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ABSTRACT:

Depth estimation from a single image is a challenging task, especially inside the highly structured forest environment. In this paper,
we propose a supervised deep learning model for monocular depth estimation based on forest imagery. We train our model on a
new data set of forest RGB-D images that we collected using a terrestrial laser scanner. Alongside the input RGB image, our model
uses a sparse depth channel as input to recover the dense depth information. The prediction accuracy of our model is significantly
higher than that of state-of-the-art methods when applied in the context of forest depth estimation. Our model brings the RMSE
down to 2.1 m, compared to 4 m and above for reference methods.
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Figure 1. Depth prediction based on monocular forest images: a)
and b) are input and ground truth; c), e) and f) are depth

predictions with different methods; d) is absolute error between
depth predicted with our model and the ground truth.

1. INTRODUCTION

Knowledge about forest stand characteristics (i.e., the spatial
distribution of trees, tree size distribution, etc.) is crucial for
forest management and monitoring and assessing the protective
function of forests. Besides traditional field sampling used by
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national forest inventories, other approaches also aid in deriving
spatial forest characteristics. In this sense, close-range remote
sensing techniques, such as Terrestrial Laser Scanning (TLS),
terrestrial photogrammetry, and imaging, have been intensively
investigated (Iglhaut et al., 2019).

Traditionally, 3D scene reconstruction is performed using ste-
reo image pairs through triangulation (Ginzler and Hobi, 2015).
In recent years, the interest in 3D reconstruction from mon-
ocular images (depth estimation from a single image) has in-
creased thanks to the introduction of deep networks. Mon-
ocular depth recovery benefits from the newest Deep Learning
(DL) architectures and provides an alternative to traditional ste-
reo approaches. Despite this, the success of existing methods
and their generalization ability rely on the amount and labeling
quality of the training data. Related work on monocular depth
estimation trains models on large data sets (Geiger et al., 2013),
and achieves outstanding precision on the corresponding test
sets. However, the used training sets contain only a limited
number of forest images.

In our work, we aim to evaluate the potential of a DL approach
for generating depth maps from monocular images collected in
a forest environment to later recover the absolute distance from
the camera to detectable trees. We show that existing monocu-
lar depth estimation approaches fail to produce plausible res-
ults for forest imagery due to the highly structured forest en-
vironment. By considering the specifics of this environment,
we propose a novel framework for depth prediction in forest
images. Our method recovers the forest 3D structure from an
input RGB image and sparse depth samples. We make use of
high-resolution TLS to collect the training data for our model
and compute ground-truth depths.

We summarize our main contributions as follows:

• A supervised DL model for monocular depth recovery in
forest environments trained on a dedicated set of images.

• A new data set of RGB-D forest images collected using
terrestrial laser scanner with an integrated camera.

• An extensive performance evaluation showcasing the ad-
vantages of our method over state-of-the-art approaches.
Figure 1 hints about the potential of our model.
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The paper is organized as follows. First, we discuss related
work regarding monocular depth estimation. Next, we intro-
duce our new data set of forest imagery and present our model
for depth prediction, followed by results and evaluation. Fi-
nally, we conclude the paper by discussing future work.

2. RELATED WORK

Research work on monocular depth estimation based on deep
learning can be divided into two categories: self-supervised
methods leveraging features in the image space to produce rel-
ative depth maps and supervised methods that require ground-
truth depth and occasionally rely on sparse depth as input (Ming
et al., 2021).

RGB-based depth prediction. The first category comprises
methods that exploit geometric constraints between stereo pairs
or monocular video sequences at training time and use single
images to test the model. Garg et al. (Garg et al., 2016) train
a Convolution Neural Network (CNN) model to predict depth
in an unsupervised manner based on the reconstruction loss
between one of the images in the stereo pair and its warped
counterpart. This concept is later utilized in (Godard et al.,
2017) to learn pixel correspondences between rectified stereo
pairs to enable a simultaneous reconstruction of the left image
in the pair given the right one and vice versa. The left-right
disparity significantly constrains the model trained on Resid-
ual Network (ResNet) (He et al., 2016). The predicted relative
depth translates into absolute depth with the knowledge of the
camera intrinsics. Other methods, such as (Godard et al., 2019),
(Zhou et al., 2017), and (Ummenhofer et al., 2017), train jointly
a depth network and a pose network. Unlike the approach pro-
posed in (Godard et al., 2017), the camera pose is now un-
known. The depth estimation relies on predicting the camera
pose from a video sequence by minimizing a reconstruction loss
involving consequent video frames. Unsupervised depth estim-
ation requires no ground-truth depths for the input RGB images,
offering an advantage over supervised depth estimation. At the
same time, the precision of the unsupervised approach is usu-
ally lower than the precision of the supervised methods.

RGB-D based prediction and sparse depth. The requirement
for additional data in the form of an extra depth channel plays a
principal role in increasing the prediction accuracy. The authors
in (Eigen et al., 2014) train a multi-scale CNN to first estimate
a coarse depth and then refine it locally. A scale-invariant loss
function constrains the training by comparing the scale of the
ground-truth depth to the prediction. Other supervised methods
exploit image features in the RGB-D space, where sparse depth
channel D is provided as input to help guide the prediction to-
wards dense depth (Kuznietsov et al., 2017), (Ma and Karaman,
2018). Ma et al. (Ma and Karaman, 2018) include sparse depth
in the form of uniformly distributed samples extracted from the
ground-truth depth. It is shown that the addition of sparse depth
as input improves the model accuracy (Ming et al., 2021).

Datasets. Most related works on depth estimation train mod-
els on large data sets, such as KITTI (Geiger et al., 2013)
and NYU-Depth V2 (Nathan Silberman and Fergus, 2012), and
achieve outstanding precision on the corresponding test sets.
The KITTI data set aims to represent broader real-world data.
It contains a large number of outdoor stereo video sequences,
captured from a moving car using two cameras, and their sparse
depth maps. In contrast, NYU-depth-V2 consists of indoor
video sequences with measured ground-truth depths. Both data

sets contain a limited number of forest images and fail to rep-
resent well forest environments. Therefore, depth prediction
methods trained on KITTI and NYU-Depth V2 struggle to es-
timate the depth of the highly structured forest environment.

3. OUR METHOD

In this section, we introduce our supervised method for single-
image depth estimation in forest environments. We present our
data set of forest imagery that we use to train and test our model,
followed by a detailed description of our DL model.

3.1 Data set

Hereafter, we discuss the procedure of creating our data set,
from data collection and ground-truth depth post-processing, to
data augmentation.

3.1.1 Data collection We created a new data set consisting
solely of forest images. To obtain the initial high-quality 360◦

RGB-D images, we collected data using a FARO Focus 3D
120S terrestrial laser scanner with an integrated camera. We
captured the RGB data using the integrated camera and derived
the depth channel D from the point cloud data resulting from
the scanning. The data were collected from 20 different loca-
tions around Switzerland, each of which comprised from 3 to 6
different scanner positions. We then de-noised the point cloud
data and extracted the depth information that we merged with
the RGB images from the integrated camera. That way, we
computed the initial RGB-D 360◦ images.

3.1.2 Ground-truth depths The scanner captures the RGB
information after collecting the point clouds. The latter results
in a time lag between the RGB images and the scanned data and
may cause inaccurate measurements for non-still objects (e.g.,
thin branches, leaves).

To compute reliable ground-truth depths, we filtered out the im-
precise measurements in the point clouds. To this end, we ex-
tracted the VERTICALITY feature using the Cloud Compare
software (CloudCompare, 2020). We first computed the VER-
TICALITY feature with a neighborhood radius of 0.1 m and ex-
tracted all points with values above a threshold t1 = 0.75. Next,
we re-computed the VERTICALITY feature with a neighbor-
hood radius of 0.5 m on the resulting point cloud and extracted
all points above a threshold t2 = 0.65. This series of oper-
ations removed most tree crown points from the point cloud,
leaving mainly tree stems. To also include ground points, we
first extracted the ground by applying the Cloth Simulation Fil-
ter (Zhang et al., 2016) on the initial point cloud using the flat
scene option and a cloth resolution of 0.2 m. We then merged
the tree stem points with the ground points. A 360◦ RGB visu-
alization of the filtered point cloud data is shown in Figure 2.

We extracted the depth from the filtered point cloud and used
it to compute 2D depth maps. To further minimize the amount
of remaining noise and outlier pixels, we applied the Median
filter (Huang et al., 1979) on the depth maps. For this final
de-noising, we tested also a superpixel segmentation (Achanta
et al., 2012). The impact of these filtering strategies on the
performance of our model is discussed in Section 4.

3.1.3 Data augmentation For computational reasons, we
scaled down the initial high-resolution 360◦ images. For the
sake of data augmentation, we rotated the 360◦ images ten
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Figure 2. RGB point cloud visualizations of the original TLS data and the de-noised point cloud which was further used as ground
truth. As illustrated, the filtered data contains mainly tree stem points and ground points. The second example is more challenging due
to the abundant vegetation occluding a major part of the tree stems. Hence the noticeable tree crown areas present in the filtered image.

times by a small angle along the longitude. The latter produced
new 360◦ images as rotated versions of the initial 360◦ images.
Each resulting image was then divided into two parts, overlap-
ping by 50%. Each of them was further cut into two images,
resulting in 8760 images with a resolution of 600x700 pixels
apiece. Exactly 7120 of these images formed our training data
set, whereas 1040 images remained for validation and 600 for
testing. The images in our training, validation, and test sets
come from different scanning locations. Since we focus on pre-
dicting the depth in forest environments and not designing a
universal depth estimation method, our model does not require
a huge data set. The number of images in the data set is in
line with the number of features in our network. Examples of
images from our data set are shown in the results in Section 4.

3.2 DL Model

We propose to train a model for predicting depth in monocu-
lar images in a supervised manner. To this end, we require the
knowledge of reliable and precise ground-truth depth for each
input image. The key components of our method are two-fold:
uniform depth sampling as input and ground-truth depth con-
straints in the form of loss function.

3.2.1 Depth sampling The input of our model are RGB-D
images. The depth channel includes uniformly distributed ran-
dom samples from the ground-truth data. Similar to (Ma and
Karaman, 2018), the random sampling aims to aid the perform-
ance of the model by introducing different number of inputs.
Most importantly, feeding sparse depth to the network along-
side RGB information reliably guides the depth reconstruction.
The input sparse depth contains less than 1% of the pixels in the
image. In Section 4, we show the impact of the number of input
samples on the prediction accuracy of our model.

3.2.2 Loss function The training is constrained by a loss
function consisting of three terms: depth distance L1, gradient
loss Lgrad, and normal loss Lnorm.

L1(d, d̂) =
1

n

n∑
i

|di − d̂i| (1)

Lgrad(d, d̂) =
1

n

n∑
i

|gx(di)− gx(d̂i)|+ |gy(di)− gy(d̂i)|

(2)

Lnorm(d, d̂) = 1− 1

n

n∑
i

gx(di)gy(d̂i)

∥g(di)∥∥g(d̂i)∥
, (3)

where d and d̂ are respectively the predicted depth and the
ground-truth depth, and g(gx(·), gy(·)) is the gradient function
vector. The gradient and the normal terms are added to the loss
function after the fifth epoch.

3.2.3 Network architecture Similar to (Ma and Karaman,
2018), the network architecture that we use to train our model
consists of ResNet18 (He et al., 2016) for the feature extraction,
followed by a convolution layer with a kernel size of 3x3, and
decoding layers. The decoding structure comprises 4 deconvo-
lution layers with a kernel size of 3x3 and a bilinear upsampling
layer.

3.2.4 Implementation details The network is implemented
in PyTorch and is based on Ma et al.’s software (Ma and Kara-
man, 2018). The model was trained for 120 epochs with an ad-
aptive learning rate that decreased with 10−1 every 20 epochs,
starting from an initial value of 0.1. We used a batch size of
15. Color normalization and batch normalization were carried
out. We also performed an online data augmentation consisting
of random transformations, such as color jitter, image rotation
and flipping, and depth scaling, to help the model learn fast by
feeding it various image inputs. The training took 9 hours on an
NVIDIA TITAN V GPU with 32 GB of RAM.

3.2.5 Evaluation metrics To evaluate the performance of
the models, we use three metrics. The standard Root-Mean-
Square Error (RMSE) measures the prediction error of the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1017-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1019



Figure 3. Predicted depth maps computed using a) our method,
b) (Godard et al., 2019), and c) (Ma and Karaman, 2018). Purple
areas in all depth maps signify pixels (trees) close to the camera,
whereas yellow areas illustrate more distant pixels (trees). Black

corresponds to zero-value pixels.

model, whereas δ refers to the threshold accuracy. The metric δ
measures the percentage of the pixels whose deviation from the
ground truth is less than 1.25 times. Since RMSE may be sens-
itive to outliers, we also adopt the Mean Absolute Error (MAE)
metric to assess the accuracy.

3.2.6 State-of-the-art methods We compared our method
against two state-of-the-art methods for monocular depth es-
timation. As reference methods we chose one RGB-based
method (Godard et al., 2019) and one method relying on sparse
depth as input (Ma and Karaman, 2018). Ma et al. (Ma and
Karaman, 2018) provide two pre-trained models, one with 200
samples trained on ResNet50, and one with more than 13k
samples trained on ResNet18. We tested both models and
present results from the former one as it showed a better per-
formance on our test set.

4. RESULTS AND DISCUSSION

In this section, we analyse the performance of our model for
various input parameters. We also present a visual and met-
rical comparison between our method and the state-of-the-art
approaches. Finally, we discuss limitations.

Performance assessment. The evaluation metrics for our
method and the two reference methods, computed on our test

Figure 4. Predicted depth maps computed using our method with
a) 100, b) 500, and c) 1000 input depth samples. The differences
between a) and b) are easily noticeable. The green boxes show

the more subtle differences between b) and c).

set, are shown in Table 1. We analyze the performance of our
method for a different number of input depth samples, e.g., 100,
500, and 1000. The RMSE of our model is much lower in com-
parison to the two reference models, being 2.1 m for our test
data set with 500 input samples. We make a similar observation
regarding the MAE metric, which is less than 1 m for our model
with 500 input samples. Furthermore, the threshold accuracy δ
in percentage for our model with 500 input samples is 70%.

We visually compare the outcome of our model for a differ-
ent number of input depth samples. Figure 4 shows several
examples of depth maps predicted using 100, 500, and 1000
input samples. As expected, the higher the number of input
samples, the better the visual resemblance to the ground truth.
Nonetheless, even with 100 samples, we achieve a threshold ac-
curacy of 64%, a mean error of 2.34 m, and an absolute error of
1.14 m. The best metrics are obtained for 1000 input samples
(see Table 1) which is less than 1% of the ground-truth points:
RMSE=1.97 m, MAE=0.89 m, δ=72%.

Comparison with state-of-the-art. The reference methods fail
to produce plausible results, both numerically and visually. The
RMSE of the methods in (Ma and Karaman, 2018) and (God-
ard et al., 2019) is respectively around 4 m and 4.3 m (see
Table 1). A visual comparison of the depth maps, computed
with our method and the two state-of-the-art methods for our
test set of forest images, is shown in Figure 3. The method in
(Ma and Karaman, 2018) has a good threshold accuracy of 49%
but fails visually to represent the ground truth. In contrast, the
model in (Godard et al., 2019) performs visually well but does
not manage to correctly predict the metric depth, with δ of only
15% and a significantly high MAE of 3.6 m.

Our depth maps are visually the closest to the ground truth,
exhibiting more errors at tree contours and some distant re-
gions. As observed in the error visualization in Figure 7, our
model yields accurate depths for most image parts, including
tree stems, especially for ones close to the camera and for tree
stems with medium and big diameters. The absolute error for
such close objects is below 2 m and increases with the distance
(the purple and black areas in Figure 7).

The Figure 5 confirms that, in general, the predicted values are
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Less is better Less is better Higher is better

Method Input samples RMSE [m] MAE [m] δ < 1.25

(Godard et al., 2019) - 4.33 3.58 0.15
(Ma and Karaman, 2018) 200 3.94 1.72 0.49

Our method 100 2.34 1.14 0.64
Our method 500 2.1 0.97 0.7
Our method 1000 1.97 0.89 0.72

Table 1. Evaluation performed on our test set of forest images. The metric δ represents the threshold accuracy of the model. Our
method significantly outperforms both state-of-the art methods in terms of RMSE, MAE, and δ for forest environments.

in high agreement with the ground truth, especially within up to
30 m from the camera (see the high point density along the 1:1
line). However, our model also tends to underestimate the depth
for some distant objects and overestimate it for some close ob-
jects (see also the distributions in the last column in Figure 7).

Both reference methods have difficulties to account for the
highly detailed nature of the ground truth, with the method
in (Godard et al., 2019) being visually more reliable. For the
sake of fair comparison, we note that the two reference meth-
ods are trained on data sets that contain a few forest images.
Our experiments clearly indicate the need for a model designed
specifically for forest environments. Moreover, they illustrates
the challenging nature of depth estimation from monocular im-
ages collected in such conditions.

Impact of filtering strategies. Our experiments have also
shown that the bigger the homogeneous areas in the ground-
truth depth, the higher the threshold accuracy δ. However, ho-
mogeneity in forest images cannot be guaranteed due to the
highly structured nature of the forests. One way to increase
homogeneity is through stronger filtering of the ground-truth
values. Apart from the Median filter, we tested another filter-
ing strategy: a superpixel segmentation (Achanta et al., 2012)
with 1000 segments. Table 2 shows the performance metrics for
our method with 500 input samples when different filters were
used. The superpixel segmentation outperforms the Median fil-
ter in terms of threshold accuracy. The latter comes at the price
of higher RMSE and MAE. When no filter is applied, δ drops
to 66%, MAE decreases to 0.89 m, and RMSE increases to 2.89
m, indicating the presence of significant outliers.

Limitations. Figure 6 shows two challenging for our model
test cases. For both of them, the RMSE is above 3 m. Most of
the errors exceeding 3 m come from areas containing leaves and
parts of tree crowns. The values from the TLS may be erroneous
for such non-static, unstable objects. Despite our de-noising
efforts, not all tree crowns and tree leaves were removed, as
seen from the second example in Figure 2, causing an increase
in the unreliable data and the overall error. The joint distri-
bution of the predicted depth and the ground-truth depth (last
column in Figure 6) indicates an over-estimation of the depth
for points close to the camera. These points belong to the re-
maining unfiltered tree leaves, obstructing the tree stems. Yet,

Less is better Less is better Higher is better

Filter RMSE [m] MAE [m] δ < 1.25

Median filter 2.1 0.97 0.7
Superpixels 2.35 1.08 0.73

No filter 2.89 0.86 0.66

Table 2. Performance evaluation of our method for different
filtering strategies. The metrics were computed on our test set.

Figure 5. Ground-truth depth versus predicted depth computed
on all images from our test set. The yellow and orange areas

indicate points with high density, whereas the purple and black
areas show points with low density. The gray areas represent
areas with very low density (a few depth points). The most

densely populated areas lie along the 1:1 line. Often, our model
tends to underestimate the depth of distant objects.

the points with the highest density lie along the 1:1 line. As seen
from the absolute error maps in the fourth column in Figure 6,
our depth prediction remains accurate for most tree stems and
ground points, and tree stems precisely are of prior interest to
us. However, overcoming the limitation caused by incomplete
de-noising would reduce the overall error and help our model
learn depth more efficiently.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a supervised deep-learning model
for recovering the depth of forest images. We used RGB in-
formation and sparse depth samples from a single image to re-
construct its dense 3D structure. We trained the proposed model
on our dedicated set of RGB-D forest images. We illustrated
that monocular depth estimation inside the forest environment
is challenging for reference methods. The latter is partly due
to the limited number of forest image examples in existing im-
age data sets. Our performance evaluation has shown that our
model outperforms, visually and metrically, state-of-the-art ap-
proaches when applied to our test images.

Despite the big potential of monocular depth estimation for
RGB-D forest imagery shown in this paper, there is room for
improvement. Our model may exhibit high errors at areas away
from the camera with insufficient pixel information. The sur-
rounding information may prevent the network from recog-
nizing and extracting meaningful features in such areas. Fu-
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Figure 6. Challenging cases. The predicted depth maps are
computed with our method using 500 input depth samples. The

absolute errors range in [0m, 3m]. Most yellow areas in the
absolute error maps correspond to leaves that were not filtered

out during our de-noising procedure. Such areas are
overestimated by our model, as shown in the plots in the last

column. Yet, the prediction accuracy for tree stems and ground
points remains high.

ture work would involve tackling this open question by us-
ing deeper networks and introducing appropriate resolution in-
crease strategies to better the feature extraction.
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