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ABSTRACT:

The objective of this work is to compare the use of classical image processing approaches with deep learning approaches in a visual
inspection system for defects in commercial eggs. Currently, many industries perform the detection of defects in eggs manually, this
implies a large number of workers with long working hours who are exposed to visual fatigue and physical and mental discomfort.
As a solution, this work proposes to develop an automatic inspection technique for defects in eggs using computer vision, capable
of being operable in the industry. Different image processing approaches were evaluated in order to determine the best solution in
terms of performance and processing time.

1. INTRODUCTION

Egg processing systems for human consumption consist of four
main stages: harvesting, washing, sorting and packaging. In
particular, the sorting stage represents a fundamental aspect in
the poultry industry, not only for economic reasons, but also for
health reasons. At this stage, the eggs are subjected to quality
control through physical and appearance control, to rule out de-
fective eggs from the line. Among the various causes of internal
and external defects that can occur in an egg are summarized in
Table 1.

Defects Quality
Factor(s) Causes of Defects

Exterior

Stain
- Small specks, stains or cage
marks
- Traces of processing oil

Dirt Adhering dirt or foreign material

Egg shape Unusually or decidedly misshapen

Crack Broken or cracked shell

Interior

Air cell 3/16 inch or less in depth

White
albumen

- Weak and watery
- Reasonably firm

Yolks - Outline are not well defined
- Large calcium deposit

Blood or
meat spots Pronounced thin spots

Table 1. Exterior and Interior Defects of Eggs.

Some of the defects present in the eggs are detected during the
inspection process using Candling, a technique that consists of
placing the egg over a hole and applying a light source to show
the details of the egg through the shell. At an industrial level,
this technique, when performed by human operators, is not
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very effective, since workers face long hours of work exposed
to intense light in poorly lit environments, causing visual fa-
tigue. This not only results in low detection efficiency, but also
causes various health problems in workers, such as progressive
visual damage, physical and mental discomfort (Sebastián et
al., 2018). To reduce the problems associated with implement-
ing manual techniques, many companies have invested in new
technologies for automated visual inspection of eggs using dif-
ferent approaches, such as optical, mechanical or acoustic tech-
niques. Mainly, optical approaches implemented in computer
vision systems have brought great benefits for inspection of pro-
duction quality in various industries, especially in the food in-
dustry (Gomes and Leta, 2012). The main advantage of optical
approaches is their non-destructiveness, this is due to the fact
that the inspection process is performed without direct contact
with the product, avoiding the least possible damage.

To date, several approaches based on image analysis have been
proposed for the detection and classification of defects in com-
mercial eggs. According to the information compiled in the
systematic mapping of the literature performed in this work,
it was found that most of these approaches employ classical
image processing methods, managing to design successful ap-
plications with low computational cost (Lunadei et al., 2011).
However, these methods can become complex due to the re-
quirement of several steps, such as removing the background,
maintaining the region of interest, applying filters, among oth-
ers. Thus, there is a demand for new techniques that can handle
these complexities.

In recent years, deep learning has been developed for automated
vision-based tasks such as pattern recognition and image clas-
sification (LeCun et al., 2015). Convolutional Neural Networks
(CNN) are one of the most important and successful deep learn-
ing methods in the field of image analysis in which several lay-
ers are efficiently combined and trained. CNNs have proven
to be promising tools in the food and agriculture industry field
(Sladojevic et al., 2016), (Farooq and Sazonov, 2017), (Shimizu
et al., 2017), however these approaches can be computationally
expensive. Given the uncertainties of the advantages or disad-
vantages that these two approaches, classical and based on deep
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learning, may present in egg inspection systems. This research
proposes to develop a new method for automatic inspection of
commercial eggs to detect the two most common external de-
fects, dirt and cracks employing computer vision. Three differ-
ent image processing approaches, classical, image classification
with CNN and semantic segmentation, are evaluated in order to
determine the best solution in terms of precision and processing
time.

2. RELATED WORK

This paper presents a series of algorithms for detection and
classification of dirt and crack defects in eggs using computer
vision. As for related works, most of them employed tradi-
tional approaches to detection. These approaches make use of
threshold-based segmentation, noise removal through filtering
operations, edge detection, connected-component labeling and
pixel counting for decision making.

2.1 Dirt detection

Several methods were proposed for dirt detection in eggs, some
of them performed the extraction of the R-G-B components of
the image, others worked on the gray scale image. In (Mertens
et al., 2005) to segment the blood stains in brown eggs they ap-
plied a logical XOR operation between the original image and
the R component to accentuate the stains and remove red from
the eggshell. Afterwards, the G component of the image was
extracted which allowed to obtain a clear differentiation of the
background, the egg and the defects. To detect other stains, they
worked on the gray scale image, in which the brightness and
contrast properties were improved by equalizing the histogram
and, in the case of white stain detection, by a gamma correction.
Then, the gray scale image was transformed into a binary image
by setting a threshold. The background was then removed, leav-
ing only the particles associated with dirt. This work obtained
an accuracy of 99% for the detection of dirt stains. A similar
algorithm was proposed in (Lunadei et al., 2011) where they
performed the extraction of the blue channel from the red one
to obtain an image with a high discrepancy between the pixels
of the egg white, background and dirt stain. To obtain the pixels
associated with the stain, they performed a binarization based
on Otsu method, applied a logical XOR operation between the
egg mask and the binary image, and a labeling process to per-
form the classification. The proposed classification algorithm
was able to correctly classify nearly 98% of the samples.

In (Yang et al., 2018) they used texture features instead of color
information to segment the dirt stain in the white and brown egg
shells. Texture descriptors such as average brightness, average
contrast, smoothness and entropy were extracted from the his-
togram of the gray scale image. The average contrast and the
inconsistency were chosen as the input features of FCM (Fuzzy
C-Means Clustering) that allowed the grouping of the pixels of
the dirt region. The proposed method to classify eggs reached
an accuracy of 94.3% for white eggs and 90.5% for brown eggs.

2.2 Crack detection

Most of the works used egg candling lamps to highlight crack
defects. Among the algorithms found, it was identified that
these present a common processing sequence, first the back-
ground egg is segmented, then a method of edge detention is
applied, then the removal of small noises is performed and fi-
nally the pixels associated with the cracks are identified. Some

of these algorithms used simple edge detection and segment-
ation techniques, as in (Omid et al., 2013) and (Abdullah et
al., 2017). Obtaining an accuracy of 96.25% and 90.6% for
crack detection, respectively. Others used more sophisticated
techniques such as (Mansoory et al., 2011) that used Fuzzy
C-Means (FCM) and a Fuzzy thresholding as a segmentation
method and Smallest Univalue Segment Assimilating Nucleus
(SUSAN) as an edge detection method. The average crack de-
tection accuracy for this algorithm was 90%.

In (Guanjun et al., 2019) they applied a negative Gaussian
Laplacian filter as edge detection method, then they binarized
the image using a Hysteresis thresholding and filtering opera-
tions were applied to eliminate possible noise. Finally, an im-
proved LFI (Local Fitting Image) index was used to distinguish
the crack region from regions associated with noise caused by
dark spots on the egg shell with a recognition rate of 92.5%.

One of the papers that used deep learning to crack detection was
(Nasiri et al., 2020) where they performed transfer learning in
a CNN with VGG16 model. This model was pre-trained on
ImageNet (Deng et al., 2009). The VGG16 architecture was
modified by adding a classifier block instead of fully connected
layers. This classifier block included global average pooling,
dense, batch normalization, and dropout layers. The training
data set consisted of images of size 224 × 224 × 3 subjected
to data augmentation by rotation, height and width shift, zoom,
horizontal-flip, and shear intensity. K-fold cross-validation was
utilized to evaluate the model’s uncertainty and performance in
class estimation. The CNN model achieved an average overall
accuracy of 94.84% by 5-fold cross-validation.

2.3 Dirt and crack detection

In (Nakano et al., 2001) they proposed a single method to crack
and dirt detection. This method used traditional image pro-
cessing approaches such as edge detection, elimination of noise
components, contour removal, among others, to find these two
defects. This was one of the studies with high accuracy rates:
97.3% in dirt detection, 96.8% in cracks detection and 98.5% in
broken eggs detection. However, the algorithm obtained good
results in eggs with a white shell, its performance decreased for
eggs with a brown shell.

Another similar work was presented in (Machado et al., 2009)
where they developed a series of algorithms for the detection of
more than one defect in the white egg, including dirt and cracks.
The proposed algorithms also used traditional image processing
approaches. To perform the segmentation, they used a method
known as Adaptive Background Subtraction that identifies the
parts of the image that are in motion, in this case the eggs. For
dirt detection, the connected components method was used to
identify the region defect. A characteristic vector was extracted
from this region, consisting of the statistical averages and stat-
istical variations of the RGB colors. This vector was introduced
into an artificial neural network to perform the classification.
For crack detection, an edge detection analysis was performed,
in which each edge was compared with a threshold to define
the presence or absence of cracks. The accuracy rates obtained
with these algorithms were 75.6% for dirt detection, 73.3% for
crack detection, and 62.5% for gem basement detection.

In (Alon et al., 2019) they worked on the image in HSV and
YIQ format to detect dirt stains and cracks in white eggs. In
both processes they performed a normalization of the image,
noise removal and binarization. To crack detection, they applied
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an edge detection method known as Bottomhat transformation.
The proposed methods reached an accuracy of 95% to dirt de-
tection and 90% to cracks detection.

3. METHODOLOGY

3.1 Materials

This section describes the main components of the acquisition
system developed for this work, the general information of the
egg samples used for the development of the algorithms and the
evaluation metrics to define their performance.

3.1.1 Acquisition system: The acquisition system based on
computer vision was developed, as shown in Figure 1. This
system consists of two main modules, a module associated with
a closed compartment of (0.5×0.5×0.5) m to ensure constant
lighting conditions for image capture and a movement module
that allows the rotation and translation of the eggs through the
compartment. Six columns of eggs were placed on the dual
tapered rollers which moved forward on the rotating chain. The
length of each roller was 335 mm and the interval between them
was 28 mm. The eggs on the rollers are driven to roll around
the axis A-A’ counter clockwise as shown in Figure 1.

Two Basler acA1300-60 gc industrial cameras with 4-12 mm
varifocal lens and 1/2-inch manual zoom were located on top
of the compartment for image capture using two types of illu-
mination:

• Upper lighting: two 18 W tabular lamps were placed in
the upper part of the compartment.

• Bottom lighting: 24 professional candling light with 25 W
were placed to provide background lighting.

The cameras were connected via GigE to a laptop with an Intel
Core i5-9300H 2.4 GHz CPU with 4 cores and NVIDIA Ge-
Force GTX 1060 Intel UHD Graphics 630 GPU and 4 GB of
RAM. The cameras acquire RGB images at 60 fps with a resol-
ution of 1280 × 1024 pixels. Each camera captures 6 rows by
3 columns of eggs. The chain was rotated with a three-phase
motor. The motor shaft was associated with a proximity sensor
that sent a pulse each time the rollers rotated 360° on their axis.
Image capture was synchronized with the arrival of each pulse
to ensure that the entire surface of the egg was captured.

Figure 1. Egg inspection system.

3.1.2 Egg samples: In this research, a total number of 300
chicken eggs with different shell colors (white and brown)
provided by the industry were selected. The categories and
number of collected egg samples are presented in the Table 2.
These eggs were introduced several times into the closed com-
partment with the moving chain using a lighting type for each
capture. This allowed the obtaining of 4,000 images like the
ones shown in the Figure 2.

Egg
Category Description Total

Egg

Normal

Clean eggs, which may have
small stains of dirt, but do not de-
tract from the overall clean ap-
pearance of the egg. These spots
should not cover more than 1/32
of the egg’s surface. Eggs without
cracks in the shell.

150

Dirty
Eggs with dirt stains covering ap-
proximately more than 1/32 of the
egg’s surface.

100

Cracked Egg that has a broken shell or
crack in the shell. 50

Table 2. Categories and number of collected egg samples.

Figure 2. At the top of this image are two examples of images
captured with upper lighting and at the bottom two images

captured with bottom lighting.

3.1.3 Evaluation metrics: In order to measure the perform-
ance of the proposed algorithms, the precision, recall and F1
score are used as the evaluation metrics. Additionally, the pro-
cessing time used by each algorithm is evaluated. The preci-
sion denotes the predicted proportion of positive cases that are
correctly true positives, that is, among all the cases that are pre-
dicted to be positive, how many are true. This metric is the most
convenient to analyze when there is a high cost associated with
false positives. The recall measures the ability to qualify all
positive samples, that is, it calculates how many real positives
the model captures, labeling it as positive. This metric is the
most convenient to select the model when there is a high cost
associated with false negatives. And the F1 score allows one to
obtain a general measure of the precision of a model, combining
precision and Recall. This metric is ideal when looking to bal-
ance between precision and recall. The definition of precision,
recall, and F1 score are given by Equation (1) to (3).

Precision =
TP

TP + FP
(1)
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Recall =
TP

TP + FN
(2)

F1 = 2× Precision×Recall

Precision+Recall
(3)

To determine the semantic segmentation model with the best
performance, the IoU metric was used. This metric measures
the similarity and diversity between sets of finite samples based
on their intersection and union, as seen in the Equation 4.

IoU =
Truth ∩ Prediction

Truth ∪ Prediction
(4)

3.2 Classification and defect detection using classical pro-
cessing approaches

To detect dirt defects, it was decided to work with images cap-
tured with upper lighting, since they present a greater range of
values that allow the extraction of different characteristics of
the stain on the eggs. On the other hand, to detect defects asso-
ciated with cracks, it was found that it is easier to detect these
defects in images captured with candling light since the cracks
allow light to pass through the shell, which generates a better
differentiation of the defect. The proposed algorithms were im-
plemented in Python using the OpenCV library version 4.5.0.

3.2.1 Verification: As a first step, a region of interest (ROI)
is defined for each individual egg. Afterwards, a verification
algorithm is applied to determine if the evaluated region is not
empty. This verification is performed on the gray scale image
using a segmentation method based on a range of pixel values.
To define this range, the histogram of a white egg, brown egg
and empty ROI image was analyzed, where it was found that
white eggs have a higher occurrence in pixels of intensity at 120
and the others lower than 120. Implementing the segmentation
of each ROI with the boundaries [120-255] results in a black
and white image associated with the egg mask where the white
pixels correspond to the egg and the black pixels to the back-
ground. To differentiate between brown eggs and empty ROIs,
the R component of the RGB image is extracted and a basic
thresholding operation is used with the range [56-255] that al-
lows finding the mask of the brown egg. If the total of white
pixels is greater than or equal to 8,000 the image is classified as
brown egg, otherwise as empty ROI.

3.2.2 Dirt detection: This algorithm is applied on the pre-
viously verified ROIs. A dirt detection algorithm was created
for both egg colors:

• Stain in white eggs: To find dark stains, the gray scale
image was transformed into a binary image employing an
adaptive threshold with a 5× 5 kernel. To find stains with
lighter shades, RGB color image is converted to HSV im-
age, a thresholding operation is applied to the image using
a lower boundary of [0, 0, 0] and an upper boundary of
[61, 255, 255].

• Stain in brown eggs: To detect dark stains, the gray scale
image contrast is improved using histogram equalization
and an adaptive threshold is applied with a 5 × 5 kernel.
To find stains with lighter shades, a basic threshold is used
to the HSV image with the lower boundary [40, 50, 70]
and the upper boundary [179, 101, 255].

As a result of the two threshold operations to detect light and
dark stain in both eggs colors, two black and white images are
obtained where the white pixels are associated with the dirt
stain, the egg contour and/or the background (Figures 3b and
3c). These two images are subjected to an addition operation,
then the background and contour are removed in order to obtain
the pixels associated only with the dirt stains (Figure 3d).

Figure 3. a) Original image; b) Dark stain; c) Light Stain; d)
Addition operation, removal of background and contour; e) Dirt

detection.

Finally, to define whether an egg is dirty or clean, the ratio of
the total of white pixels associated with the dirt stains over the
total of the pixels associated with the egg is found. In case the
ratio is greater than or equal to 0.01, the egg is classified as
dirty, otherwise it is classified as clean.

3.2.3 Crack detection: The crack detection algorithm is
applied to the previously verified ROIs. As a first step, the im-
age is smoothed through a filtering operation. Then the R com-
ponent of the RGB image is extracted and subjected to a basic
thresholding operation using [80-255] and [50-255] boundaries
for white and brown eggs, respectively. The binary image ob-
tained works as a mask on the R component employing a logical
AND operation between the two images. To find the cracks, an
edge detection method is applied using a Gaussian Laplacian
filter with a sigma value of 1.9. Finally, the contour is removed
to obtain the pixels associated only with the cracks (Figure 4d).

Figure 4. a) Original image; b) Egg mask over component R; c)
Edge detection with Gaussian Laplacian filter; d) Contour

removal; e) Crack detection.

3.3 Classification and defects detection using deep learn-
ing approaches

Two methods were proposed, image classification and semantic
segmentation. These methods were implemented using the
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deep learning library Fastai (Howard and Gugger, 2020) ver-
sion 2.1.8. The training of the models was performed on the
platform Google Collaboratory loading the data from Google
Drive.

The ResNet-34 architecture is used as a training model for the
image classification method and as backbone for the semantic
segmentation method. This architecture was selected based on
the results obtained in (Canziani et al., 2016), where ResNet-34
presented a good balance between accuracy, number of opera-
tions and memory use.

3.3.1 Image classification: The dataset used for the CNN
training consists of 10,000 images of white and brown eggs with
a resolution of 157 × 252 pixels. Among these images, there
were 6,000 normal eggs, 3,500 dirty eggs and 500 cracked eggs.
Additionally, there were 4,000 examples of empty images. The
data set for validation was defined in 30% of the total images.

The Resnet-34 model was pre-trained in ImageNet which is a
dataset with 1.2 million images with 1,000 classes. This net-
work was used as a fixed feature extractor using Transfer Learn-
ing. A batch size of 64 and a learning rate of 1e− 6 for the first
layers and 1.5e − 3 for the last layers were used. The dataset
was normalized using the ImageNet data statistics. In addition,
a data augmentation was performed by applying a mirror in-
version to the images. Cross-entropy loss was used as the loss
function, weight decay as the regularization technique, and pre-
cision, recall and F1 score as evaluation metrics.

3.3.2 Semantic segmentation: A total of 7,702 images
with a resolution of 157 × 252 pixels were selected for train-
ing. These images were subjected to a labeling process using
a graphical image annotation tool known as Labelme (Torralba
et al., 2010). An example of these images is shown in Figure
5. The data set was divided into 70% for training and 30% for
validation.

Figure 5. Image labeling for training the semantic segmentation
model.

A CNN was trained with Unet-ResNet34 model, pre-trained on
ImageNet. A batch size of 12 and a learning rate of 1e − 5 for
the first layers and 1e − 3 for the last layers were used. The
cross-entropy loss was employed as the loss function, weight
decay as the regularization technique and IoU as the evaluation
metric.

As a result of the training, a segmentation model was obtained
that reached an IoU of 0.97, 0.95, 0.91, 0.48 and 0.41 to seg-
ment the background, the brown egg, the white egg, dirt stain
and cracks respectively. The results in the dirt and cracks
classes may seem low in relation to the other classes, this does
not mean that the models were unable to detect these types of
defects. This means that relative to the mask that contains the
ground truth, the prediction was not exactly the same, since

manually labeled defects are not 100% accurate. This statement
can be verified in Figure 6, where the model manages to seg-
ment the defects even without being totally equal to the ground
truth label.

Figure 6. Defect detection samples using semantic segmentation.

Once the segmentation model is obtained, it is adapted as a
classification algorithm. In this algorithm the predictions ob-
tained by the model are used. These predictions are tensors of
size 157× 252 pixels, from which the unique ordered elements
of the matrix and the occurrences of each class are obtained.
From these two vectors it is possible to determine the color egg,
identify cracks and define empty images. To determine the de-
gree of dirt, the ratio between the occurrence of pixels with the
class associated with dirt over the sum of the occurrences of
pixels of all other classes, except the background, is found. If
the ratio is greater than 0.1, the egg is classified as dirty, other-
wise it is classified as clean.

3.4 Inspection parameterization software

A software system was created to separate the regions of in-
terest, parameterize the algorithms and facilitate the visualiza-
tion of the results. Such a system, which has a graphical in-
terface for ease of use was implemented in C ++ using the QT
graphical library. An overview of the developed interface is
presented in Figure 7.

Figure 7. Interface designed in Qt Creator.
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4. RESULTS AND DISCUSSIONS

To evaluate the algorithms, 70 images were captured with the
inspection system developed. The images had a resolution of
1280 × 1024 pixels and could contain between 0 to 18 indi-
vidual eggs. The precision (P), recall (R) and F1 score (F1)
metrics were evaluated. To determine the processing time, the
time from when the image entered the algorithm until the pre-
diction was obtained was measured. The results are tabulated
in Table 3.

The results showed that the best processing time was obtained
using classical algorithms. With a time of 0.049 ms for each
individual egg image. The longest processing time was ob-
tained using semantic segmentation algorithm with 0.47 ms. In
normal eggs classification (clean and uncracked eggs) the al-
gorithm with the best balance between precision and recall was
the classical algorithm with an average F1 score of 95%, out-
performing algorithms based on deep learning by 2.6%.

For dirt and crack classification, the recall metric is the most
appropriate metric to be analyzed, since it is expected to obtain
the least number of false negatives, that is, the least number of
dirty or cracked eggs categorized as clean and uncracked eggs.

For dirt detection, the best result was observed in the classical
algorithms, with a Recall of 95%. In the case of algorithms
based on deep learning, a Recall of 89% and 65% was ob-
tained for image classification and semantic segmentation, re-
spectively. The low result of the semantic segmentation method
in relation to the other methods was probably due to the fact that
this algorithm was extremely sensitive in detecting dirt, where
stains almost imperceptible to human vision were detected. An
example of this is shown in Figure 8. This high sensitivity
caused eggs initially considered clean were considered dirty.

Figure 8. Dirt detection samples using semantic segmentation.

On the other hand, the semantic segmentation algorithm
achieved high performance in crack detection, with a recall
of 99%, outperforming the classical and image classification
method by 11% and 9%, respectively.

One of the factors that affected the classical algorithm in crack
classification was the presence of dark spots on the eggshell
(Zhang et al., 2016). The dark spots have irregular shapes, such
as points, stripes, flakes, etc. They vary in size and number,
which can range from hundreds to thousands. Many of these
spots can be mistaken for cracks, since their intensity and shape
are very similar. The crack detection with classical approaches
focused on generating a balance between crack detection and
noise reduction caused by dark spots. However, it is difficult

to find a balance between these two factors when working with
traditional approaches, where classification is performed using
thresholds. This is because when a threshold is defined that
reduces noise, it is possible that important information of the
evaluated region is also being eliminated. Therefore, it is dif-
ficult to obtain perfect results, where most of the time some
factors must prevail over others.

4.1 Algorithm selection

One of the technical requirements provided by the partner com-
pany was that the inspection system must operate at a speed of
60 Hz which is equivalent to analyzing 4.1 eggs per second.
The proximity sensor associated with the motor shaft with this
speed sends a pulse every 240 ms. Considering that there are
two cameras, each one captures between 0 to 18 eggs, 36 eggs
must be processed in a range of 0 to 240 ms.

Considering the above, the three algorithms proposed in this
work used an average less than 17 ms to make the prediction of
36 images. This means that all three algorithms can be imple-
mented in the developed inspection system.

In the evaluation metrics, the best precision rates were obtained
using classic algorithms. With rates of 94%, 89% and 99%,
for normal, dirty and cracked egg classification, respectively.
However, these approaches have a disadvantage, that to ensure
high performance in these algorithms it is necessary that the
images do not show variations. In this type of process, this task
is not easy, it is not always possible to guarantee a constant
light intensity, since the light sources suffer wear over time,
which means that the parameters must be constantly monitored,
increasing the cost of implementation.

On the other hand, in algorithms based on deep learning this
problem does not represent a great challenge, because when the
training database is performed, it is possible to train the models
by making modifications to the images such as decreasing or
increasing the contrast and lighting. This allows the models to
respond to small variations in the images.

The image classification with CNN obtained intermediate res-
ults among the three evaluated methods, with an average preci-
sion of 91%, 83% and 99% for the detection of normal, dirty
and cracked eggs and an average processing time of 0.11 ms.
This method is presented as a promising option to be imple-
mented in the egg inspection system proposed for this research;
however, it is necessary to improve the precision in dirt detec-
tion, either with the implementation of other architectures or the
increase of the training database.

5. CONCLUSIONS

In this study, three image processing methods were imple-
mented for dirt and crack detection in white and brown eggs.
The first method used classical processing techniques such as
threshold-based segmentation, math operations, filtering oper-
ations, edge detection methods and pixel counting for decision
making. The second method uses a CNN with ResNet-34 archi-
tecture for classification. The third method used semantic seg-
mentation with the Unet-ResNet34 model. Both models were
pre-trained on ImageNet. The average precision obtained was
94%, 91.25% and 85.75% for the three methods, respectively.
Additionally, the average processing time of each method was
measured. The times obtained were 0.049 ms, 0.11 ms and
0.47 ms, respectively.
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Algorithm Time
(ms)

Clean eggs Dirty eggs Uncracked Cracked
P R F1 P R F1 P R F1 P R F1

Classical 0.049 0.97 0.94 0.95 0.89 0.95 0.92 0.91 0.99 0.95 0.99 0.88 0.92
Image classification 0.11 0.93 0.9 0.91 0.83 0.89 0.83 0.89 0.98 0.94 0.99 0.9 0.95

Semantic segmentation 0.47 0.83 0.91 0.88 0.62 0.65 0.63 0.98 0.95 0.97 1 0.99 0.99

Table 3. Comparison of the results obtained by the proposed algorithms for egg classification.

The classical approaches presented a better balance in terms of
response time and precision. These approaches were able to
detect various characteristics of eggs, such as color and sur-
face defects of the eggshell, with a relatively fast response
time compared to the other approaches. Nevertheless, the per-
formance of these methods may decrease if there are vari-
ations in the images. Additionally, these approaches presen-
ted some difficulties in their implementation, several tests had
to be performed with different algorithms to determine which
approaches allowed to classify the characteristics of the egg in
a satisfactory way and that were not computationally expens-
ive. Performing the integration of all algorithms from segment-
ation, filtering, feature extraction to decision making, required
an extended implementation time and advanced knowledge in
the application of image processing techniques.

On the other hand, deep learning approaches do not require this
series of implementations since these approaches receive an im-
age with its respective label and the network does all the work
of extracting the characteristics obtaining a final result as out-
put. This eliminates all the processing flow involved in classical
approaches, making it easier to implement. However, these ap-
proaches have other important considerations. For example,
they require a large dataset with as many images as possible
for each category and hardware with a large memory capacity
for training. In addition, in networks with supervised learning
as was the case in this project, they require that each image be
associated with a label, which is a tedious process, with large
investments of time, and if it is done using only human vision
as a reference it can be susceptible to errors.

As future work, it is proposed to implement other CNN models
to improve dirt detection results. Additionally, it is proposed to
evaluate other types of defect such as deformities and internal
defects.

ACKNOWLEDGEMENTS

The authors wish to thank the PGEAS/UFSC program and the
company Plasson do Brasil for supporting this research. We
would like to thank the CAPES for financing this project.

REFERENCES

Abdullah, M., Nashat, S., Anwar, S., Abdullah, M., 2017. A
framework for crack detection of fresh poultry eggs at visible
radiation. Computers and Electronics in Agriculture, 141, 81–
95. doi.org/10.1016/j.compag.2017.07.006.

Alon, A. S., Mindoro, J., Casuat, C., Marasigan, R., 2019.
An Image Processing Approach of Multiple Eggs’ Qual-
ity Inspection. International Journal of Advanced Trends
in Computer Science and Engineering, 8(6), 2794–2799.
doi.org/10.30534/ijatcse/2019/18862019.

Canziani, A., Paszke, A., Culurciello, E., 2016. An analysis of
deep neural network models for practical applications. arXiv
preprint arXiv:1605.07678.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.,
2009. Imagenet: A large-scale hierarchical image database.
2009 IEEE conference on computer vision and pattern recogni-
tion, IEEE, 248–255. doi.org/10.1109/CVPR.2009.5206848.

Farooq, M., Sazonov, E., 2017. Feature extraction using deep
learning for food type recognition. International conference on
bioinformatics and biomedical engineering, Springer, 464–472.
doi.org/10.1007/978-3-319-56148-641.

Gomes, J. F. S., Leta, F. R., 2012. Applications of computer
vision techniques in the agriculture and food industry: a review.
European Food Research and Technology, 235(6), 989–1000.
doi.org/10.1007/s00217-012-1844-2.

Guanjun, B., Mimi, J., Yi, X., Shibo, C., Qinghua, Y.,
2019. Cracked egg recognition based on machine vision.
Computers and electronics in agriculture, 158, 159–166.
doi.org/10.1016/j.compag.2019.01.005.

Howard, J., Gugger, S., 2020. Fastai: A layered
API for deep learning. Information, 11(2), 108.
doi.org/10.3390/info11020108.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature,
521(7553), 436–444. doi.org/10.1038/nature14539.

Lunadei, L., Ruiz-Garcia, L., Guidetti, R., Bodria, L., Ruiz-
Altisent, M., 2011. A Simple Digital Imaging Method for Dirt
Detection on Eggshells.
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