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ABSTRACT:

Satellite Image Time Series (SITS) are becoming available at high spatial, spectral and temporal resolutions across the globe by the
latest remote sensing sensors. These series of images can be highly valuable when exploited by classification systems to produce
frequently updated and accurate land cover maps. The richness of spectral, spatial and temporal features in SITS is a promising
source of data for developing better classification algorithms. However, machine learning methods such as Random Forests (RF),
despite their fruitful application to SITS to produce land cover maps, are structurally unable to properly handle intertwined spatial,
spectral and temporal dynamics without breaking the structure of the data. Therefore, the present work proposes a comparative
study of various deep learning algorithms from the Convolutional Neural Network (CNN) family and evaluate their performance on
SITS classification. They are compared to the processing chain coined iota®, developed by the CESBIO and based on a RF model.
Experiments are carried out in an operational context using with sparse annotations from 290 labeled polygons. Less than 80 000
pixel time series belonging to 8 land cover classes from a year of Sentinel-2 monthly syntheses are used. Results show on a test
set of 131 polygons that CNNs using 3D convolutions in space and time are more accurate than 1D temporal, stacked 2D and RF
approaches. Best-performing models are CNNs using spatio-temporal features, namely 3D-CNN, 2D-CNN and SpatioTempCNN, a

two-stream model using both 1D and 3D convolutions.

1. INTRODUCTION

1.1 Context

Land cover maps provide spatial information on the variety of
different types, or classes, covering the Earth’s surface. Such
maps were originally produced by using only spectral features
available in satellite images sensed by Earth observation sys-
tems. However, some land cover classes, despite their char-
acteristic spectral signatures, remain difficult to classify with a
lack of spatial and temporal information. In order to make these
maps available on time, accurate, robust, and reliable, automatic
methods need to better handle multidimensional data such as
spectral, spatial and temporal domains.

The present paper will benchmark various CNN models to pro-
duce land cover maps from SITS, defined as a sequence of
satellite images of the same scene taken at subsequent times.
As the Earth’s surface is rapidly changing due to natural and
socioeconomic factors, land cover maps are an essential tool
for mapping and monitoring its biophysical cover. They are
highly valuable in many applications such as urbanization, nat-
ural resources management, and during extreme events accen-
tuated by climate change such as drought, flooding, wildfires or
biomass changes. Indeed, SITS can provide detailed inform-
ation on the status and evolution dynamics of different land
cover classes and hence make possible leveraging class-specific
spectro-temporal profiles to improve the classification. How-
ever, the majority of land cover maps are still only relying on
spectral information or as in recent studies, in spectral and spa-
tial information. Consequently, the use of temporal dependen-
cies has been poorly investigated as explained in (Gomez et al.,
2016) and (Gbodjo et al., 2020).

1.2 Related work

Due to the recent availability of SITS and their increasing spa-
tial and temporal resolutions, an array of new methods to bet-
ter handle multidimensional data takes form in the literature.
Among them, CNNs are the most widely used and frequently
beat state-of-the-art approaches from machine learning such as
RE.

The present work will restrict its investigation to the bench-
mark of CNNs on SITS land cover classification even though
other deep learning architectures have proven to be success-
ful recently, such as recurrent-based models in (Ruwurm and
Korner, 2018) with convolutional LSTM cells, or attention-
based models as in (RuBwurm and Korner, 2019). We focused
on CNNs for their (i) relative ease of training compared to re-
current models, (ii) ease of deployment in an operational pro-
duction framework, and (iii) ability to efficiently blend spatial
and temporal information in convolution kernels. Moreover,
recent experiments in (Garnot et al., 2019) on the respective
performance of recurrent, convolution and hybrid models show
that best-performing approaches are reached when up to 90 %
of the models’ parameters are allocated to modelling the tem-
poral dimension of the data, suggesting that simple convolu-
tional architectures are well-suited and probably sufficient for
SITS classification.

One important aspect of this work is that the reference data is
only sparsely labeled, meaning that only a a small subset of
pixels is labeled in each training instance, leading to multiple is-
sues with patch-based approaches such as spatial CNNs. Since
only a fraction of pixels of the training images is labeled, much
of the geometric information is simply not present in the data at
first. Class borders pixels and spatial arrangements between
classes are rarely annotated and, in our case, where labeled
pixels are localised using small polygons within larger class
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objects, they are totally absent of the data. Geometric degrad-
ation such as smoothing of corners and erosion or dilation of
small elements in the classified map is a well-known drawback
induced by CNNs. Unfortunately, this phenomenon is accen-
tuated when using sparse annotations. Indeed, since the train-
ing data drive both the feature extraction and the classification
steps, the learning of rich patterns is impossible if the data is
not rich enough.

Most conventional methods that try to incorporate the temporal
dynamics of the data heavily rely on either on a simple tem-
poral stacking in the channel dimension or on handcrafted fea-
ture descriptors. While a straightforward stacking of time ac-
quisitions is oblivious to the temporal structure and causality
present in the first place, feature engineering is based on do-
main knowledge and may fail to capture the relevant part of the
raw data. In the meantime, there is a strong need to leverage
simultaneously spatial and temporal features to perform land
cover classification, preferably jointly learnt to take the most
out of the feature interplay that guides the dynamics of SITS.

Time series could help handle intra-class variability across time,
which is one of the major aspect of land cover mapping that
plummets its performance. Obviously, deep learning made
much more advances in recent years than traditional methods.
Especially, CNNs are promising candidates to address the task
of SITS land cover classification.

1.3 Goal

The present paper proposes a benchmark of different CNN-
based approaches and a RF classifier on SITS land cover classi-
fication from sparsely annotated data. A special focus is put on
the handling of spectral, spatial and temporal information. The
benefit of the proposed methods will be assessed by comparing
evaluation metrics on a separate test set. This has been divided
into two sub-goals:

1. Exploiting spatial and temporal dependencies

Most land cover classification systems rely on spectral fea-
tures and lack spatial or temporal information. Indeed,
while a temporal stack contains temporal statistics, it does
not model the sequential nature of the data. Indeed, shuff-
ling the temporal order has no consequence on the model
and results. We aim to fill this gap, especially for land
cover classes that vary over space and time and which are
hence prone to misclassification. We will study the ability
for different CNNs to extract relevant temporal and spa-
tial features in SITS to better classify them. Indeed, such
features may help discriminate between certain land cover
classes which may have similar spectral signatures at some
point in time and being radically different at a later time,
especially vegetation.

2. Operational solution for real-world applications

Since data is scarce and costly in operational works, we
aim to propose a scalable solution for real world applica-
tions defined by large areas and a little amount of sparsely
annotated ground truth data. Such data is indeed expens-
ive since it is provided by photo-interpreters that manually
label it. Additionally, the solution is expected to be com-
putationally light and feasible.

2. METHODS
2.1 Random Forest (RF)

State-of-the-art methods extensively use machine learning to
perform land cover classification. Methods such as RF classifi-
ers are commonly found in the literature and is used herein as a
baseline model. Particularly, we mention the solution jota® de-
veloped by (Inglada et al., 2017) at the CESBIO. Briefly, a RF
is an ensemble of decision trees, acyclic graphs that can be used
to make decisions. In each node of the graph, a given feature
in the input feature vector is submitted to a binary question. In
this way, one can construct trees of various depths that are used
to classify a given input feature vector.

To account for the temporal domain, temporal stacking in the
channel dimension is performed. Therefore, inputs to the model
are time series vectors of length ¢ - T" where ¢ the number of
spectral bands and 7" the number of time acquisitions. As for
any pixel-based approach and without the addition of spatial
features beforehand, this algorithm sees each pixel irrespect-
ive of its spatial neighborhood. Moreover, since the temporal
ordering has no effect on the classification process, this type
of classifier cannot properly leverage temporal dynamics and
causality present in the data.

Two versions of this model are proposed: a basic one de-
noted by iota®_base which only relies on spectral input fea-
tures, and a spatially-aware one denoted by iota®_ctx, developed
by (Derksen et al., 2020) at the CESBIO, which is enhanced
by a prior object spatial segmentation on which spatial fea-
tures are computed and stacked to the spectral ones. This addi-
tional feature engineering step that we decided to avoid in our
proposed deep learning methods introduces more complexity
to the model but provides it with valuable spatial information.
Both RFs are implemented on CPUs using the same set of hy-
perparameters: minimum number of samples in each node of
20, maximum depth of 50, maximum number of trees of 100.
Other parameters are set to default values as described in Orfeo-
toolbox documentation (Grizonnet et al., 2017).

2.2 Deep learning

Deep learning models are increasingly used to perform land
cover classification. Especially, given the filtering nature of
convolution kernels, CNNs can be applied to extract relevant
spectral, spatial and temporal features from data. This ability to
handle multidimensional data makes them promising candid-
ates to produce more accurate land cover maps from SITS.

2.2.1 1D CNN 1D CNNs have been used on the spectral
(Hu et al., 2015) and temporal (Pelletier et al., 2019a) dimen-
sion. Given the filtering properties of convolution kernels, they
are very appropriate to handle temporal information. For in-
stance, 1D convolutions are typically applied to sequential data
such as sentences in natural language processing, audio signals,
and more generally to any structured one-dimensional signal
like time series. Figure [1| shows an example of a 1D convo-
lution filter sliding through a pixel time series of a particular
spectral band.

CNNs using 1D convolutions have been used for land cover
classification of SITS as in (Pelletier et al., 2019b)) with a model
coined TempCNN. This model performs convolutions through
pixel time series. Hence, no spatial information is taken into ac-
count but it shows competitive results due to its ability to handle
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Figure 1. Representation of a 1D convolution on a spectral
channel. Only the three first sliding steps are depicted.

temporal dynamics. Inputs to the model are tensors of shape
¢ x T. Figure 2] from the original paper shows an overview of
the model.

input CONV 1 CONV 2 CONV 3 Flatten

g

Softmax

e
O Class 2
@ s

spectral = S
v =2 ) SEA
== S [ = ——

Figure 2. TempCNN model (Pelletier et al., 2019b)

2.2.2 2D CNN In 2D CNNs, spatial convolutions are ap-
plied in both x and y directions to extract relevant spatial fea-
tures from images. More sophisticated architectures try to
leverage multi-scale spatial information by downsizing input
feature maps at subsequent stages in the network as a Fully
Convolutional Network in (Maggiori et al., 2017) and the well-
known U-net architecture in (Stoian et al., 2019). Yet, since our
input training images have a size of 32 x 32, this approach is
not conceivable as most of the information would be lost in the
early layers. To account for the temporal dimension, the use
of standard 2D convolutions is not straightforward and work-
arounds such as temporal stacking in the channel dimension are
needed (Kussul et al., 2017). Consequently, the input data be-
comes of shape ¢ - T' x h x w where ¢ denotes the spectral
channels and h and w denote image height and width. Figure[3]
shows an example of such 2D convolution with temporal stack-
ing. This solution does not fully model the temporal dynamics
that exist in the data since retraining the model with a different
temporal order would statistically provide similar results.
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Figure 3. Representation of a 2D convolution using temporal
stacking. Only the three first sliding steps are depicted.

The architecture of the model is similar to that of Figure [5] ex-
cept that 2D convolution kernels are used and inputs at sub-

sequent time steps are stacked along the channel dimension.
The forward pass comprises a series of convolutional layers
followed by batch normalization (BatchNorm), Rectified Lin-
ear Unit (ReLu) activations and Dropout layers. The last two
layers are fully convolutional layers instead of fully connected
ones since they permit filters to remain spatially invariant and
allow to keep the input image shape. The model outputs a tensor
of shape K x h x w where K is the number of classes. Each
of the K channel is the probability for a given pixel in h X w to
belong to class K.

2.2.3 3D CNN Since 3D convolutions allow to convolve in
more dimensions, 3D CNNs have been tried across spatial and
spectral domains (Ben Hamida et al., 2018) and across spatial
and temporal ones for crop classification (J1 et al., 2018). Figure
[] shows an example of a 3D convolution filter applied in both
spatial and temporal dimensions.
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Figure 4. Representation of a 3D convolution on a spectral
channel. Only the three first sliding steps are depicted.

CNNs using 3D convolutions are rare in the literature. By using
cubes of convolutions of shape i X j x k, they are able to op-
erate on temporal and spatial dimensions simultaneously. A 3-
dimensional convolution filter uses all input channels and slides
along three dimensions. Inputs to the model are 4D tensors of
shape ¢ x T' x h x w. We chose convolution filters of shape
3 x 3 x 3, which means a temporal extent of 3 and a spatial
window of 3 x 3 pixels. Figure|§] details the architecture of the
model.

2.2.4 Two-stream models Two-stream models are often
used to extract two different types of features (e.g. spatial and
temporal ones) by using two models in parallel and combining
their respective feature vectors in a single one as in (Benedetti
et al., 2018)), (Interdonato et al., 2019). In this work, we pro-
pose a two stream model to benefit from both patch-based and
pixel-based approaches.

Patch-based methods such as spatial CNNs inevitably loose
geometric precision on the classified map since any pixel pre-
diction takes into account its direct neighborhood, for example
in a 3 x 3 window. Therefore, small spatial features can be
totally erased and large ones dilated in the classification output.
To tackle this issue and inspired from ensembling methods, a
hybrid model is proposed. Often seen in the literature in order to
merge temporal and spatial features, we propose to combine our
two best performing models into a single one to balance the re-
spective disadvantages of pixel-based and patch-based models.
Figure [6] depicts this model ensembling. The output prediction
is controlled by a weighting trade-off parameter set manually.
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Figure 5. 3D-CNN model.
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Figure 6. SpatioTempCNN: a two-stream model.

3. BENCHMARK

This section first describes the data used in this paper and de-
scribes the aforementioned benchmark.

3.1 Training data

Our dataset is composed of 11 dates of Sentinel-2 images of the
tile ID 31TCJ processed at level L3A, which are monthly syn-
theses produced from their L2A counterparts acquired every 5
days. The time series span monthly from February to Decem-
ber 2018 as depicted in Table[T] The tile 31TCJ covers an area
of 110km x 110 km and is located near Toulouse, France.

Table 1. Span of the L3A tile time series.

Date

2018-02-15
2018-03-15
2018-04-15
2018-05-15
2018-06-15
2018-07-08
2018-08-15
2018-09-15
2018-10-15
2018-11-15
2018-12-15

Timestep |

= S]] oo | o\ i | Lol 3| —

Each training instance consists of a pair of an image time series
of shape (¢ X T' x h X w) and a binary label mask indicating
the presence or absence of labeled pixels. The label masks are
created by extracting patches around each labeled polygons. In-
formation about ground truth data collection is provided in the
next section.

3.2 Ground truth data

The labeled polygons have been collected by trained photo-
interpreters on satellite imagery of the tile 31TCJ and reviewed
by experts. The polygon sampling strategy, crucial for accuracy
assessment, is let to the expert’s knowledge of the area. Since
all classes are not uniformly distributed over large regions, the
strategy must account for the specificity of the terrain and the
distribution of classes in order to avoid accentuating class im-
balance. Table [2]describes the class nomenclature which com-
prises 8 land cover classes.

Table 2. Ground truth dataset repartition using CLC+

nomenclature.
Code | Class name | #labeled pixels

1 Built up 9528

2 Woodland needle-leaved trees | 4532

3 Woodland broad-leaved trees 11512

5 Shrubland 672

6 Permanent herbaceous land 4132

7 Periodically herbaceous land 11875

10 Non-vegetated land 1012

11 Water 9444

The best way to unsure a fair and correlation-free strategy con-
sists in splitting the training and validation sets at the polygon
level rather than the pixel level. Indeed, pixels extracted from
the same polygons and found in both sets are more likely to be
similar and have higher auto-correlation than pixels from separ-
ate polygons. Therefore, the dataset is split between a training
and a validation set while ensuring a balanced class distribu-
tion. The training data accounts for 70 % of the polygons and
the remaining 30 % are kept separate for the validation during
which the performance metrics are computed.

In terms of pixel counts inside the polygons, the data is unbal-
anced with two minority classes: Shrubland and Non_vegetated.
A straightforward oversampling strategy during training is
chosen to alleviate this class imbalance issue.

3.3 Spectral features

Pixel time series are composed of 13 spectral values (10 bands
and 3 spectral indices). We used the Sentinel-2 10 m bands
(B2, B3, B4, B8) and 20 m bands (B5, B6, B7, BSA, B11, B12)
resampled to 10m. The three following spectral indices are
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added. The NDVI is designed for vegetation detection and is
defined by

B8 — B4

NDVI= 5o p

M

Likewise, the NDWI as defined by McFeeters in 1996
in (McFeeters, 1996) is used to perceive changes in water bod-
ies and is defined by

B3 — B8

NDWI = ———=
B3 + B8

@

Lastly, the BI is sensitive to the brightness of soils where high
soil brightness is linked with soil humidity and presence of
salts. It is defined by

B42

BI =1/ 3% 3)

While an increasing amount of research experiments shows that
adding handcrafted spectral indices may be useless when train-
ing deep learning models as in (Pelletier et al., 2019b), we do
not assess their usefulness in the present work.

3.4 Spatial context and temporal dynamics

Our hypothesis states that the extraction of combined spectral,
temporal and spatial features is a key factor when analyzing
SITS. While state-of-the-art approaches focus on either one or
two of these dimensions, only too few have investigated to do it
all at once in an end-to-end fashion. Indeed, spectral informa-
tion only is sometimes insufficient to identify certain land cover
classes that are similar at a particular time.

3.4.1 Spatial context Pixel-based approaches suffer from
this lack of information since they consider each pixel irrespect-
ive of their spatial context.

3.4.2 Temporal dynamics Figure [7| shows examples of
time series for the three spectral indices. One can quickly notice
general trends that correspond to what we should expect. For
instance, the NDWI curve, which is used to detect water bod-
ies, clearly separates it from other classes (Figure m middle).
On the contrary, BI shows important variations for some classes
depending the month of the year (Figurem right).

Additionally, some classes can look similar in terms of spec-
tral signatures at a given moment in time while being totally
different at a later time. Figure |§| shows that particular spec-
tral features patterns are very characteristic for certain classes
at different times.

As expected, vegetation classes such as Woodland needle-
leaved trees, Permanent herbaceous land and Shrubland show
a high normalized NDVI (green starry curve). Especially, in-
frared bands (B6, B7, B8, B§A) clearly show the expected vari-
ations along the year for the Periodically herbaceous land class:
a steady increase during winter and mid-spring followed by a
rapid decrease during summer when the harvest season comes.
This observation is in accordance with the vegetation pheno-
logy. We can notice that most of the Built-up spectral features
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Figure 7. Class separability over time shown for three spectral
indices and band B12. Intra-class variability computed using
class standard deviations is represented in colored areas around
each curve.

are close and follow similar trends, except for NDWI. This par-
ticular pattern, which could make more difficult to discriminate
this class, is related its inherent heterogeneity. Indeed, this class
often contains different features such as buildings, trees, grass-
land and roads.

In order to enrich classification systems, there is a strong
need to incorporate both spatial and temporal information that
may help discriminate between classes. Consequently, our ap-
proaches will focus in adding these valuable insights to the clas-
sification process. We believe that intertwined feature modeling
can have a high potential for the leverage of relevant informa-
tion to improve land cover classification systems.

3.5 Methodology

A comparative research methodology using a benchmark is ad-
opted in this paper. It is facilitated by a generic training and
validation of deep learning models that use sparsely annotated
data from labeled polygons. This framework and all proposed
models are coded in Python with the deep learning library PyT-
orch (Paszke et al., 2017)).

3.5.1 Training As with all deep learning algorithms, train-
ing occurs over multiple repetitions, or epochs, of some op-
timization procedure. The training session stops either when
the number of epochs is filled or when the optimization has
converged according to some stop criterion. The latter option
is chosen in this project using an early stopping regularization
mechanism monitoring the F1-score macro averaged over all
classes on the validation set using a patience parameter of 5
epochs.

3.5.2 Validation After each training epoch, the model’s
performance is measured on the validation set using an array
of evaluation metrics such as OA, F1-scores for each class, F1-
score macro averaged over all classes, confusion matrices, or
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Shrubland Water

Table 3. Test set repartition using CLC+ nomenclature.
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Figure 8. Examples of normalized spectral features time series
per class.

the model loss. We used the macro-averaged F1-score across all
classes as criterion of early stopping. The macro-average takes
into account class imbalance by assigning the same weight to
each class, irrespective of their population size. It is widely
used to assess multi-class classification results and is defined as
the geometric average of precision and recall. Since we perform
5 training sessions for each model to ensure statistical reliabil-
ity, the best model among these trials is again chosen according
to the evaluation metrics.

3.5.3 Testing All proposed models are eventually assessed
using a separate test set of 131 polygons whose repartition
is shown in Table @ The test set is labeled by an external
photo-interpreter to minimize any bias in the labelling proced-
ure between training and test sets.

3.6 Results and Analysis

Class Fl-scores on the validation and test sets for the bench-
mark models are shown in Table ] Test results show that 3D-
CNN is the best performing model with a mean Fl-score of
0.804. It is followed by 2D-CNN, Spatio-TempCNN, iota* ctx,
TempCNN and iota® _base with Fl-scores of 0.799, 0.798,
0.753, 0.750 and 0.723 respectively.

Statistical reliability and efficiency results are also provided in
Table E[ Training and inference time are measured using two
NVIDIA Tesla V100 GPUs. This experiment proves that the
performance of the models are reliable and robust as shown by
the standard deviation values. Yet, the small sized dataset and
class imbalance in both training and validation sets may limit
this reliability assessment.

Besides evaluation metrics, a visual inspection of classification
maps reveals interesting properties of each model. Pixel-based
models such as iota®_base and 1D temporal TempCNN tend to
produce more speckle-like noise in classification maps as ex-
pected since they are oblivious to spatial context. On the con-
trary, patch-based models like 3D-CNN produce more spatially
coherent maps with homogeneously classified areas. Figure [9]
shows an example of classified area by different models. This
example shows one of the recurring error we observed: RF-
based models (top row) tend to wrongly classify Periodically
herbaceous land (crop fields) areas as Built up in red or as
Non-vegetated in grey. This is mostly due to the fact that crop
fields vary much over time and can be spectrally similar to other
classes over the year. We also observe that CNN models pro-
duce less speckle-like labelling. Roads, paths and class borders
are often labeled as Built-up. As mentioned earlier, small fea-
tures are often erased in the patch-based 3D-CNN as individual
pixel features are smoothed out in the kernel window. On the
other hand, certain features can be dilated. To help combat these
issues, one would need to enrich the dataset using more dense
polygons where mixed pixels in class borders are available dur-
ing training.

4. CONCLUSIONS AND PERSPECTIVES

This paper introduced a benchmark of CNNs and compared
their classification performance on multi-class land cover clas-
sification of SITS using sparse annotations. The proposed mod-
els are compared to a RF-based approach with and without prior
spatial segmentation. A sparsely annotated ground truth data-
set constituted by 290 polygons (less than 80 000 labeled time
series) belonging to 8 land cover classes is used and sampled
from the Sentinel-2 tile 31TCJ near Toulouse. All models are
eventually evaluated on a separate test set of 131 polygons.

Results show that 3D-CNN, a spatio-temporal CNN using 3D
convolutions is the best performing model of the benchmark
with a mean F1 score of 0.804 on a test set. On this set,
all CNNs exploiting spatio-temporal features outperform RF-
based approaches. Therefore, a proper exploitation of the spa-
tial context and temporal dynamics in satellite images appears
as a powerful lever arm to improve land cover maps, especially
for classes usually prone to misclassification such as vegetation
ones. Moreover, given the honorable performance of the 1D
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- Built-up - Woodland broad leaved trees l:l Permanent herbaceous land l:l Non-vegetated

- Woodland needle leaved trees - Shrubland l:l Periodically herbaceous land

- Water

Figure 9. Example of a classified area with presence of crop fields: iota®_base (a), iota® ctx
(b), TempCNN (c), 3D-CNN (d).

Table 4. Benchmark class F1-scores on validation and test sets. Model reliability is measured by mean F1-scores and standard
deviations over 5 trainings. Model efficiency is measured by number of parameters, training and inference on the tile 31TCJ.

Class name TempCNN | 3D-CNN | 2D-CNN %f::;o(:,NN iotactx | iota® base
F1 scores on validation set
Built-up 0.973 0.965 0.947 0.940 0.924 0.924
Woodland needle-leaved trees | 0.967 0.997 0.998 0.987 0.990 0.842
Woodland broad-leaved trees | 0.980 0.996 0.986 0.983 0.990 0.913
Shrubland 0.615 0.695 0.380 0.557 0.719 0.080
Permanent herbaceous land 0.933 0.900 0.936 0.943 0.932 0.799
Periodically herbaceous land | 0.980 0.985 0.982 0.980 0.974 0.923
Non-vegetated land 0.807 0.653 0.674 0.600 0.576 0.961
Water 1.000 1.000 1.000 1.000 1.000 1.000
Mean 0.907 0.899 0.863 0.874 0.888 0.680

F1 scores on test set

Built-up 0.984 0.987 0.981 0.984 0.968 0.962
Woodland needle-leaved trees | 0.492 0.461 0.451 0.467 0.459 0.405
Woodland broad-leaved trees | 0.863 0.490 0.867 0.870 0.861 0.854
Shrubland 0.682 0.778 0.619 0.694 0.627 0.586
Permanent herbaceous land 0.731 0.620 0.753 0.733 0.580 0.573
Periodically herbaceous land | 0.962 0.939 0.966 0.968 0.947 0.948
Non-vegetated land 0.282 0.774 0.757 0.670 0.362 0.458
Water 1.000 1.000 1.000 1.000 0.999 0.998
Mean 0.750 0.804 0.799 0.798 0.753 0.723

Efficiency and Reliability

# parameters 493 k 379 k 463 k 867 k NA NA
Training (min) 1.0 0.7 1.0 3.0 +60 +40
Inference (min) 40 40 40 40 40 40

Fl-score + std on 5 trainings | 0.89+0.01 | 0.86+0.03 | 0.82+0.03 | 0.86+0.02 | NA NA
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temporal TempCNN which has no spatial information, it seems
that temporal dynamics only can be determining.

Our initial hypothesis stating that combining spectral, spatial
and temporal features contained in SITS would improve land
cover classification systems is verified by the conducted exper-
iments on the dataset at hand. In addition, the proposed models
are light and meet the efficiency requirements needed in oper-
ational contexts for real-world applications. Besides, a generic
training and validation framework for deep learning models has
been developed for further research and development.

However, the little amount of labeled data is a serious imped-
iment in deep learning models. In this regard, the proposed
benchmark is currently being trained and evaluated using a
richer and dense dataset of ground truth data on another area
and first results clearly show the superiority of CNN-based ap-
proaches when massive amounts of data are available. Given
the overall good but heterogeneous performance of CNNss, hy-
brid approaches such as the two-stream SpatioTempCNN will
be studied using learning-based ensembling methods instead of
rule-based ones.
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