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ABSTRACT:

Object detection performance is directly related to the apparent size of the object to be detected, thus most state-of-the-art algorithms
dedicate different detection heads for each object size. In this work, we propose an end-to-end pipeline to adapt a single-shot object
detector (SSD) to the underlying object size distribution of the target detection domain. Our contributions are the adjustments to
the detector architecture and the introduction of a novel batch sampling method. To validate the effect of our method, we chose a
task-specific highly specialized object detection and classification dataset of tomato fruits that apart from bounding box information,
it also contains class information for three ripening stages of each tomato fruit.

More specifically, the major motivation and contributions are discussed in relation to the recent bibliography. Next, an extensive
analysis of our pipeline is presented, where the concept of scale alignment is thoroughly presented along with the novel sampling
method. Following the results of a series of experiments, we conclude that our pipeline significantly improves over the “off-the-
shelf” base single-shot detector and its detection performance is comparable to more elaborate algorithms, especially if we measure
detection performance slightly disregarding box localization. Lastly, we include a stratified ablation study in the closing sections

where we measure the impact of each step along our proposed SSD adaptation pipeline.

1. INTRODUCTION

Object Detection (OD) is one of the most challenging problems
in computer vision, aiming to determine the location of certain
objects on images and videos, as well as to classify them among
specific classes. Typically, the localization of an object is de-
scribed by a bounding box. OD is an enabling technology for
a wide range of applications such as autonomous driving, ob-
ject and people tracking, and in different fields, such as space,
security, transportation, and industry. Nowadays, several either
two-stage detectors, e.g. region proposal CNN (Girshick et al.,
2014), Faster RCNN (Ren et al., 2015), and Mask RCNN (He
et al., 2020), or one-stage detectors, e.g. RetinaNet (Lin et al.,
2017), Single Shot Detector (Liu et al., 2016) and YOLO (Red-
mon and Farhadi, 2018)), are considered standard practise for
common detection tasks.

Most often, OD models are tied to standard datasets used for
pretraining, such as the COCO (Lin et al., 2014)) or the Open-
Images (Kuznetsova et al., 2020) dataset, which affects their
response to object sizes different than the ones in the dataset.
Existing works, as discussed in the following sub-section, are
based on a variety of different approaches that tackle the prob-
lem of multi-scale object detection with remarkable efficiency.
However, most of these approaches are either new architectures
all together, or heavily tied to a specific type of detection model.
Hence, our motivation lies in the need for a higher-level uni-
versal approach that could potentially benefit a handful of tar-
get detection model architectures into significantly improving
their respective detection performance. That said, we propose
a pipeline to accurately align detection set of scales to the tar-
get domain object size distribution using single-shot object de-
tectors. We validate our proposition on “small object detec-
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tion” which is a research sub-field of particular interest due to
its inherent ”by-definition” difference in object size distribution
compared to standard OD datasets. The evaluation is based on
the task-specific but intriguing TomatOD dataset (T'sironis et al.,
2020).

This work introduces two major contributions: firstly, we present
a straightforward pipeline to configure an object detection model
so that it can perform optimally in the size range of a given
target object; secondly, we introduce a novel training strategy
which significantly improves the detection performance of a
model avoiding the complexity of other similar methods. We
provide source code for our scale-aware SSD implementation
athttps://github.com/up2metric/scale-aware-SSD/.

2. RELATED WORK

In this section we present some recent advancements in the sub-
field of ”small object detection” and we further focus on related
work that manipulates the scale space of the detection, since its
more closely related to our approach. Finally, we briefly discuss
the Single-Shot Detector (SSD) MobileNet v2 object detection
algorithm upon which we base the demonstrator of our method.

2.1 Small object detection

A plethora of real-world applications is heavily dependent on
accurate small object detection such as industrial (Qiu et al.,
2019), agriculture (Wang et al., 2020; Zhang et al., 2020), sports
(Xu et al., 2018), or security (Abe et al., 2008) applications.
Small object detection is of particular interest for earth observa-
tion purposes such as the case of object detection in optical air-
borne (Wang et al., 2018), or satellite (Ren et al., 2018} |Zhang
et al., 2019) very high resolution data.
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Standard detection algorithms typically perform poorly in such
scenarios, compared to their performance on more common
datasets like COCO (Lin et al., 2014) or Open-Images (Kuznet-
sova et al., 2020). In the literature there are several approaches
to mitigate this problem (Tong et al., 2020); some include the
design of entirely new detectors, e.g. they employ generat-
ive adversarial networks (GANSs) to detect small objects in a
context-aware manner (Bai et al., 2018). Similarly, (Bell et
al., 2016) perform multi-scale ROI pooling with their inside-
outside network (ION) resulting in improved performance for
small object detection. Most approaches, however, rely on modi-
fying existing models to improve their detection performance
on smaller objects as in the work of (Cui et al., 2018)) where a
set of de-convolution layers are coupled to certain feature maps
of an SSD detector. (Cao et al., 2019) present an adaptation of
Faster RCNN where a multi-scale feature fusion technique is
used to improve small object detection performance. Also not-
able is the work of (Kisantal et al., 2019) where the authors dis-
cuss augmentation techniques that are beneficial for boosting
a model’s small object detection performance, while (Chen et
al., 2021)) further discuss some scale-aware augmentation tech-
niques.

When dealing with the ”small object detection” problem the
model architecture is not the only unknown that needs to be
addressed as the training strategy also plays a crucial role in
building an accurate small object detector. In bibliography there
have been proposed several such strategies like SNIP (Singh
and Davis, 2018), an approach where, during training, only
selected ground truth boxes and proposals of a specified size
range for a particular resolution are used to back-propagate the
gradients through the network. Similarly, SNIPER (Singh et
al., 2018)) only processes context regions around ground truth
boxes at the proper scale instead of processing a whole multi-
scale pyramid of features. Finally, (Bodla et al., 2017) propose
a soft-NMS post-process to integrate detections from a variety
of scales ultimately improving detection performance for small
objects.

2.2 Scale-awareness in object detection

Context and scale awareness are critical qualities of a detection
system to properly identify objects in a wide range of poten-
tial sizes. Most existing detection systems have some multi-
scale structure in place, either via multi scale fusion like the
region proposal network (RPN) found in faster region-based
CNN (FRCNN), or an FPN-based structure similar to that in
Retina models, or even a pyramidal feature hierarchy like the
one present in SSD detectors. Furthermore there is a pleth-
ora of approaches that are specifically designed to incorporate
multi-scale features resulting in scale-invariant detectors like
(Sambolek and Ivasic-Kos, 2021) or (Zhang et al., 2018)).

However, there are some algorithms that are specifically optim-
ized for scale awareness such as SAN from (Kim et al., 2018|),
a scale-aware network that models scale-dependent relation-
ships by mapping convolutional features from different scales
onto a scale-invariant subspace. (Liu et al., 2017) use a recur-
rent rolling mechanism to propagate along the scale dimension
given the computation of a single fixed-scale feature map. (L1
et al., 2019) implement a parameter sharing technique across
multiple parallel detection branches, each one having a differ-
ent receptive field, thus corresponding to a different scale.

2.3 SSD MobileNet v2 detector

This work builds upon the architecture of the SSD MobileNet
v2 detector, which has a typical SSD architecture, i.e. itis a
multi-scale feature learning architecture exploiting the paradigm
of ”Pyramidal Feature Hierarchy”. In this particular variant
the detector exploits the fully convolutional encoder part of
the MobileNet v2 image classification network (Sandler et al.,
2018). MobileNet v2 is a very deep yet lightweight architec-
ture because it leverages an inverted residual structure to con-
struct the very computational efficient bottleneck blocks. We
chose SSD MobileNet v2 detector as the base for our method-
ology for two key reasons: firstly, it exploits a paradigm that
allows for a streamlined and straightforward implementation of
our pipeline; secondly, it is an ultra lightweight detector cap-
able of performing adequately even on low-powered embedded
devices with little compromise on input image resolution. In
detail, the direct attachment of the detection heads to certain
layers of the encoder, allows for the direct manipulation of the
receptive field corresponding to each detection head. Our goal
has been to develop a detection system capable of running near
real-time on embedded devices, like the Nvidia Jetson Nano,
while still retaining the detection performance of more complex
detectors, like FRCNN. In this context, the SSD MobileNet v2
object detector is a perfect fit for our needs.

3. METHODOLOGY

The scale-aware approach presented in this work constitutes a
generic technique to adapt mainstream single-shot detectors so
that they can take advantage of the singular object scale dis-
tribution of the target training and testing dataset. Here, we
present the novel detector adaptation pipeline in a more stream-
lined fashion, since we focus on the adaptation of SSD Mo-
bileNet v2 for the task-specific TomatOD dataset (Tsironis et
al., 2020); however, our technique can expand to literally any
single-shot detector and dataset.

3.1 Target dataset scale distribution

The first step of our method is to identify the overall object
scale distribution of the target dataset. To accomplish this we
calculate the percentile relative size of each bounding box, i.e.
the proportion of the diagonal size of each box over the diagonal
size of the image. Figure[l]shows the object scale distribution
in the case of TomatOD.
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Figure 1. TomarOD dataset percentile object size distribution.

One can observe that the target dataset consists of objects with
a relative size varying from 5% to 16%, having a few outliers
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on either side. Given that we target a 512 x 512 input image
size we directly infer that the absolute box size ranges mostly
between 25 to 80 pixels. In the following step, we will leverage
this information to design a task-specific version of the SSD
MobileNet v2 detector.

3.2 Scale alignment for detection heads and anchor selec-
tion

Most deep-learning based object detectors use a multi-scale grid
of “default boxes” or "anchors” to define the basic detection
scale set, that corresponds to a set of detection heads in the
model’s architecture, and an a priori spatial distribution of pos-
sible object locations on any input image. Our goal is to de-
termine an optimal set of anchors in order to better align the
detector’s basic detection scale set to the absolute object size
distribution of the target dataset, as discussed earlier.

To accomplish this we investigate the encoder part of the SSD
MobileNet v2 detector and for each block we calculate its re-
spective receptive field (Table[T). In its standard implementa-
tion SSD MobileNet v2 uses block-14 and output blocks of the
MobileNet v2 encoder to attach the first two detection heads,
which correspond to the two “smallest” scales of the anchor
set. For the rest detection heads a set of extra features layers is
used.

Setting Output size (px) | Receptive field (px)
Input 512 x 512 1
init-conv 256 x 256 3
Block-1 256 x 256 7
Block-2 128 x 128 11
Block-3 128 x 128 19
Block-4 64 x 64 27
Block-5 64 x 64 43
Block-6 64 x 64 59
Block-7 32 x 32 75
Block-8 32 x 32 107
Block-9 32 x 32 139
Block-10 32 x 32 171
Block-11 32 x 32 203
Block-12 32 x 32 235
Block-13 32 x 32 267
Block-14 16 x 16 299
Block-15 16 x 16 363
Block-16 16 x 16 427
Output 16 x 16 491

Table 1. Block-wise receptive fields and block output size for
512 x 512 input image size for the MobileNet v2 encoder.

On the other hand we opted for block-5 and block-8 blocks as
the attachment point for our first two detection heads, while we
maintained the extra features layers approach for the rest of the
remaining detection heads (Figure[2). These design choices res-
ulted in a set of {43 / 107 / 141 / 207} pixels for the effective
receptive field of the feature maps where the detection heads at-
tach. In contrast, the original implementation had, respectively,
a set of {299 /491 /557 / 687} pixels. This design choice was
driven by the pre-calculated absolute object size distribution for
the target dataset, where the dominant size range was found to
be between 25 and 80 pixels with some rare instances on both
extremes, e.g. a few instances were as small as 15-20 pixels and
some other as big as 120-140 pixels. By intuition, we argue that
there should be a relation between the anchor size and the ef-
fective receptive field of the respective detection head, however
in any case the effective receptive field should be larger than the
corresponding anchor diagonal size. After several experiments

discussed in Section[5] we opted for a set of {25 /38 /58 /87}
pixels as the corresponding reference diagonal sizes for the 1:1
aspect ratio anchors for each detection scale that describes op-
timally the absolute object size distribution of the target dataset.

Overall, the average receptive field (RF) to anchor size ratio was
about 2.3 while for the original implementation it was about
10.6 (Table P). This indicates an increased alignment of the
model’s detection scales (dataset-dependent) to the available
image area for detecting an object (architecture-dependent). We
argue that such alignments scores should preferably lie within
an optimal range of [1.5, 2.5], as derived from the experiments
in Section[3

Original Custom
Anchor size RF A-score RF A-score
25 px 299 px 12.0 43 px 1.7
38 px 491 px 12.9 107 px 2.8
58 px 557 px 9.6 141 px 24
87 px 687 px 7.9 207 px 24
mean 10.6 2.3

Table 2. Alignment scores (A-score) for original and custom
SSD architecture given a dataset-specific anchor sizes set.

3.3 Training techniques and Dynamic Negative Sampling

Apart from the aforementioned architectural interventions, we
introduced a set of training techniques in order to maximize our
model’s potential. Specifically, we addressed the class imbal-
ance problem by introducing a strategy for determining a set
of class weights for the foreground classes. This strategy is
discussed in the section 5. Furthermore, we introduced a novel
batch-sampling method, namely ”Dynamic Negative Sampling”
(DNS) to improve on the original 3:1 negative-to-positive hard-
mining approach of the original SSD implementation. Dur-
ing the sampling procedure, DNS will keep all positive train-
ing samples and all misclassified negative samples (negative
samples that are classified as positive classes). This proced-
ure will lead to mini-batches of variable lengths in each train-
ing step, depending on the number of misclassified negative
samples.

DNS was inspired by the realisation that a fixed positive / neg-
ative sampling ratio can really hurt the algorithm in cases where
the negative samples are very easy to detect and correctly clas-
sify. In such cases, the constant number of negative samples
can really weaken the positive signals that try to differentiate
between different classes, making the training procedure more
difficult and time-consuming. The intuition behind the DNS
algorithm is that the variable mini-batch lengths can create an
adversarial effect in the training procedure. As the length of
each mini-batch shrinks, positive samples will start to domin-
ate it, generating stronger positive signals in each training step.
Those signals will start to classify more positive samples cor-
rectly, but they will also force more samples to be misclassi-
fied, hence turning them into negative, resulting in larger mini-
batch sizes. On the contrary, as the length of each mini-batch
increases, negative samples will start to dominate it, forcing
the training procedure to focus on eliminating them, resulting
eventually in smaller mini-batch sizes. Those two contradict-
ory states alternate continuously during the training procedure,
leading eventually to a best-of-both-states equilibrium, in which
only an essential amount of negative samples is kept in each
mini-batch.
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Figure 2. Target dataset scale-aware custom SSD architecture.

4. RESULTS

In this section we discuss the detection performance of our ap-
proach is discussed in comparison to several industry standard
object detectors. Initially, we present the dataset used to train
and evaluate our models along with the complete experimental
setup that we used. A quantitative analysis of the results fol-
lows where all models are compared using several variants of
the, widely used for detection tasks, mAP family of metrics. Fi-
nally, some qualitative observations are being noted about the
difference of performance across all models tested.

4.1 Experimental setup

TomatOD dataset was chosen to evaluate the proposed method
for adapting SSD for a handful of reasons. At first, TomatOD
has a radically different object size distribution compared to
standard datasets, such as COCO or Open-Images, yet it does
not qualify as a ”small object”-only dataset, such as DoTA. This
variance in target object sizes is ideal to demonstrate the im-
pact of our scale-dependent approach. Secondly, the TomatOD
dataset is a real-world dataset, i.e. it has a constrained amount
of labelled images, whose image quality (resolution, sharpness
and brightness) is close to what should be expected from low-
cost machine vision cameras in real-world conditions. At last,
the TomatOD is an overall tough dataset for object classifica-
tion since its target categories are strongly correlated since they
vary among three different ripening stages of the same object
(tomato fruit).

We compared our approach to three other object detection mod-
els: the SSD MobileNet v2 from the Tensorflow OD API, the
Faster RCNN ResNet50 FPN, the Faster RCNN ResNet101 FPN
and the Retina ResNet50 from the Detectron 2 framework, all
pretrained at the COCO dataset. The first one, draws the baseline
performance since it is the model we based our methodology
on, while the other two models represent the state-of-the-art
for object detection applications. We selected an input image
size of 512 x 512 for all the detection models, including ours.
We opted for a minimal set of transformations / augmentations,
apart from the obvious resize to 512 x 512, which includes ran-
dom horizontal flip and random sized crop. To properly evalu-
ate our model we used the well established mAP and mAP:0.5
object detection metrics from the COCO dataset. Furthermore,
we measured inference time for all models on a system based
on an Nvidia RTX 3090 graphics card.

4.2 Quantitative Results

The overall best results for each algorithm are displayed in Table
Bl Regarding our custom SSD model we included two distinct
variants; one that differs only architecture-wise to the base SSD
MobileNet v2 detector and another one that includes all train-
ing techniques that we discussed in subsection [3.3] Comparing
our model to the one its based on, we immediately observe that
both evaluation metrics are significantly improved. In detail,
the mAP metric improved 12.5% while the mAP:0.5 metric im-
proved by 20.9%; this outstanding improvement highlights the
potential of single-shot detectors to produce adequately good
detection results when are biased towards the target size distri-
bution. Specifically, we argue that by assigning the detection
heads to earlier feature maps, to associate the effective recept-
ive field to the anchor box size, the resulting anchor boxes grid
is much denser and thus better aligned a priori to the ground-
truth bounding boxes.

Taking into account all the proposed training techniques our
model performs better than both FRCNN variants on the (cru-
cial) mAP:0.5 metric, and lacks by 4-6% on the mAP metric.
Retina R50 is the overall best performing detector outperform-
ing our model by 12.2% and 1.6% on the mAP and the mAP:0.5
metric respectively. Overall, our custom SSD model posts a
strong performance on the mAP:0.5 metric, a metric that meas-
ures the ability of a model to successfully detect the existence of
an object without enforcing strict bounding box localization cri-
teria. On the other hand the generic mAP metric measures both
the detection and localization capability of a detector. Given the
simplistic and straightforward structure of the SSD approach,
when compared to complex architectures like FRCNN and Ret-
ina, our model is bound to inferior localization performance due
to its SSD architecture.

Regarding computational efficiency, we measured the mean in-
ference speed in frames per second (FPS). As presented in Table
Ml our custom SSD model not only matches, but improves on
the computational efficiency of the SSD Mobilenet v2. This is
an expected result since our model attaches its detection heads
earlier to the MobileNet v2 encoder resulting in fewer opera-
tions in total. Compared to FRCNN and Retina algorithms our
model outperforms them both by a significant margin of about
5-7x. Our model was also tested for computational perform-
ance on embedded platforms, yielding about 8-10 FPS mean
inference speed on a Nvidia Jetson Nano. On this specific plat-
forms all FRCNN and Retina models performed much worse,
resulting in <1 FPS inference performance.
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(d) SSD MobileNet v2
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Figure 3. Visualized detection results for all tested detection models on a sample test image.

Detector mAP | mAP:0.5
% %
FRCNN R50 FPN 43.8 83.6
FRCNN R101 FPN 41.0 79.9
Retina R50 49.7 88.0
SSD MobileNet v2 22.3 57.8
SI};setl(;rrlr;)SSD (OG train 34.8 787
tCrlal?rEOpnilpellsifel)) (custom 37.3 86.4

Table 3. Overall detection results (after hyperparameter tuning)
for the TomatOD dataset.

4.3 Qualitative results

In FigureEl some characteristic cases of the detection perform-
ance difference between the models are showcased. In the case
of our model (”Custom SSD”) we can argue that, in general,
performs adequately well. In further detail, we accomplish de-
tection performance similar to much more complex architec-
tures like FRCNN and Retina. Classification-wise the perform-
ance of our detector is equivalent to that of FRCNN and Ret-
ina but localization-wise it can’t match the, by-design superior,
capacity of the other two models. Compared to the baseline
SSD MobileNet v2, however, we can easily observe that our
approach performs much better in every aspect. The baseline
model suffers from inability to correctly classify the object into
the right category (in FigureE]there are two such cases) while,
also, there are object instances that failed to be detected all to-
gether (in FigureElthere are several undetected instances on the
tomato cluster). The localization performance of the baseline
method is only lacking by a slim margin compared to ours for
the cases where both detectors have successfully identified an
object. That observation may indicate that the overall localiza-

Detector Input size | mean FPS
FRCNN R50 FPN 512 x 512 51
FRCNN R101 FPN 512 x 512 31
Retina R50 512 x 512 43
SSD MobileNet v2 512 x 512 153
C}lstqm SSD (OG train 512 % 512 200
pipeline)

Custom ~ SSD - (custom | 515 . 515 | 200
train pipeline)

Table 4. Inference performance on an Nvidia RTX 3090 based
system.

tion accuracy of the model might be constrained by the common
underlying SSD architecture. Finally, we can observe that our
best model, i.e. the one trained with our proposed pipeline, ex-
cels in avoiding multiple detections of the same object when
much more complex detectors fail to do so. We believe that this
is indicative of the overall impact of our DNS sampler in con-
junction with the proper utilisation of class balancing weights
during training for the foreground classes.

5. ABLATION STUDY

In this section we will evaluate the impact of each individual
component of our method. The study is presented in a stratified
way so that it represents our proposition on how to develop a
similar custom detector in virtually any dataset. Step-by-step,
we initially search for an optimum set of anchors, next we de-
termine sequentially the best choice of foreground class weights
and the best performing batch sampling method for hard pos-
itive/negative sample mining. Finally, we perform some per-
formance stability tests over a series of repeated experiments
and evaluate the potential impact of pre-training our model on
a common “’small-object” detection dataset.
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5.1 Anchor search

Our first concern is no other than selecting an optimal set of
anchor sizes. We refer to the diagonal size of the 1:1 aspect ratio
base anchors. It’s common that, size-wise, the other anchors
(different aspect ratios) derive in a procedural way from those
base anchors so we can safely constraint our search only to base
1:1 anchors. In the common case for an SSD architecture there
are 4 such base anchors, a design we choose to adopt as well.

To come up with a selection of possible base anchor sets we
need some information from the target dataset. As heavily dis-
cussed during previous sections we compute the absolute diag-
onal object size distribution for the target domain. In the case
of TomatOD it is a range of 25-80 pixels with some additional
outliers. Next, we need to target a specific “alignment” score,
most commonly a target value in the range 1.8-2.5. Last, we ad-
opt a systematic multiplicative rule to go from one scale to the
next. In our case we tried both a 1.5x and a 1.7 x multiplication
factor.

Anchor set a-score | mAP | mAP:0.5
% %
20/41/81/164 1.9 31 74
25/38/58/87 2.3 35 79
25/43/74/124 1.9 35 79
28/45/72/115 1.9 34 79
30/45/60/80 2.2 35 75
30/45/60/90 2.1 34 78

Table 5. Anchor search experiments
Four anchor sizes per set, anchor size in pixels.

All experiments were conducted given a basic setup, e.g. the
original SSD 3:1 batch sampler, no class weighting and xavier-
initialized weights where Image-Net pretrained ones were un-
available. In Table [3] all sets under investigation are presen-
ted. Two sets yielded the best results. Both sets have 25 pixels
as the smallest anchor diagonal size, however one has a 1.5x
and the other a 1.7x multiplication factor. Furthermore, in
both cases we have an acceptable “alignment” score, hence both
sets are excellent choices for our case. However, we selected
{25/38/58/87} pixels for our model because as seen in Figure[l]
there are more ’small” objects than “bigger” ones in our dataset
so we opted for the set that “covers” in a denser way the ”small”
object spectrum of the size distribution.

5.2 Class imbalance

Apart from being a challenging task-specific detection dataset,
TomatOD dataset also poses a hard object classification prob-
lem for two main reasons: at first, as seen in Figure {4 it is
characterized by heavy class imbalance in favour of 1 of the
3 class (unripe); secondly, the classification task is an inter-
species classification task, so there is a continuous, and not dis-

95 9

crete as usual, transition between classes “unripe”-"semi-ripe”

29 99

and semi-ripe”-"ripe”.

Figure 4. TomatOD dataset object class distribution.
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To countermeasure these challenges we experimented with three
approaches regarding balancing the classes through class weights.

Initially we used a set of weights directly derived from the
class distribution of the dataset, i.e. unripe(u):1, semi-ripe(s):4,
ripe(r):3.7. Next, we tried a different approach by selecting
weights that heavily “promote” the "middle” class (semi-ripe),
i.e. u:l, s:5, r:1. Finally, we opted for a hybrid approach that is
essentially a combination of the previous two, i.e. unripe(u):1,
semi-ripe(s):8, ripe(r):3.7.

Weights set mAP | mAP:0.5
% %
no weights 35 79
u:l, s:4,1r:3.7 36 82
u:l, s:8,r:3.7 33 80
u:l, s:5,r:1 36 80

Table 6. Class weights search experiments.
(u: unripe, s: semi-ripe, 1: ripe)

For the experiments we used a fixed 25/38/58/87 (px) set of
anchors, the original 3:1 batch sampling process and we used
a randomly (xavier) initialized model, except for the encoder
part where ImageNet pretrained weights were used. As shown
in Table[6] the classical approach of using class weights derived
from the target distribution yielded the best results. The overall
improvement was about 1% for the mAP metric and 3% for the
mAP:0.5 metric. It is also worth noting that virtually all three
weight computation methods resulted in superior performance
over the no-weights baseline for the critical mAP:0.5 metric,
and only the hybrid approach resulted in worse performance
for the mAP metric.

5.3 Batch sampling method

Apart from the architectural interventions presented in this work,
we proposed a novel batch sampling method, namely Dynamic
Batch Sampling (DNS). In this subsection we investigate the
effect DNS has when compared to the standard 3:1 maximal
negative-to-positive hard mining batch sampling algorithm for
the SSD models. For completeness we also conducted some
experiments with a naive 1:1 negative-to-mining hard sampling
method. In Table[/|the results of this study are presented. The
experiments were conducted given a 25/38/58/87 (px) set of
anchors, unripe(u):1, semi-ripe(s):4, ripe(r):3.7 class weights
and xavier-initialized weights where ImageNet pretrained ones
were unavailable.

Sampling method | mAP | mAP:0.5
% %
basic (3:1) 36 82
DNS 37 86
1:1 34 79

Table 7. Hard-mining batch sampling method search.

Interpreting the results we can clearly observe that DNS provides
a significant boost especially for the mAP:0.5 metric where the
overall improvement is about 4%. Smaller gains about 1% are
observed for the mAP metric. That model, in particular, is
the one that achieved the best metric values for both mAP and
mAP:0.5 metric. Regarding 1:1 hard-mining sampler, it per-
formed poorly as expected. That series of experiments, how-
ever, indicated another strong advantage of DNS versus the 3:1
sampler. DNS converges at a much faster rate to the solution,
in our case in about 40-50 epochs of training, while the stand-
ard approach required hundreds (150-250) of epochs. That res-
ult proves experimentally our argument, discussed in Section[3]
about the adversarial nature of the DNS.
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5.4 Initialization impact and pretraining

One crucial difference of our approach when compared to off-
the-shelf detection solutions is that our model is not pretrained
on a generic detection dataset, such as COCO or Openlmages.
In this series of experiments we investigate whether our (in part)
randomly initialized non-pretrained model can benefit from pre-
training on a well-known dataset for small object detection such
as the DoTA dataset (Xia et al., 2018)). To assess the random-
ness of the final resulting models, we also repeated each experi-
ment 15 times. All experiments were conducted using {25/38/
58/ 87} set of anchors, (unripe: 1, semi-ripe: 4, ripe: 3.7) class
weights and our DNS hard-mining batch sampling method. The
results are shown in Table[§]

mAP mAP:0.5
Pretrained | mean | std | max | mean | std | max
% % % % % %
no 33.2 19 | 373 | 813 | 2.7 | 86.4
yes 3216 | 1.5 | 343 | 79.0 | 2.2 | 824

Table 8. Metrics variance over a course of experiments for a
DoTA pretrained custom SSD model versus a randomly
initialized one.

Reviewing the results, one can observe that the pretrained mod-
els have a smaller variance in their performance; this is to be
expected since the pretrained model has, in theory, a much bet-
ter initial state. As a side effect, the pretrained models also con-
verged significantly faster to a stable solution. However, quite
unexpectedly, the non-pretrained model has generally ended-up
being significantly superior compared to the DoTA pretrained
ones. We interpret this result by arguing that a randomly (xavier)
initialized model has the potential to discover better overall
solutions that might exist out of the area of influence of the
(fixed) pretrained initial state. In other words, it is a situation
similar to the "exploration vs exploitation” dilemma that we
commonly face in Reinforcement Learning problems.

At last, we should note that we experimented with a few aug-
mentation options, specifically Random Horizontal Flip and Ran-
dom Crop, but this caused a reduction in performance by 1-2%
on both metrics. Although augmentations are crucial to the gen-
eralization of a model for real world applications, their effect
was statistically insignificant in this case.

6. CONCLUSION

In this work, we investigated the problem of generating a light-
weight purpose-built object detector that can potentially achieve
performance directly comparable to state-of-the-art two-stage
object detectors without sacrificing, if not improving, the com-
putational efficiency of the base single-shot detector it was built
upon. Our work proved that it is possible to specifically adapt
a lightweight SSD model with minimal effort and without the
need of pretraining to come up with a model that can perform
similar to much more complicated algorithms, while remaining
deployable in low-power and low-cost platforms. The proposed
method is easily generalizable to several other single-shot ar-
chitectures (e.g. RPN, Retina, and YOLO among others), while
our DNS sampling method can be used “as-is” in almost any
recent object detection algorithm.

As a future work, an investigation of the effect of DNS for a
variety of object detectors would be very interesting. Further-

more, the possibility of designing custom detectors without re-
lying on complex ImageNet-pretrained encoder networks, but
instead opting for lightweight FCN xavier-initialized, should be
explored. In such a scenario, real-time task-specific object de-
tection on high resolution images on virtually any embedded
device would become a reality.
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