3
EfficientDet (D0O) | 89.4 | 40.6 | 55.9 | 45.0 | 15.0
CenterNet 80.5 | 952 | 87.2 | 852 | 14.0

YOLOv2 829 | 727 | 715 | 68.6 | 40.0
YOLOV3 842 | 939 | 88.8 | 84.6 | 14.0
YOLOvV3-SPP 87.7 | 923 | 89.9 | 83.0 | 135
YOLOv4 858 | 95.1 | 90.2 | 87.0 | 18.0

Table 1. Result of detection in custom dataset.

From Table 1, it is also possible to confirm that YOLOv4 pro-
duced a high number of true positives and few false posit-
ives/negatives, achieving a good balance between the precision
(85.8%) and recall (95.1%) metrics, as well as the highest F1
score (90.2%). These results are confirmed in Figure 6, where
the precision/recall curves obtained by all the detectors are
shown. As can be seen, the YOLOV4 curve (red) remains higher
than the other curves. With the above, the YOLOv4 model is
selected to be used for object detection in the vehicle counting
method.
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Figure 6. Comparison of precision/recall curves in custom
dataset.
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4.2 Counting Vehicle results

To validate the proposed framework, four video clips with a
duration between 50 to 80 minutes were captured in four differ-
ent places in the city of Floriandpolis (Brazil). The resolution of
each video was 1280 x 720 pixels at 30 FPS. Figure 7 shows the
scenarios with their respective input and output regions. These
scenarios feature straight-line and T-interception movements.

Scenario 1

s

Scenario 2

Figure 7. Test scenarios to validate the framework.

Based on the experiments performed, some parameters were
defined for YOLOv4, the size of the input image was set to
416 x 416 pixels, and the score and IoU detection thresholds
were set to 0.6 and 0.5, respectively. The metric used to meas-
ure the accuracy of the framework is shown in Equation 8.

|GT — CA|
GT

where G'T refers to the actual count using human vision and
C A refers to the count performed by the framework. The
vehicle count results are shown in Tables 2 to 5, correspond-
ing to scenarios 1 to 4 of Figure 7, respectively.

®)

accuracy =1 —

this time period (19 in scenario 1 and 14 in scenario 2) com-
pared to other vehicles, such as, for example, the car category
with 1578 and 2030 samples for each scenario. Another factor
that affected the results was the vehicle detection failures due to
occlusions or when the vehicles present characteristics of sim-
ilar appearance. This may result in YOLOV4 performing in-
correct detection, especially when the view of vehicles changes
rapidly.

In scenario 2, a greater number of occlusions were presented
due to the structure of the highway and the camera angle. In
this scenario some vehicles were not detected in their original
region, this caused an error in the count, especially for the car
and motorbike categories. An example of this case is presented
in R1, in which vehicles that were not detected in this region
were mostly detected in R2 as shown in Table 3.

Category R1-R2 R3-R4 Accuracy
(CA/GT) (CA/GT) (%)
Car 241572429 | 1016/1028 99.10
Bus 25/28 28/30 91.25
Truck 148 /163 48750 93.35
Van 139/ 142 51/49 96.85
Motorbike 305/315 142/ 145 97.35

Category R1-R2 R1-R3 Accuracy
(CA/GT) | (CA/GT) (%)
Car 545/549 | 1027/1029 99.50
Bus 18/18 2/1 50.00
Truck 8/8 23/22 97.70
Van 11/10 44745 93.85
Motorbike 50/51 2187223 97.85

Table 2. The framework results of scenario 1.

Category R1-R3 R2-R3 Accuracy
(CA/GT) | (CA/GT) (%)
Car 1024 /1077 | 962 /953 96.75
Bus 1/2 12/12 75.0
Truck 39/38 24/22 93.95
Van 53/55 23/23 100
Motorbike 128 /162 192 /168 82.35

Table 3. The framework results of scenario 2.

As shown in Tables 2 and 3, the average accuracy obtained was
97.5% and 89.61% for scenarios 1 and 2, respectively. Bus ac-
curacy was the lowest among the five vehicle categories. It was
probably caused by the lower number of buses detected during

Table 4. The framework results of scenario 3.

From Tables 4 and 5, it can be verified that the larger the sample
volume, the higher the accuracy rate obtained. In these scen-
arios, a greater traffic flow was presented in the five categories,
which allowed obtaining more solid results in terms of the per-
formance of the framework in relation to the first two scenarios.
In this context, the average accuracy obtained was 95.58% and
93.79% for scenarios 2 and 4, respectively.

Scenario 4 presents a greater number of regions and movements
both in a straight line and interceptions that increase its level of
difficulty. In this scenario, the truck class was the class with the
lowest performance, especially in the counting between the R3-
R5 and R3-R4 regions. It was probably caused by large vehicles
such as the truck or bus categories being counted in two output
regions. This was because from the camera perspective it was
not possible to obtain a significant separation between the two
output regions.

From the results for the four scenarios, the general accuracy on
the highways with straight-line movements was high (scenarios
1 and 3), while the accuracy on the highways with intercepts in
T-conjunction and T-disjunction was lower (scenarios 2 and 4).
Interception performance was affected by camera angle, which
did not allow detection of some of the vehicles due to occlu-
sions. In contrast, straight-line highways present a better per-
spective of vehicles, which minimizes occlusion problems and
model detection errors.

Proper selection of the input and output regions prevents the
same vehicle from being incorrectly counted in other regions.
However, this is not a simple task, as in some scenarios
the structures of the highway prevent an adequate separation
between the regions from being achieved. An alternative to
solve this problem, would be to focus the camera on specific
regions of the highway and not the entire scene. The results of
the experiments show that, despite the variation in the vehicle
flow density and the errors caused by the occlusion, the frame-
work does not decrease its counting performance. Additionally,

This contribution has been peer-reviewed.
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Cat R6 - RI R2-R5 R3-R5 R3-R4 | Accuracy
alegory | (CA/GT) | (CA/GT) | (CA/GT) | (CA/GT) (%)
Car 232272398 | 236072380 | 3287329 | 1057111 974
Bus 33/38 11/11 23/24 0/0 94.2
Truck 131/137 138/ 153 23/19 7/6 86.98
Van 98/ 106 124/ 126 15/14 4/4 95.9
motorbike | 296 /294 279 /285 50/ 54 15/17 94.45

Table 5. The framework results of scenario 4.

the framework is able to correct problems associated with de-
tection failures that allow it to maintain the counting accuracy.

4.3 Running time results of the framework

In this session, the real-time rate was used to evaluate the speed
of the proposed framework. The real time rate can be obtained
by Equation 9, which is defined as the ratio between the time
required for the framework to process a video and the playing
time of the original video. When the value of the real-time rate
is less than or equal to 1, the framework can perform real-time
processing. On the other hand, the higher this value, the lower

the capacity of the real-time processing framework.

real time rate =

framework running time

video running time

©))

The videos were cut to a duration of 50 minutes to better com-

pare the results.

This value was defined in relation to the

shortest duration of one of the test videos. Table 6 shows the
runtime of framework in the four test videos.

Scenario thal V1dep Frame\york ] Real
vehicles | duration duration time rate

1 1212 50 min 67.2 min 1.3

2 1416 50 min 71.4 min 1.4

3 3068 50 min 75.1 min 1.5

4 4600 50 min 97.1 min 1.9

Table 6. Runtime result in test videos.

From the table, it can be concluded that the proposed algorithm
executed on the test equipment does not achieve real-time pro-
cessing, since in all scenarios it obtained a real-time rate greater

than 1.3.

Additionally, from the experiments performed, it can be verified
that the number of vehicles processed by the framework directly
affects the execution speed. As the number of vehicles in the
video increases, the running time of the proposed framework
also increases. This is because the algorithm has to identify
more objects in each frame, which is equivalent to a greater
number of operations performed internally. The complexity of
the scenarios also affects the algorithm speed, as is the case of
scenario 4, in which not only is there a greater vehicular flow,
but also a greater number of regions to be evaluated, being the
scenario with the highest execution times.

5. CONCLUSIONS AND FUTURE WORKS

In this work, a framework for detection and counting of vehicles
in real traffic scenes was presented. To select the detection
model that was used in the framework, seven one-stage detec-
tion models were compared in order to determine the model
with the best trade-off between accuracy and speed in a new
dataset. YOLOv4 achieved the best trade-off with mAP=87.0%
and a processing speed of 18 FPS.

https://doi.org/10.5194/isprs-archives-XLI1-B2-2021-793-2021 | © Author(s) 2021. CC BY 4.0 License.

The results with the framework show that the average count ac-
curacy using YOLOv4 in the four test scenarios was 94.12%.
One of the factors that affected the performance of the count
by regions algorithm was the occlusions of smaller vehicles in
both the input and output regions. One way to improve this
problem would be to evaluate other camera positions, heights
and/or angles that allow a better perspective of the highways
and vehicles. The framework achieves a real-time processing
rate of less than 1.9. This means that real-time processing is
not possible with the equipment used in this research. How-
ever, more tests are necessary to determine its performance in
equipment with greater processing capacity, and to be able to
establish whether or not its implementation in a real vehicle
traffic monitoring system is feasible.
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