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ABSTRACT:

Recent works have studied crop recognition in regions with highly complex spatio-temporal dynamics typical of a tropical climate.
However, most proposals have only been evaluated in a single agricultural year, and their capabilities to generalize to dates outside
the temporal sequence have not been properly addressed thus far. This work assesses the generalization capabilities of a recent
convolutional recurrent architecture, testing it in a temporal sequence two years ahead of the sequence with which it was trained.
Furthermore, a N-to-1 variant of such network is proposed, which is able to produce classification outcomes for every month in
the agricultural year, and it is compared with two baselines designed in a more traditional approach, in which a separate specific
network is trained for each month of the year. The approaches are evaluated on two public datasets from a tropical region. The
first dataset comprehends the period from June 2017 to May 2018, while the second goes from October 2019 to September 2020.
Results show a decrease of up to 24.6% in per-date average F1 score when training the network with data of an agricultural year
different from the one it is tested on, which indicates a domain shift that demands further research. Additionally, the proposed
approach presented only a slight decrease in performance compared to its baseline when trained on the same dataset, with a 2.7%
drop in average F1 score. This performance drop is a small cost in exchange for its operational advantages, such as reduced training

time and a more straightforward pipeline.

1. INTRODUCTION

Crop monitoring involves several factors that might vary from
one region to another. In tropical areas, the favorable climate
allows more flexibility regarding the seeding and harvest times,
making the modeling of crops’ dynamics more complex (Sanc-
hes et al., 2018b). Notably, tropical areas generally exhibit
complex spatio-temporal dynamics of culture because of their
favorable climate and crop rotation practices. In Brazil, for ex-
ample, the favourable climate allows up to 3 harvests per year,
and the plantation and harvesting dates for the same crop type
may greatly vary. Thus, it is necessary to map crops in trop-
ical regions several times throughout the year, unlike temperate
areas, where a single classification result may be sufficient for
the entire agricultural year.

Several works have addressed the crop recognition problem us-
ing classical machine learning techniques. In (Tardy et al.,
2017), the authors used a Random Forest algorithm for multi-
temporal crop mapping and evaluated fusion techniques to
leverage information from multiple past agricultural years to
classify unlabeled data from the current period. The authors in
(Ajadi et al., 2021) proposed a large scale crop mapping scheme
leveraging auxiliary data from the United States, using a XG-
Boost model. Similarly, the authors in (Santos et al., 2021)
used self-organizing maps (SOMs) to classify crop types us-
ing MODIS time series. However, their training features only
considered the temporal dimension, leaving the spatial context
unexplored.

In recent years, deep learning techniques have been success-
fully applied to crop recognition applications (Audebert et al.,

* Corresponding author

2017). Such methods can be roughly grouped into Convolu-
tional Neural Networks (CNN) and Recurrent Neural Networks
(RNN). A recent work compared a CNN and a more spatially
efficient Fully Convolutional Network (FCN) for crop recogni-
tion in a tropical climate in the Municipality of Campo Verde,
Brazil (La Rosa et al., 2018). Despite the reported high accur-
acy values, these approaches require specific training for each
date in which a result is desired, which represents an operational
disadvantage.

The second group of techniques involves recurrent neural net-
works (RNNs). A type of RNN called ConvLSTM was pro-
posed by (Shi et al., 2015), which replaces the LSTM internal
operations with convolutional layers, allowing it to consider the
spatio-temporal context in the input sequence. ConvLSTM net-
works have recently been used for crop recognition applications
(RuBwurm and Korner, 2018, Teimouri et al., 2019, Martinez et
al., 2021). (RuBwurm and Korner, 2018) reports an evaluation
of a ConvLSTM network for crop recognition in a temperate re-
gion. (Martinez et al., 2021) proposed a network that combines
a ConvLSTM with an Unet-like encoder-decoder network (UN-
etConvLSTM). The authors tested the proposed network in pub-
lic datasets from a tropical climate. This network was trained
as a unique, end-to-end network and can produce classification
results for every date represented in the temporal sequence.

To our knowledge, all previous works evaluate the network per-
formance in the same temporal sequence used for training. Such
an analysis is insufficient to assess how well the networks gen-
eralize on dates outside the period covered by the training’s
temporal sequence.

The first contribution of this work is an evaluation of a Unet-
ConvLSTM network at dates not used for training. A second
contribution is a novel N-to-1 variant of the UnetConvLSTM
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network from (Martinez et al., 2021), which is trained in a slid-
ing window manner to produce outcomes for any date along the
temporal sequence using a single, end-to-end network called
VUnetConvLSTM.

This work also evaluates the performance of the proposed net-
work at dates outside the temporal sequence used for training.
We used two open-access datasets for this purpose. Both refer
to the municipality of Luis Eduardo Magalhdes, Bahia state,
Brazil. The dataset refers to two temporal sequences separ-
ated in about one year from each other. The first dataset, called
hereafter LEM 17/18, comprises SAR images acquired between
2017 and 2018. We used this dataset for training. The second
dataset, called henceforth LEM 19/20, comprehends a temporal
sequence between 2019 and 2020, and it was used for testing.

The remainder of this work is organized in the following sec-
tions. Section 2 briefly explains some fundamental concepts
required to understand the evaluated networks, such as LSTM,
ConvLSTM and UnetConvLSTM. Section 3 presents the pro-
posed VUnetConvLSTM architecture. Section 4 details the
datasets used in this work, the baseline architectures, and the
experimental protocol. In Section 5, the results are presented
and discussed. Finally, Section 7 describes the final conclusions
and discusses possible future directions.

2. FUNDAMENTALS
2.1 LSTM and ConvLSTM

Recurrent Neural Networks are a class of neural networks de-
signed to handle data that exhibits a time/sequence dependency.
The RNN’s output at a specific time step ¢, depends on the data
from the current data observation x; and the information stored
in the network’s hidden state h;, which is updated at each time
step. A modern type of RNN called Long Short-Term Memory
(LSTM) introduces trainable gates in its architecture to control
the information flow of the network’s memory ¢: (Hochreiter
and Schmidhuber, 1997). In particular, gates are shallow neural
networks with sigmoid activation function as output and para-
meterized by Wy, W;, and W, respectively, which regulate the
information accessed, cleared, and added to c: (see Figure 1).
This architecture allows LSTMs to be capable of modeling both
long and short-term time dependencies.
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Figure 1. LSTM structure diagram.

The major drawback of LSTMs for image sequence processing
is that their internal operations are fully connected layers, which
means that their input, hidden states, and output correspond to

sequences of vectors. To overcome this issue, (Shi et al., 2015)
proposed the ConvLSTM, which replaces all the LSTM internal
fully connected layers with convolutional layers. As a result,
its input, hidden states, and output correspond to sequences of
tensors with spatial dimensions.

2.2 UnetConvLSTM

This architecture was introduced in (Martinez et al., 2021). It
combines the ConvLSTM with the Unet network (Ronneber-
ger et al., 2015), which considers the spatial context at multiple
spatial scales. The block diagram for this network is presen-
ted in Figure 2. The input to this network is a sequence of
images. First, an encoder stage is applied to each of the im-
ages in the sequence. This encoder consists of successive con-
volutional layers and downsampling operations, which extract
more coarse feature representations. The resulting sequence of
feature maps produced by the encoder is then passed to a uni-
directional ConvLSTM network, which effectively considers
the spatio-temporal context. The ConvLSTM is configured as
N-to-1, and thus only the last element in the sequence pro-
duced at the RNN output is considered. This feature map is
then passed to a decoder stage. In the decoder stage, success-
ive convolutional layers and upsampling operations are applied
to recover the original spatial resolution. Skip connections are
used to preserve fine details. Afterward, a convolutional layer
with a 1x1 filter and a softmax activation function produces the
final class probabilities. At inference, the patch outcomes in
the test area are stitched together in a mosaic to form the final
result.
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Figure 2. UnetConvLSTM architecture. Input is a sequence of
images. The output corresponds to the class probabilities
predicted for each pixel location in the last image.

3. PROPOSED VARIABLE SEQUENCE NETWORK

The majority of works on multi-date crop recognition for trop-
ical regions are designed to produce classification outcomes for
a single date in the dataset (Castro et al., 2017, La Rosa et al.,
2018, Martinez et al., 2019). In those works, separate network
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architectures need to be trained for each date to be predicted.
However, this results in operational disadvantages such as lar-
ger training times and a more complex pipeline.

The proposed variable sequence network, called VUnetCon-
vLSTM, attempts to solve this problem by training a unique,
end-to-end architecture capable of producing classification out-
comes for every month of the year. The UnetConvLSTM net-
work is configured with an input sequence of length 12 with one
image per month, corresponding to a year before the desired
output month. Therefore, the network’s output corresponds to
the class probabilities for the last image in the sequence. Dur-
ing training, the network is trained with a different target month
from the available labeled dates in each mini-batch. Consid-
ering our works focus on obtaining the classification outcomes
for the last date in the sequence, we did not use the bidirectional
variant because our model does not employ future information.

At test time, the network is capable of producing outcomes for
every month of the year. Thus, this architecture addresses the
issues presented in the aforementioned previous works, associ-
ated with the need to train separate networks for each month of
the year. Nonetheless, this approach may result in a perform-
ance decrease, given that the network needs to learn the specific
classification patterns for the entire year.

For each image in the input sequence, the day of the year was
added as metadata for the network to better understand the se-
quence’s temporal structure. First, the sine and cosine opera-
tions were computed on the day of the year to preserve its cyc-
lical nature. The resulting values are of shape 7' x 2, where T’
is the sequence length. Spatial dimensions were added to this
representation, resulting in a sequence of shape 7' x 1 x 1 x 2.
The result was spatially upsampled, concatenated with the net-
work encoder’s outcomes, and then used as an input to the Con-
vLSTM block. The modified UnetConvLSTM is presented in
Figure 3.

4. EXPERIMENTS

4.1 Study Area

The proposed approaches were evaluated in two publicly avail-
able multi-date crop recognition datasets with complex spatio-
temporal dynamics due to their tropical climate. Both data-
sets are located in Luis Eduardo Magalhies municipality, Bahia
state, Brazil (See Figure 4). The first dataset, called LEM 17/18
(Sanches et al., 2018a), comprises a monthly sequence of 12
pre-processed Sentinel-1 images and their ground truth labels,
corresponding to the period between June 2017 and May 2018.
In this work, the dataset was extended with additional monthly
images, for a total of 21 monthly images from September 2016
to May 2018 (See Table 1). Reference information is not avail-
able for these additional images.

The second dataset, called LEM 19/20, consists of 12 pre-
processed Sentinel-1 images from October 2019 to September
2020, together with their corresponding ground truth (Oldoni et
al., 2020). As in the previous case, this dataset was extended
by using additional monthly images, without references, from
November 2018 until the beginning of the dataset (See Table
2). Although it covers a larger area compared to the LEM 17/18
dataset, we cropped its input and ground truth images to match
the same extension of LEM 17/18. The class distribution for
each month in both cases is presented in Figure 5.
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Figure 3. Modified UnetConvLSTM architecture, with the
images’ day of the year as additional input. The output
corresponds to the class probabilities predicted for each pixel
location in the last image.

Brazil

Bahia state

Figure 4. Luis Eduardo Magalhdes (LEM) municipality.
Polygons correspond to the ground truth parcels in LEM 17/18
dataset.

Experiments were carried out considering the most represent-
ative classes. We grouped classes with an overall percentage
of samples lower than 5.3% into a single class called Other
classes. In all cases, the Sentinel-1 images were resampled to a
10m resolution, and the VV and VH bands were used. No spe-
cific filtering was considered towards reducing speckle noise.

4.2 Baseline

We compared the proposed approach with two baseline meth-
odologies. In the first one, called Baseline 1, we trained sep-
arate UnetConvLSTM networks specifically for each month of
the year. The input sequence length is the same in each of these
networks, corresponding to an input sequence of one year in
the past with respect to the desired output month. At inference,
outcomes for each month are produced using each of the separ-
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Figure 5. Class percentages per date for (a) LEM 17/18 and (b) LEM 19/20 datasets

Year Month Date | Labeled
September 27
October 15
2016 November 20
December 14
January 19
February 12
March 08
April 13
May 19
June 12 N
2017\ Ty 06 v
August 11 v
September 16 v
October 10 v
November 15 v
December 09 v
January 14 v
February 19 v
2018 March 15 v
April 20 v
May 14 v

Table 1. Acquisition dates for LEM 17/18 dataset, comprising
21 images, whereby the ground truth is available for the last 12
dates.

ately trained networks. The networks were trained and tested in
the same LEM 19/20 dataset. Because this approach does not
need to generalize to unseen dates at test time, it is expected
to outperform the remaining approaches, and we used it as an
upper bound for comparison purposes.

As in the previous approach, Baseline 2 consists of multiple
identical UnetConvLSTM networks, each one trained for a spe-
cific month of the year. Input continues to be a sequence of
images corresponding to one year in the past with respect to
the corresponding output month. In this case, the networks are
trained on the LEM 17/18 dataset, while at inference the net-
works are tested on the LEM 19/20 dataset. Thus, this model
evaluates the baseline’s generalization capabilities in the tem-
poral domain. One should expect Baseline 2 to perform better
than our proposed network because it trains a specialized classi-
fier for each specific date. Notice that the advantage of the pro-
posed model compared to this baseline is operational because
it requires a unique network to produce classification outcomes
for all dates.

4.3 Experimental protocol

For the UnetConvLSTM network, we used average pooling
as downsampling operator, and transposed convolution as up-

Year Month Date | Labeled
November 10
2018 December 16
January 21
February 14
March 22
April 15
May 21
June 14
2019 | Ty 20
August 13
September 18
October 12 v
November 17 v
December 23 v
January 16 v
February 21 v
March 16 v
April 21 v
2020 May 15 v
June 20 v
July 14 v
August 19 v
September 12 v

Table 2. Acquisition dates for LEM 19/20 dataset, comprising
23 images, whereby the ground truth is available for the last 12
dates.

sampling operator. Table 3 presents the filter number we used
at every stage.

In each dataset, agricultural crop parcels were represented as
polygons. We used 100% of the LEM 17/18 dataset polygons
for training the Baseline 1 and the proposed approach. In LEM
19/20, the polygons intersecting with the train area of LEM
17/18 were used for training, and the remaining polygons were
used for testing. The train and test areas for both datasets are
presented in Figure 6 and Figure 7.

Patches of spatial dimensions 32-by-32 were used, with an in-
put sequence length of 12. We used zero padding for the in-
put images that were not available and were required during the
training of the LEM 17/18 early dates. Such unavailable images
correspond to the months of July and August 2016.

We used focal loss cost function and Adam optimizer with a
learning rate of 0.001. Mini-batches of 16 samples were used
during training. The networks were trained on an NVIDIA
GTX 1080Ti GPU.!

1 Code available at https://github.com/DiMorten/FCN_
ConvLSTM_Crop_Recognition_Generalized
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Layer Processing
Input TxHxWxXxD
Conv TxHxW x16
Downsampl. | T x H/2 x W/2 x 16
Downsampl. | T x H/4 x W/4 x 32
Downsampl. | T x H/8 x W/8 x 64
ConvLSTM | T x H/8 x W/8 x 256
Upsampl. H/4x W/4 x 64
Upsampl. H/2 x W/2 x 32
Upsampl. H x H x 16
Conv H x H x 16
Conv HxHxC

Table 3. Parameter configuration used in all experiments. 1" is
the temporal sequence length, H and W indicate height and
width, D is the input dimensionality, and C is the class number
(H=32, W=32, D=2, C'=6). In VUnetConvLSTM, the day of
the year was used as an additional input, which was
concatenated to the input of the ConvLSTM layer.
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Figure 6. Reference crop parcels in LEM 17/18 dataset. All the
polygons were used for training the Baseline 2 and
VUnetConvLSTM networks

Figure 7. Reference crop parcels in LEM 19/20 dataset. Blue
polygons were used for training the Baseline 1. Green polygons
were used for testing the proposed networks.

5. RESULTS

Figure 8 and Figure 9 summarize the performance of the as-
sessed methods in terms of per-date Overall Accuracy (OA) and
F1-score, respectively. The corresponding rates were obtained
by evaluating the models on the LEM 19/20 dataset on the se-
quence from October 2019 to September 2020. As expected,
Baseline 1 produced the highest OA metrics with values up to
93.3%. Even so, it produced relatively low OA values for some
months such as March, with an OA value of 58.2%.

The other two methods, Baseline 2 and VUnetConvLSTM, per-
formed similarly for most dates, but produced lower OA val-
ues than Baseline 1. However, the drop in performance regard-
ing Baseline 1 is not constant over the dates for both methods.
The differences are more remarkable in January, February, and
between May and July, where the decrease can be up to 39.9%.
These results are understandable considering the time-shift of
two years between the training and test sets, which is also ac-
centuated by the high dynamics that characterize the tropical re-
gions. In this sense, domain adaptation techniques would help
in reducing the gap between both datasets.

Recall that Baseline 2 involves specific classifiers for each date,
while VUnetConvLSTM consists of a single classifier for all
dates. Note that the performance gap between these two ap-
proaches was relatively small, with an average reduction of
2.7% in the F1 score.

On some dates, the proposed VUnetConvLSTM outperformed
Baseline 2 in terms of F1 score and OA, e.g., in May. On this
date, there were few training samples of Class Millet for LEM
17/18 dataset, which might have led to a low F1 score at that
date for Baseline 2. In contrast, the proposed network leveraged
the labeled data from other dates to learn a proper representa-
tion for Millet, leading to a better F1 score in May. The same
behaviour occurred in August, where the Millet percentage was
4.9% in the LEM 17/18 dataset and 14.7% in the LEM 19/20
dataset.
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Figure 8. Per-date Overall Accuracy for the proposed
approaches.

Results regarding the F1 score metric are consistent with the
ones reported in terms of OA. For most of the dates, the highest
F1 scores were obtained with Baseline 1, followed by Baseline
2 and VUnetConvLSTM approaches, which performed simil-
arly on most dates. However, it can be noticed that the decrease
in performance for both methods, regarding Baseline 1, is signi-
ficant for the entire sequence. An exception occurred in April,
in which Baseline 2 outperformed Baseline 1 by a margin of
7.5%. For Baseline 2, May was the most affected month, with a
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drop of 31% in F1 score, while for VUnetConvLSTM, the ma-
jor reduction occurred in July and August, with a decrease of
24.1% and 24.6% respectively.

Baseline 1 Baseline 2 VUnetConvLSTM
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F1 score
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v : : v
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Figure 9. Per-date average F1 score for the proposed approaches.

Table 4 presents the result in terms of F1 score and OA aver-
aged over the entire temporal sequence. Notice that metrics are
consistent with results reported in Figure 8 and Figure 9, where
the highest values of F1 and OA were obtained by Baseline 1.
Baseline 2 resulted in a decrease of 17% and 14% in terms of F1
score and OA, respectively. Interestingly, the proposed VUn-
etConvLSTM only presented a slight reduction in both metrics
regarding Baseline 2, with a drop of 2.7% and 0.5% for F1 score
and OA, respectively. The aforementioned table also presents
training times. Both Baseline 1 and Baseline 2 presented the
highest times because they required to train a separate network
for each date in the sequence. The proposed VUnetConvLSTM
reduced training times by approximately 74.3% compared to
the baseline approaches.

Method F1 OA | Training [h]
Baseline 1 61.7 | 773 14.6
Baseline 2 447 | 63.3 14.6

VUnetConvLSTM 42 62.8 3.8

Table 4. Performance metrics averaged over the temporal
sequence, and training time.

6. CONCLUSIONS

This work evaluated the capabilities of a convolutional recur-
rent crop mapping architecture adapted to tropical regions, to
generalize to future agricultural years in dates unseen during
training. Results suggest that merely training a network in
a specific agricultural year might not be enough for the ar-
chitecture to correctly generalize to future unseen dates. The
Baseline 2 and the proposed VUnetConvLSTM model, which
were trained in LEM 17/18 and tested two years ahead in time
using the LEM 19/20 dataset, presented a significant perform-
ance drop compared to Baseline 1, which was trained and tested
on the same temporal sequence. This indicated a domain gap
between the datasets, which was not addressed in this work.

Furthermore, this work compared the generalization capabilit-
ies of a network trained to produce an outcome on a specific
date (Baseline 2) and the proposed VUnetConvLSTM, trained
to produce outcomes for all the months of the agricultural year
in an end-to-end fashion. Results showed that the proposed
VUnetConvLSTM presented only slight performance decreases
compared to Baseline 1, which might be a small cost in ex-
change for the operational advantages brought by the end-to-
end approach.

Future works will focus on evaluating domain adaptation tech-
niques such as Colormapgan (Tasar et al., 2020) to address the
domain gap between the assessed datasets. Data fusion between
optical and SAR images will also be considered for improving
the classification metrics. Likewise, the inclusion of other deep
learning networks such as Unet3D and Transformers will be
evaluated.
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