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ABSTRACT: 

 

Recent years showed a gradual transition from terrestrial to aerial survey thanks to the development of UAV and sensors for it. Many 

sectors benefited by this change among which geological one; drones are flexible, cost-efficient and can support outcrops surveying in 

many difficult situations such as inaccessible steep and high rock faces. The experiences acquired in terrestrial survey, with total 

stations, GNSS or terrestrial laser scanner (TLS), are not yet completely transferred to UAV acquisition. Hence, quality comparisons 

are still needed. The present paper is framed in this perspective aiming to evaluate the quality of the point clouds generated by an UAV 

in a geological context; data analysis was conducted comparing the UAV product with the homologous acquired with a TLS system. 

Exploiting modern semantic classification, based on eigenfeatures and support vector machine (SVM), the two point clouds were 

compared in terms of density and mutual distance. The UAV survey proves its usefulness in this situation with a uniform density 

distribution in the whole area and producing a point cloud with a quality comparable with the more traditional TLS systems. 

 

 

1. INTRODUCTION 

Geomatics is intimately connected with environmental surveying 

and monitoring and is becoming increasingly used in geosciences 

for digitization of outcrops; once this is accomplished, enhanced 

segmentation techniques can be applied to select, and measure 

selected features.  

Traditionally this type of surveying is performed from the ground 

with topographic total stations and GNSS receivers and consisted 

in the measurement of a necessarily limited set of points; 

however these systems have gradually given way to laser 

scanners (Buckley et al., 2008). The terrestrial laser scanner 

(TLS) has the capability to measure thousands of points with a 

density and an accuracy that has become increasingly higher over 

last years. Besides, as the last TLS generations mount optical 

cameras, they have the capability to automatically generate 3D-

coloured points clouds that significantly helps geological 

interpretation. Due to the relevance of photo-interpretation, 

terrestrial photogrammetry was also largely used for outcrop 

surveys especially thanks to the introduction of digital cameras 

and data processing by computer vision algorithms (Firpo et al., 

2011). In recent years, the general trend is to perform integrated 

surveys where the strengths of each systems are combined to 

produce most reliable and accurate products; some examples of 

TLS and photogrammetry integration are reported by (Assali et 

al., 2014; Sturzenegger and Stead, 2009). 

The principal advantages of an integrated approach are the 

simplicity of use, a well-known experience background and the 

possibility to survey inaccessible steep and high rock cliff faces, 

reducing the risks for workers as the survey can be undertaken in 

a remote safe location (Sturzenegger and Stead, 2009). 

Nevertheless, there are some impediments: the presence of 

elements, like bushes and trees, that introduce perspective 

obstructions and can hinder the instrument placements, and the 

complexity of the survey when the extension and the shape of the 

outcrops need many stations. 

The arrival of UAVs has partially allowed overcoming these 

limitations; drones are flexible, cost-efficient and can support 

outcrops surveying in some inaccessible conditions (Bemis et al., 

2014; Vollgger and Cruden, 2016). The use of multicopters is 

particularly convenient as it allows flying over and bypassing 

obstacles and permits to follow the shape of the outcrop thanks 

to a careful flight planning; moreover, the capability to mount the 

camera with a tilted angle ease the acquisition on vertical rock 

cliff faces. Nevertheless, the presence of both low and high 

vegetation can obstacle the surveying especially considering the 

stereoscopic nature of photogrammetric measurements. 

This complementarity between TLS and UAV has made their 

comparison an object of some research in the past years (Ruggles 

et al., 2016; Wilkinson et al., 2016). In this context, the present 

paper aims to evaluate the quality of the point clouds generated 

by laser and by a UAV system to evaluate the shape and spatial 

distribution of calcite concretions developed within the sand-

prone fill of a turbidite channel (Marini et al., 2019).  

The paper aims to evaluate if the two techniques have comparable 

results in terms of precision and reliability allowing a potential 

integrated use in order to exploit their mutual strengths. The 

comparison will be done in terms of density, mutual distance and 

distance from some control points located on the outcrop. 

However, to conduct a correct comparison, only bare rock areas 

were considered excluding the points belonging to vegetation and 

undergrowth; machine learning techniques, based on 

eigenfeature and support vector machine (SVM), will be used to 

perform this task.  

 

 

2. THE UAV AND TLS DATASETS 

The investigated area is part of the Tertiary Piedmont Basin of 

NW Italy (Figure 1). The survey of the outcrop was performed 

with laser and photogrammetric techniques using a Leica Viva 
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MS60 Multistation and a HEXA-PRO UAV system operated by 

the Laboratory of Geomatics of the University of Pavia (Italy). 

 

 

Figure 1. Location of the surveyed area; the red box indicates 

the position of the studied outcrop. 

 

An integrated topographic survey, with two GNSS receivers and 

a Total Station, was performed first. Seven benchmarks were 

materialized in the area and were measured in a redundant way 

(Figure 2): all the vertices were connected by topographic 

observation whereas points #1 and #7, those located in most 

favourable places, were also measured with static GNSS 

technique. The precision after adjustment is less than 1.5 cm in 

both the planimetric and altimetric components. The network was 

then used both to measure the photogrammetric targets and to 

orient the scans, defining the same reference frame for all the 

performed measurements. 

 

 

Figure 2. The topographic network whereas the topographic 

benchmarks are reported with red triangles and GNSS points 

with light blue squares; green lines represent the topographic 

observations. Google Satellite Data (MapData@2021Google) is 

used as background. 

The geological outcrop was then surveyed with the Leica Viva 

MS60 Multistation by a surveyor form Leica Geosystems Italia. 

This is a modern surveying device combining the functionality of 

a robotic total station and a laser scanner. The MS60 Multistation 

can measure 3D point clouds, including true colour, intensity, and 

signal-to-noise data, within a range of 1000 m and with a 

frequency of 30000 Hz (i.e., 30 thousand points per second). The 

total station functionalities allow to orient directly all the scans 

in the reference frame represented by our topographic network; 

besides, the topographic adjustment of the scan positions has a 

precision comparable to topographic network itself. The outcrop 

was acquired with four partially overlapped scans (Figure 3) 

Unfortunately, most of the area was inaccessible so the 

instrument was able to move only along the main road acquiring 

just the lower part of the outcrop; besides the presence of 

vegetation caused the presence of some holes in the TLS datasets. 

Each scan has a number of points ranging between 100000 and 

175000; the whole point cloud is about 600000 points. 

Topographic adjustment, scan orientations and point 

classifications were performed directly by Leica.  

 

 

Figure 3. The four partially overlapped M60 scans. Google 

Satellite Data (MapData@2021Google) is used as background. 

 

Figure 4. The two nadiral blocks acquired at 40 and 15 metres 

above the main road level. The generated dense point cloud is 

used as representation of the outcrop. 

 

Figure 5. The oblique blocks acquired with a 45° tilting angle. 

The UAV system was equipped with an optical Sony A6000 

camera having 6000x4000 pixels resolution, 16 mm of focal 

length and pixel size of about 4 microns. The outcrop 

morphology required acquiring multiple photogrammetric blocks 

to achieve full image coverage and the desired detail. These 

included two nadiral (i.e., downward looking camera, Figure 4), 

three oblique (camera tilted by 45° from nadir, Figure 5) aerial 

blocks, and a terrestrial block (acquired moving along the main 

road), which collectively yielded more than 1000 images with an 

average ground sampling distance (GSD) less than 1 cm. Before 

image acquisition, 34 artificial markers were deployed on the 

outcrop to be used as ground control points (GCPs), and their 

coordinates were measured with topographic survey (Figure 6). 

The photogrammetric project was carried out with Agisoft 

MetashapeTM, following the usual pipeline (Casella et al., 2020): 

image alignment, tie point extraction, and bundle block 

adjustment (BBA). Seven GCPs were used for orientation while 

the other 27 for evaluating the quality of the aerial triangulation. 

The obtained RMSE are about 2 cm and 3 cm, for the planimetric 

MapData@2021Google 

MapData@2021Google 

50 m 

50 m 
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and altimetric components, respectively. Dense point cloud was 

then generated using half image size resolution and obtaining a 

cloud of about 118 million points. 

 

 

Figure 6. The GCPs location on the dense point cloud 

background; in the upper left corner an example of the used 

photogrammetric markers. 

 

3. THE METODOLOGY 

Only points belonging to the bare rock will be used for 

comparison so these points must the extracted from the original 

point clouds through a classification procedure. For TLS dataset 

this step was directly done by Leica, so the considered cloud was 

already classified (ground label was used in our analysis); for 

UAV dataset, the classification was performed using the well-

know SVM (Support Vector Machine) algorithm according to 

both radiometric and geometric information. Comparison was 

then performed in terms of density, mutual distance, and distance 

to GCPs; in particular, mutual distance was assessed following 

different approaches: point-to-point and point-to-plane. 

This section will illustrate the procedures implemented for 

classification and validation; all the steps were realised in Matlab, 

realise 2019b. 

 

3.1 Radiometric and geometric information  

Both radiometric and geometric information were used to classify 

the UAV-based point clouds. Three labels were considered: 

vegetation, meaning trees and shrubs, undergrowth, constituted 

by moss and dead leaves, and bare ground or bare rock. 

The utility of radiometric information is quite trivial since it is 

easy to understand as vegetation and bare rock can be 

distinguished by colour; nevertheless, also geometric 

characteristics can contribute to their clustering. Based on the 

spatial information of all 3D points within a local neighbourhood, 

invariant moments can represent the geometric properties (Maas 

and Vosselman, 1999). The eigenvalues can directly be used to 

describe the local 3D structure or, alternatively, further measures 

based on these eigenvalues can be derived which encapsulate 

special geometric properties such as linearity or planarity (Mallet 

et al., 2011; West et al., 2004). These geometric descriptors, 

called eigenfeatures, can then be used to identify points useful for 

point classification. This strategy has the advantage to be 

applicable to any type of clouds be it produced by 

photogrammetry or by laser systems. 

The adequate choice of a neighbourhood for determining the 

eigenfeature values of each point, depends on the characteristics 

of the cloud data especially to its points density and 3D shape. 

The choice can be based on a-priori definition of the search area 

in terms of radius or number of points (Arya et al., 1998; 

Friedman et al., 1977), or adapting this parameter according with 

the local geometry of the point cloud (Farella et al., 2019; Martin 

Weinmann et al., 2015). While the former requires an empiric 

knowledge of the scene, the latter is more versatile because it is 

not restricted to a specific dataset. The procedure implemented in 

this paper follows the first strategy and fixes a constant search 

radius; this means that for each point belonging to the cloud, a 

list of 𝑘 neighbours, falling in search radius, can be associated. 

Then, for each 3D point 𝑋 and its 𝑘 neighbours, the derived 

normalized eigenvalues 𝑒𝑖 with 𝑖 = 1,2,3 can be extracted using 

the Principal Component Analysis (PCA). These values, obtained 

from the covariance matrix, represent the variation of the points 

distribution along the three principal orthogonal directions.  

Eigenvalues can be combined to obtain some shape descriptors 

called eigenfeatures (Farella et al., 2019; M. Weinmann et al., 

2015a) which enclose: linearity 𝐿𝑒, planarity 𝑃𝑒, scattering 𝑆𝑒, 

omnivariance 𝑂𝑒, anisotropy 𝐴𝑒 , eigentropy 𝐸𝑒, sum of 

eigenvalues 𝛴𝑒 and change of curvature 𝐶𝑒; Table 1 reports theirs 

mathematical formulation. 

 

Eigenfeature Formula 

Linearity 𝐿𝑒 =
𝑒1 − 𝑒2
𝑒3

 

Planimetry 𝑃𝑒 =
𝑒2 − 𝑒3
𝑒1

 

Scattering 𝑆𝑒 =
𝑒3
𝑒1

 

Omnivariance 𝑂𝑒 = √𝑒1 ∙ 𝑒2 ∙ 𝑒3
3  

Anisotropy 𝐴𝑒 =
𝑒1 − 𝑒3
𝑒1

 

Eigenentropy 𝐸𝑒 = −∑𝑒𝑖 ∙ 𝑙𝑛(𝑒𝑖)

3

𝑖=1

 

Sum of eigenvalues 𝛴𝑒 = 𝑒1 + 𝑒2 + 𝑒3 

Change of curvature 𝐶𝑒 =
𝑒3

𝑒1 + 𝑒2 + 𝑒3
 

Table 1. Eigenfeatures mathematical formulation 

Eigenfeatures extraction was easily implemented in our modules 

thanks to the use of geoFEX Matlab toolbox (GeoFEX toolbox), 

developed by the Institute of Photogrammetry and Remote 

Sensing in Karlsruhe, Germany (M. Weinmann et al., 2015b). 

Even if all the eigenfeatures have been extracted, it must consider 

they may contain redundant of irrelevant information with 

respect to the classification task. As highlighted by some authors 

(Roffo, 2016; Weinmann et al., 2013), it is often desirable to 

select a compact subset of the most relevant features which 

allows for classification/clustering without significant loss of 

information. 

As we had chosen a supervised approach, eigenfeatures selection 

can be guided by corresponding class labels, making the task 

easier. Among supervised selection method, we had adopted the 

Minimum Redundancy Maximum Relevance (MRMR) 

algorithm, proposed by (Ding and Peng, 2005) , which selects a 

subset of features having the most correlation with a class 

(relevance) and the least correlation between themselves 

(redundancy). In this algorithm, the features are ranked according 

to the minimal-redundancy-maximal-relevance criteria. 

Relevance and redundancy are both calculated by using the 

mutual information approach. 

 

3.2 SVM classification 

Support Vector Machine (SVM) is a supervised learning model 

that allow to perform classification and regression analysis 
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(Boser et al., 1992). As classifier, starting for a set of labelled 

training data, the method can categorize new one. SVM plots 

each data item as a point in n-dimensional space, where n is 

number of categories, with the value of each feature being the 

value of a particular coordinate, such as radiometric a geometric 

information. Then, it performs classification by finding the 

hyper-plane that differentiates the classes as well as possible. The 

kernel function is introduced into the SVM so that the original 

input space can be transformed non-linearly into a higher 

dimensional feature space where linear methods may be applied 

(Zhou et al., 2002). 

Since SVM is a supervised method, a pre-labelled information 

must be provided to the algorithms; for our datasets three 

categories were established: bare ground, undergrowth, and 

vegetation. Given the data complexity, the preliminarily 

classification was performed by a human operator via manual 

labelling performed with the opensource software package 

CloudCompare™.  

 

3.3 Mutual distance 

The main aim of the paper is the validation of UAV-based point 

cloud by comparison with TLS data. This validation was 

performed by evaluating the mutual distance between the two 

point clouds. As shown in Results (Section 4), the main issue is 

their disparity in terms of density and, this difference influences 

the analysis of mutual distance. For this reason, three approaches 

were tested: point-to-point, point-to-global surface, and point-to-

local surface.  

Point-to-point distance is a quite common method used in several 

application such as ICP registration (Franzini et al., 2020); it was 

implemented by making use of the Matlab KDTreeSearcher 

class. The matching function works by first creating a kD-tree 

with the reference data and then runs a standard nearest 

neighbour search to match each point from the tested point cloud 

to a candidate point in the reference data set. However, if the 

density of the clouds is poor, it can lead to unreliable results. 

Point-to-plane distance can then be employed through the 

construction of mesh structures. Delaunay triangulation can be 

used to reconstruct such a surface as it is based on the 

establishment of neighbourhood connections between the points 

(Boissonnat, 1984). The Delaunay triangulation is a cell complex 

that subdivides the convex hull of the sampling. If the sampling 

fulfils certain non-degeneracy conditions, then all faces in the 

Delaunay triangulation are simplices and the Delaunay 

triangulation is unique. The combinatorial and algorithmic 

complexity of the Delaunay triangulation grow exponentially 

with the dimension of the embedding space of the original surface 

(Cazals and Giesen, 2006).  

Delaunay triangulation was used for the reconstruction of 

geological objects by several authors (Mulchrone, n.d.; Wang et 

al., 2017; Xue et al., 2004); nevertheless the complexity of 

outcrops can introduce unsatisfying results. If the surface is 

improperly sampled, for instance, the reconstruction algorithm 

can produce artifacts such as  the presence of spurious surface 

boundaries in the model (Gopi et al., 2000). In the studied 

geological outcrop, the complexity of the object in addition to the 

presence of rip-up clasts can introduced artifacts in the 

reconstructed mesh. For this reason, we tested two approaches: 

the former based on the reconstruction on the whole surface 

(global) while the latter on the iterative reconstruction of the 

surface just in the small area neighbour to the tested point (local). 

For the reconstruction of global surface the MyCrustOpen 

function was implemented (Giaccari, 2020) while for the local 

one the Matlab delaunayTriangulation method was applied 

imposing the radius of the reconstructed area in the neighbour of 

the tested point. 

4. RESULTS 

The section describes the results obtained using the proposed 

strategy for UAV-derived point cloud comparison with TLS data, 

in terms of density and mutual distance. Even if the UAV surveys 

were related to a larger area, only the outcrop zone was 

considered in this section. This choice has a double reason: 

considered only the part related to the outcrop that was 

effectively measured by the two technologies, UAV and TLS, 

and reduce the computational effort. This smaller cloud, visible 

in Figure 8, is constituted by more than 36 million of points 

anyway. 

 

4.1 Eigenfeature extraction and selection 

Since comparison was performed on the bare rock only, the UAV 

datasets was preliminary classified using eigenfeatures, as 

reported in Section 3.1. A constant search radius is fixed inside 

which neighbours are identified; radius is set equal to 25 cm, 

according to area characteristics and point clouds density. 

Covariance matrix and eigenvalues are then determined, and 

eigenfeatures are calculated using the formulas reported in Table 

1. Eigenfeatures and colour information are then normalized to 

the interval [0,1] and stored in a matrix having as many rows as 

the number of points, and eleven columns.  

MRMR rank method (Ding and Peng, 2005) is then applied to 

select main relevant eigenfeatures. Figure 7 reports the ranking 

positions in the form of bars; the lower values indicate high 

positions in the meaningfulness rank. Starting from the first two 

relevant eigenfeature – anisotropy and omnivariance – we 

performed several classifications adding progressively a new 

characteristic to each new iteration (i.e., in the second iteration 

we added scattering, and so on). Best results, as described in the 

next section, were obtained using the first three rank positions, 

anisotropy, omnivariance, and scattering. 

 

Figure 7. Rank of the eight eigenfeatures. 

 

4.2 SVM classification 

As already mention, the mutual distance analysis was performed 

only considering points belonging to bare rock (undergrowth and 

high vegetation must be excluded to avoid unreliable figures). 

Well-known SVM learning model was chosen as classification 

method. Since it follows a supervised approach a training dataset 

is needed to instruct the algorithm; in our experiment, the 60% of 

the data were used for training while the other 40% for test. The 

classification for the training/testing was conducted manually via 

the opensource software package CloudCompare™ by an expert 

operator. Figure 8 shows this preliminary classification for the 

UAV-based point cloud; the figure reports the three considered 
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categories: bare ground, in blue, undergrowth (composed mainly 

by moss), in green and high vegetation, in red. 

 

 

Figure 8. The three considered categories for the UAV-based 

point cloud: bare ground, in blue, undergrowth, in green and 

high vegetation, in red.  

 

To evaluate the SVM results, the confusion matrix was 

calculated: each points of the manual classification (true value) 

is compared to the corresponding one of the automatic 

segmentation (predicted value). Figure 9 reports the confusion 

chart obtained for the test dataset of UAV point cloud; labels 1, 

2, and 3 represent bare rock, undergrowth, and high vegetation, 

respectively. In the main diagonal of the matrix, it is possible to 

visualize how many points are identified in the same way by both 

the manual and automatic approach.  

 

Figure 9. Confusion chart for UAV-derived point cloud; classes 

1, 2 and 3 represent bare ground, low and high vegetation, 

respectively. 

There is a good accordance for the high vegetation label since 

almost the 80% of the points were correctly classify considering 

both user and product accuracy. The quality significantly 

decreases around considering the undergrowth and bare rock as 

they reached values ranging between 61% and 72%. However, 

this result is not surprising considering the nature of our dataset. 

The latter two labels have very similar shape characteristics 

especially in the areas covered by a thin layer of moss. In these 

cases, eigenfeatures had a limited usefulness and radiometric 

information was not always sufficient to correctly classify the 

points, especially where dark areas, caused by rock humidity, 

were present. Besides, this specific outcrop presents many 

singularities, constituted by rip-up clasts, that further complicate 

the classification. These concretions, highlighted in Figure 10 

and Figure 11, were mainly classify as undergrowth rather than 

as bare ground due to their shape. 

However, these misclassifications were not considered disabling 

for the next comparison steps, in particular for moss areas: even 

if they belong to undergrowth label, since their thickness can be 

considered limited, should not introduce significantly errors in 

the mutual distance evaluation. 

 

 

Figure 10. Original UAV point cloud displayed using the RGB 

channels; vegetation, moss and rock is clearly distinguishable. 

Near to the lower left corner are visible some of the rip-up clasts 

present on the surface. 

 

Figure 11. Classify UAV point cloud displayed using 

typological labels (blue for the bare rock, green for 

undergrowth, and red for high vegetation. Due to their shape, 

rip-up clasts were classified as undergrowth instead as rock. 

  

4.3 Density analysis 

While UAV has a uniform distribution of points, TLS is known 

to be affected by a varying density according to the distance 

between the object and the instrument. This lack is usually 

compensated by a careful planning typically constituted by 

several surveying points. In our case, that was not possible since 

the road, that run around the geological outcrop, was the only safe 

location in which the instrument could be set up; this constrain 

had as main consequence an inhomogeneity in the produced point 

clouds.  

Figure 12 reports the linear spacing for TLS-derived point cloud: 

the value ranges between 1.5 cm in the lower part of the outcrop 

(and in correspondence to instrument locations) to almost 50 cm 

in the upper part, not considering the top where few points were 

measure). Figure 13 represents the equivalent for the UAV-

derived point cloud: density is substantially uniform on the whole 

outcrop (bare rock) having a linear spacing of about 1.6 cm. 

10 m 
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The two clouds are fully comparable in favourable parts, near the 

road, while the density of TLS becomes progressively poor 

moving away from it. As will be seen in the next sections, this 

behaviour will influence the distance analysis. 

 

 

Figure 12. TLS-derived point cloud linear spacing; only points 

belonging to bare rock were considered. 

 

Figure 13. UAV-derived point cloud linear spacing; only points 

belonging to bare rock were considered. 

 

4.4 Distance analysis 

4.4.1 Distance from the GCPs 

 

Before evaluating the mutual distance between the two point 

clouds, they were assessed through the use of the 

photogrammetric markers presented in the area (those directly 

located on the outcrop). These points, used to orient UAV 

images, were distributed quite uniformly on the outcrop (Figure 

6) and were measured via integrated survey (Section 2); they can 

be also used to evaluate the accuracy of the produced point 

clouds. 

Distance between markers and clouds were computed, using a 

point-to-point approach, and principal statistical figures are 

calculated (Table 2). The location of photogrammetric targets 

was optimized for blocks orientation therefore they are well 

visible on the UAV-derived point cloud; indeed 24 points are 

available to evaluate its accuracy. Due to the limited line of sight 

of TLS, since the instrument could only be moved on the main 

road, only 10 markers can instead be used to test the 

corresponding point cloud. TLS performs slightly worse due to 

discretization; indeed, UAV cloud is denser than TLS one, in any 

parts of the outcrop, and distance computation suffers this 

disparity. Nevertheless, there is a good overall accuracy, and the 

two clouds can be considered completely comparable proving 

that the two techniques can be interchangeable or can be use in 

an integrated way.  

 

 TLS UAV 

# GCP 10 24 

Min [m] 0.009 0.005 

Max [m] 0.037 0.038 

Mean [m] 0.025 0.018 

STD [m] 0.009 0.011 

RMSE [m] 0.027 0.021 

Table 2. Statistical figures for both point clouds accuracy. 

 

4.4.2 Mutual distance analysis 

 

The results of classification step were finally used for evaluating 

mutual distance between the two clouds since only points 

belonging to bare rock were considered in this analysis. Three 

strategies for distance calculation were taken into account: point-

to-point, global and local surface. 

 

 

Figure 14. Distance histogram for point-to-point strategy. 

The spatial distribution of the two datasets density is significantly 

different; while UAV points are uniform distributed, TLS 

presents inhomogeneity especially between the lower and the 

upper parts of the outcrop, as reported in Section 4.3. This aspect 

has an influence on the distance analysis as the choice of the 

adopted strategy for its calculation can lead to different results.  

First, point-to-point distance was evaluated using the Matlab 

KDTreeSearcher class and the knnsearch method. The two 

clouds, UAV and TLS, were considered as reference and tested 

dataset, respectively. Even if, theoretically, the TLS cloud should 
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be considered the reference data, this choice was adopted to 

reduce computational effort. The quantity of points belonging to 

the UAV clouds is significantly larger than that referred to TLS; 

setting the first dataset as reference reduces the searching 

procedure. Figure 14 shows the histogram for point-to-point 

distances; most of the points are contained in the bar ranging 

between 0.8 and 1 cm; the 95% of the distance are within 6 cm 

while the 50-percentile is 1.3 cm (Table 3). 

 

 

Figure 15. Distance histogram for global surface strategy. 

 

Figure 16. Distance histogram for local surface strategy. 

Delaunay triangulation was used to evaluate mutual distance in a 

point-to-surface approach; both global and local strategies were 

followed. In the former, a global mesh was generated for the 

whole outcrop exploiting the MyCrustOpen function developed 

by (Giaccari, 2020); in the latter, a local mesh was created in the 

surrounding area of each tested point, fixing a constant radius of 

25 cm. Figure 15 shows the result for global surface strategy 

whereas, Figure 16, reports that for local one. Histogram shapes 

are similar even if, the latter presents a steeper curve. For both, 

the most populated bin is the first one having a range between 0 

and 6 mm; the 95-percentile significantly differs as for the former 

is 17 cm while for the latter 8 cm and the 50-percentile is 4.1 cm 

and 1.9 cm, respectively (Table 3). The obtained figures 

demonstrate how calculation method can significantly influence 

the result. 

Due to the high density of UAV point cloud the first approach, 

point-to-point, performs better than the other two. Nevertheless, 

the overall results are good and confirm that the two clouds can 

be used in an integrated way. 

 50-percentile 95-percentile 

Point-to-point 1.3 cm 6 cm 

Global surface 4.1 cm 17 cm 

Local surface 1.9 cm 8 cm 

Table 3. The 50- and 95- percentile for the three considered 

strategies. 

 

5. CONCLUSIONS 

A laser and a photogrammetric point clouds were compared in 

terms of density, mutual distance, and distance from the GCPs 

located on the outcrop. Analysis was performed only for the bare 

rock, as reported in the method section, to obtain most reliable 

results. Density represents the main issue as the two datasets 

show significantly differences especially in the upper part of the 

outcrop. From this point of view, UAV provides better results 

since the structure of block acquisition has followed the outcrop 

shape; Leica MS60 has instead a limited line of sight as the 

instrument could only be moved on the main road. 

This difference in the point clouds density also influences the 

distances analysis; to overcome this problem different strategies 

were adopted for their calculation using point-to-point, global 

surface, and local surface approach. Results show a good 

agreement between the two datasets and an overall good 

accuracy. 
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