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ABSTRACT: 
 
Monitoring cracks opening on concrete bridges is a key aspect for structural health assessment. Digital image processing, combined 
with Unmanned Aerial Vehicles (UAVs) and photogrammetry, allows for non-contact 3D reconstruction of cracks, reducing costs 
and potential unsafe factors involved in manual inspections. This paper presents a flexible procedure based on UAV photogrammetry 
for accurate evaluation of cracks geometry, that can be implemented for periodic structural monitoring. Stereo-pair of images, 
acquired with UAVs close to the cracked surface, are used to build a scaled photogrammetric model through Structure-from-Motion. 
Cracks are detected on images by image binarization and digital image processing techniques. Thereafter, one single image is used to 
reconstruct crack 3D geometry, by back-projecting crack image coordinates on a 3D model of the object. This can be built from the 
current stereo-pair of images, or based on an existing photogrammetric model, in the case of a periodic monitoring set-up. Crack 
width is accurately estimated in 3D world. The procedure is tested and evaluated in a case study, obtaining millimetric accurate 
results, which is in line with the average ground sample distance of the images employed. Results highlight the potentials of UAVs 
and photogrammetry not only for bridge inspections and damages localization, but also for accurately evaluating cracks geometry 
and helping structural engineers to assess structure health conditions. 
 
 

1. INTRODUCTION 

Many transportation infrastructures, in particular Reinforced 
Concrete (RC) and Prestressed Concrete (PC) bridges built 
during the 20th century, are approaching the end of their life 
cycle, in Italy as well as worldwide (Chaize et al., 2019, 
ARTBA, 2022). The collapse of the Morandi Bridge in Genova 
(August 2018, Italy) is just an exemplar case of a wide problem 
of infrastructure deterioration. Within this framework, 
monitoring cracks opening in rigid RC or PC structures is a 
central aspect for periodic structure assessment, as well as it 
may foretell and, hopefully, prevent disastrous collapses. 
Traditionally, crack assessment is mainly carried out by visual 
examination by trained operators. However, inspecting large-
scale viaducts piers or beams makes it mandatory to employ 
under-bridge platforms, often involving high costs and 
disruption or inconvenience to the infrastructure service. 
Moreover, visual inspection is usually time-consuming, and it 
may be subjected to the operator experience.   
 
Digital images have been widely employed for non-contacting 
crack detection, by replicating human vision. Edge detection is 
a commonly used method to distinguish cracks boundaries from 
mainly homogenous background on RGB images (Abdel-Qader 
et al., 2003, Hutchinson et al., 2006). An alternative approach 
for crack identification is image binarization, that implies 
transforming the RGB image into a binary image with one value 
at crack pixels (Kim et al., 2017). Cracks, in fact, are supposed 
to be associated to dark pixels, while the background is 
typically bright. Morphological operations can be then used to 
enhance crack identification, by exploiting the connectivity of 
the crack pixels (Tanaka, et al., 1998). An overview of image 
processing techniques for crack detection was reported by 
Jahanshahi et al. (2009). The detected crack pixels can be 
further divided into a skeleton (a chain central pixels 
representing crack mean direction) and edges. 
 

In recent years, a rising number of research activities has 
involved the use of Convolutional Neural Networks (CNN) and 
machine learning techniques to classify images and segment 
those containing cracks (Cha et al., 2017, Kim et al., 2019, Rao 
et al., 2020, Li et al., 2020, Kim H. et al., 2022). However, 
CNN must be properly trained with a conspicuous training set 
of reference images, and they are most effective when dealing 
with large dataset of images. Additionally, most of the research 
was aimed at recognizing the deteriorations on the images, but 
just few works focused on their metric reconstruction. 
 
The rapid technological advances of Unmanned Aerial Vehicles 
(UAVs) have opened remarkable opportunities for infrastructure 
inspections, as they allow images to be taken in proximity to the 
crack surface, also with large-scale infrastructure. Several 
example of usage of UAVs for crack investigation and metric 
reconstruction can be found in recent literature (Rau et al., 
2017, Kim et al., 2017, Liu et al., 2019). Moreover, UAVs, 
combined with modern photogrammetry and Structure-from-
Motion (SfM), allowed for building accurate 3D models, mesh 
models, orthophotos of observed infrastructure (Hackl et al., 
2018, Pinto et al., 2020). Recently, Kim et al. (2022) developed 
a compact and lightweight stereo-system, composed of one 
wide-angle lens and a telephoto lens, to accurately quantify 
cracks and with the aim of mounting it onboard UAVs for large-
scale infrastructure monitoring. 
 
The aim of this paper is presenting a simple and flexible image-
based methodology to derive metric information about cracks in 
RC/PC structures. Images are acquired by UAVs, allowing for 
inspecting large infrastructure such as highway bridges or 
viaducts. Crack information is extracted from the images by 
digital image processing techniques, and crack 3D metric 
information is derived by a photogrammetric approach. The 
procedure is validated on a field test and the results assessed by 
comparing them with independently acquired reference data. 
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2. THE METHOD 

The proposed procedure, implemented in MATLAB®, is 
composed of 3 main parts (Figure 1): crack detection on images; 
SfM scene reconstruction; crack 3D reconstruction. Stereo-pairs 
of images are acquired with UAVs close to the cracked surface, 
and they are employed to build a photogrammetric model by 
SfM. On images, cracks are detected by image binarization and 
morphological operations, by exploiting the connectivity of 
pixels in the cracked regions to identify the skeleton. Crack 
edges are further detected with edge-detection algorithms. 
Thereafter, one single image is used for crack metric 
reconstruction, by back-projecting crack skeleton and edges on 
a 3D model of the object. Crack width is estimated in 3D world. 
 
While stereo-pair of images are used to build a 3D model 
through SfM, one single, oriented, image is used for crack 3D 
reconstruction, by back-projection pixel information to a 3D 
model. This is motivated by the fact that crack detection is 
based on image binarization, and hence, on modelling the crack 
with a chain of central pixels (i.e., the skeleton) and two edges. 
Hence, finding homologous skeleton and edges points on 
binarized images for restituting them by triangulation can be 
troublesome. The usage of one image for 3D reconstruction 
overcomes this limit. Moreover, this approach enables the 
possibility to set up a framework for multi-epochs monitoring of 
severe cracks. An accurate 3D model of the bridge, in fact, can 
be built at the first epoch (e.g., by UAV photogrammetry), and 
then employed to orient subsequent images of the same crack, 
in order to compute its opening breadth and evaluate the 
damage evolution in time. 

 
Figure 1. Flow chart of the procedure illustrated in this paper 

for crack metric evaluation.  
 

2.1 Working reference systems 

A crucial step is to define the working reference systems. As 
widely known in photogrammetry and computer vision, an 
object in the Object Reference System (ORS, identified with 
capital letter 𝑋𝑋𝑋𝑋𝑋𝑋 in Figure 2) is mapped with a rigid-body 
transformation into the Camera Reference System (CRS, 
𝑋𝑋𝑘𝑘 𝑌𝑌𝑘𝑘 𝑍𝑍𝑘𝑘 ), then to the image plane (cxcy) by a central 

projection and finally to the sensor (sxsy) by an affine 
transformation (Förstner et al., 2016).  
 
Concerning the ORS choice, two different approaches are 
considered.  When facing the problem of crack opening in RC 
structure, it may be enough to estimate crack geometry, and thus 
to scale the photogrammetric model, by measuring one (or 
many) distance in real world and on images. Therefore, when no 

 
Figure 2. Scheme of the coordinate reference systems involved 

in the projection process. Letters (XYZ) denote the object 
reference system; (kXkYkZ) is the camera reference system;  
(cxcy) is the image coordinate system and (sxsy) is the sensor 
reference system (image adapted from Förstner et al., 2016).  

 
Ground Control Points (GCPs) are provided, the ORS is fixed to 
the CRS of the first camera ( 𝑋𝑋𝑘𝑘 𝑌𝑌𝑘𝑘 𝑍𝑍𝑘𝑘  in Figure 2), with the Z 
axis pointing towards the camera viewing direction. This 
reference system will be hereafter called Local Camera Object 
Reference System (LCORS).  On the other hand, if a periodical 
monitoring of the crack opening is required, referencing the 
photogrammetric model in a permanently materialized World 
Reference System (WRS) becomes mandatory. This can be 
either a local cartesian system or a cartographic reference 
system. To this end, a similarity transformation from the 
LCORS to the WRS must be estimated based on a set of GCPs. 
 
To define a general and flexible workflow, this paper proposes 
to work in a LCORS for stereo-pair orientation and crack 3D 
reconstruction. Afterwards, the model can be either scaled or 
georeferenced in an WRS, depending on the aims of the specific 
work. For the latter case, a total station can be employed to 
derive GCPs world coordinates on hardly accessible bridges. 
Alternatively, a UAV-based photogrammetric model of the 
whole structure, with a sufficiently high image Ground Sample 
Distance (GSD), can be built with a traditional SfM workflow 
(Pinto et al, 2020). Distinctive features can be extracted from 
the photogrammetric model and used as GCPs. 
 

2.2 Crack Detection 

Before crack detection, images are converted to grayscale and 
undistorted, to remove non-linear distortions and work with an 
affine camera model (Förstner et al., 2016). To improve 
binarization results, images are pre-processed by using 
histogram equalization and bi-dimensional Wiener filter (Kumar 
et al., 2010). Moreover, a mask is manually drawn on the 
images to roughly identify the cracked area and help the 
binarization process. The masked images are then binarized 
with the adaptive Bradley’s method (Bradley et al., 2007), 
which uses a locally adaptive thresholds for each pixel by 
computing the local mean intensity around the pixel 
neighbourhood. Morphological operators, such as closing and 
filling operators, are then used to reduce noisy crack pixels and 
identifying a realistic crack shape, by exploiting pixel 
connectivity proprieties (Tanaka et al., 1998). 
 
To derive crack skeleton, a skeletonization algorithm based on 
the medial axis transform (Lee, 1982) was employed. Finally, 
the crack edges were extracted by using the Canny algorithm 
(Canny, 1986) on binarized images. Since cracks edges are 
detected on binarized images, the different edge detection 
algorithms, such as Canny, Sobel, or Prewitt (Maini et al., 2009) 
provide comparable results. 
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Once skeleton and edges are detected, for each skeleton pixel, 
the closest edge pixels are searched, as it will be necessary for 
computing the width of the crack (Figure 3). To this end, for 
each skeleton pixel, a local linear trend is computed on the 
skeleton chain within a moving 5 × 5 research window. The 
two correspondent edge pixels are searched along the direction 
perpendicular to the local skeleton trend. 

 
Figure 3. Scheme of the modelled crack geometry, with the 
central skeleton chain and the edges. For each point of the 

skeleton, the two corresponding edge pixels are searched on the 
perpendicular direction to the local skeleton trend.  

 
2.3 SfM and 3D scene reconstruction 

To estimate cameras relative orientation and reconstruct a 3D 
model of the scene, a traditional SfM approach was pursued. 
The main steps of the procedure are illustrated in Figure 4. 
Interesting points and their descriptors were extracted by Scale-
Invariant Feature Transform (SIFT) operator (Lowe, 2004), 
thanks to its well knows robustness to scale, rotations, 
perspective and illumination changes. To this end, the Matlab 
toolbox VLFEAT (Vedaldi et al., 2010) was employed. Matches 
between interesting points were then selected by minimizing the 
squared Euclidean distance between descriptors. False matches 
were rejected by exploiting the coplanarity constrain given by: 
 

𝐱𝐱′TE 𝐱𝐱′′  =  0      (1) 
 

where E is the Essential Matrix (as the camera interior 
orientation is known), 𝐱𝐱′ and 𝐱𝐱′′ are the vectors of the 
normalized image coordinates of the homologous points, 
respectively on the first and on the second image. The E matrix 
was estimated from homologous points by a five-points method 
(Stewénius et al., 2006), combined with RANSAC (Fischler and 
Bolles 1981) to improve robustness. 

 
Figure 4. Flow chart of SfM and crack reconstruction process.  

 
Figure 5. Camera exterior orientation and sparse point cloud. 

The axis XYZ of the LCORS are marked respectively with red, 
green and blue segment. 

 
Based on the estimated E matrix, the location and orientation of 
the second camera in LCORS was solved iteratively by least-
squares, by using the Computer Vision Toolkit developed by 
Fusiello (Fusiello, 2018) (Figure 5). The location of the second 
camera was determined up to a scale-factor, which is estimated 
by using one (or many) distance in real world. The 3D 
coordinates in LCORS of homologous points were 
reconstructed by triangulation, producing a sparse point cloud.  
 

2.4 Crack back-projection on the 3D model 

Given a continuous 3D model of the object (e.g., wall, bridge 
beam or pier) and crack image coordinates on one image, crack 
3D coordinates can be derived by intersecting the projective 
rays with the model. If a crack lays on a flat surface, this can be 
modelled as plane, and crack 3D coordinates can be determined 
through a ray-plane intersection (Liu et al., 2016). For non-flat 
surfaces (e.g., bridge piers), a triangulated mesh model must be 
used, and a ray-mesh intersection problem must be solved (Liu 
et al., 2019). The ray-plane intersection method is easier and of 
faster computation, but it clearly works only on flat surfaces. 
The ray-mesh intersection method has a wider applicability, but 
it requires the construction of a triangulated mesh model of the 
object. In this work, both methods were tested. 
 
2.4.1 Crack back-projection by ray-plane intersection 
 
Given a straight-line preserving perspective camera, the 
projection of the world point 𝐗𝐗 in homogeneous coordinates to 
the point 𝒙𝒙 on the sensor is given by (2) (Förstner et al., 2016): 
 

𝐱𝐱 = K[R | 𝐭𝐭] 𝐗𝐗 = P 𝐗𝐗          (2) 
 

where R is the camera rotation matrix and 𝐭𝐭 is the camera 
translation vector. K is the calibration matrix, containing the 
interior orientation parameters 
 

K  =   �
𝑐𝑐 𝑐𝑐𝑐𝑐 𝑢𝑢0
0 𝑐𝑐(1 + 𝑚𝑚) 𝑣𝑣0
0 0 1

�         (3) 

 
where 𝑐𝑐 is the principal distance, 𝑢𝑢0 and 𝑣𝑣0 are the coordinates 
of the principal point, 𝑚𝑚 and 𝑠𝑠 are respectively scale difference 
and shear parameters. The projection matrix P can be written as 
 

P  =  K[R | 𝐭𝐭]  =  [P1:3 | 𝐏𝐏4]            (4) 
 

As the projective mapping is not invertible, with one camera 
only and starting from (2), it is possible to derive 
 

 𝐗𝐗 =  𝐗𝐗𝟎𝟎  +  λ(KR)−1 x     (5) 
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Figure 6. Schematic view of the ray-plane intersection 

 
that describe the direction of the projective ray from the camera 
perspective centre  𝐗𝐗𝟎𝟎 to the 3D point 𝐗𝐗. To compute the world 
coordinates of 𝐗𝐗, more images are required, and the problem is 
solved by triangulation. Alternatively, the 3D point 𝐗𝐗 can be 
determined from just one image as the intersection of the 
perspective ray, starting from 𝐗𝐗𝟎𝟎 and passing through the 
projection x on the image, with the actual surface of the object. 
In most bridge beams or abutments, the surface on which cracks 
lay can be modelled as a plane. Thus, the problem may be 
reduced in finding 𝐗𝐗 as the intersection of the projective ray 
with the wall surface plane (Figure 6). The projective ray can be 
written as a line, in Plücker’s coordinates, passing through the 
camera perspective centre and the infinite-far away point  𝐗𝐗∞ 
along the direction λ(KR)−1𝐱𝐱. The camera projection centre is 
given by the null space of the projection matrix P as: 
 

𝐗𝐗𝟎𝟎 =   − P1:3
−1𝐏𝐏4 =  −(KR)−1K𝐭𝐭               (6) 

 
It should be recalled that given two arbitrary points 𝐕𝐕 and 𝐖𝐖 
with coordinates:  
 

        𝐕𝐕 = [𝑉𝑉1 𝑉𝑉2 𝑉𝑉3 𝑉𝑉4 ]T = [𝑽𝑽O 𝑉𝑉h]T                (7) 
𝐖𝐖 = [𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 ]T =  [𝑾𝑾O 𝑊𝑊h]T                (8) 

 
(where 𝑉𝑉h and 𝑊𝑊h denote the homogenous parts of the vectors, 
while 𝑽𝑽O and 𝑾𝑾O are the inhomegenous or Euclidean parts), the 
line L passing through them can be written in Plücker’s 
coordinates as: 
 

𝐋𝐋 =  [L1 L2 L3 L4 L5 L6]T = �𝑳𝑳h𝑳𝑳O
� =  �Vh𝑾𝑾O −  Wh𝑽𝑽O

𝑽𝑽O ×  𝑾𝑾O
�    (9) 

 
The two points are the projective centre 𝐗𝐗𝟎𝟎 and the infinite-far 
away point  𝐗𝐗∞. Moreover, considering a generic plane 𝐀𝐀 with 
homogenous coordinates: 
 

𝐀𝐀 =  [A B C D]T =  [𝑨𝑨h 𝐴𝐴O]T        (10) 
 

the coordinates of the intersection point 𝐗𝐗 are then given by: 
 

𝐗𝐗 = 𝐋𝐋 ∩ 𝐀𝐀 =  �
𝐴𝐴o𝐼𝐼 −𝑆𝑆(𝑨𝑨h)
−𝑨𝑨hT 𝟎𝟎T �       (11) 

 
where 𝑆𝑆(𝑨𝑨ℎ) is the skew-symmetric matrix induced by the 
vector 𝑨𝑨ℎ (Förstner et al., 2016). Computing the intersection of 
all the crack points (edges and skeleton) detected on one image 
with the mean-fitting plane of the wall surface, a scaled and 
geometric-consistent 3D point cloud of the crack is obtained. 

 
Figure 7. Ray-triangle intersection (credits: Liu et al., 2019) 

 
2.4.2 Crack back-projection ray-triangle intersection  
 
If the cracked surface is not flat, this must be modelled with a 
triangulated mesh model, and a ray-mesh intersection problem 
must be solved (Figure 7). To this end, the algorithm proposed 
by Möller et al. (1997), and implemented in the 
TriangleRayIntersection Matlab toolkit developed by Jarek 
Tuszynski, was employed. Requirements are a triangulated 
mesh surface, the ray origin and direction. The camera centre of 
projection 𝐗𝐗𝟎𝟎 is the ray origin; the direction of the projective 
ray is described by λ(KR)−1 𝐱𝐱. If more than one intersections 
are found, only the first intersection point is taken (Figure 7). 
 
Despite the ray-mesh intersection approach was tested to derive 
a general workflow, in this paper the focus will be mostly on the 
ray-plane intersection method. Many bridge beams or 
abutments, in fact, can be modelled as a plane, and the method 
is simpler and of faster computation. 
 

2.5 Crack width metric estimation 

Once the coordinates of the crack edges and skeleton are 
derived in the LCORS, the crack width is estimated. To this 
end, for each point of the skeleton, the 3D Euclidean distance 
between the corresponding two edge points was computed 
(Figure 8). The correspondence of skeleton and edges points 
was established on the images, as described in Section 2.2, and 
it clearly holds also in the LCORS. 
 
The described procedure needs just one image to compute the 
crack width, as the 3D coordinates of the crack points are 
derived by intersecting the projective rays with a plane or a 
mesh. Nevertheless, a stereo-pair of images is required to 
compute the external orientation of the cameras (see Section 
2.4) and the point cloud from which the plane or the mesh is 
built. Therefore, the crack edge and skeleton points can be back-
projected from each of the two cameras to overcome occlusion 
problems, and to check the crack reconstruction consistency. 
Overall, the image taken with the image plane more parallel to 
the wall surface is considered as the more reliable.  

 
Figure 8. 3D crack skeleton reconstructed by the ray-plane 
intersection method. For each skeleton point, the colorscale 
represents the crack width computed as the 3D Euclidean 

distance between the closest edge points. 
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3. THE CASE STUDY 

3.1 Experiment setup and instruments 

As test field for the proposed method, the Ponte di Tuna bridge 
on river Trebbia was selected (Figure 9a). The bridge was 
located between the Provincial Roads n. 28 and n. 40 south of 
Piacenza (44°57'51" N, 9°35'26" E - Italy). It was 684 m long 
and crosses the Trebbia River. It consisted of 19 spans of 36 m. 
The bridge deck was set on 5 PC beams with a height of 2.10 m, 
which support a 0.2 m-height RC slab. The bridge was built in 
1980 and it was renovated in 2011. 
 

 
    (a)          (b) 

Figure 9. (a) Ponte Tuna used for the validation test. (b) The 
crack present on the West abutment. 

A wide crack present on the West bridge abutment (Figure 9b) 
was chosen as case study for this paper. The choice was 
motivated by the easy accessibility of the area, which allowed 
several markers to be placed on the wall surface for error 
assessment. A local cartesian was materialized by a multi-
station Leica MS60, and 16 plastic targets, attached with a 
double-side tape on the wall, were measured with millimetric 
accuracy (Fagandini et al., 2017).  
 
To acquire crack images, a commercial quadcopter DJI Matrice 
210 V2 was used. It was equipped with a DJI Zenmuse X5S 
camera with 20Mpx 4/3’’ CMOS sensor and a DJI MFT 
15mm/1.7 ASPH lens. The camera was mounted on a 3-axis 
gimbal. Several images of the crack were acquired by manually 
flying the UAV at a distance of ~4 𝑚𝑚 from the abutment 
surface, to have a Ground Sample Distance (GSD) of ~1 𝑚𝑚𝑚𝑚. 
Two slightly convergent images, image A taken from the left-
hand side and image B taken from the right-hand side (Figure 
10), were then selected for testing the procedure. 
 

   
(a)    (b) 

Figure 10. Stereo-pair of images used in the test: (a) image A 
(left-hand side); (b) image B (right-hand side).  The two images 

are not undistorted yet.  
 

3.2 Camera calibration and image distortion correction 

Before processing the images for detecting the cracks and 
reconstructing the scene, non-linear lens distortions must be 
removed from the images. To this end, the camera was pre-
calibrated by setting up a calibration-field with 12 GCPs, placed 
on ground and measured with millimetric accuracy by a multi-
station Leica MS60. A set of 48 convergent images was 
acquired by flying over the calibration field (Ioli et al., 2021). 

 
Figure 11. Reference photogrammetric model of the bridge 

abutment built by Agisoft Metashape. Blue rectangles are the 
oriented cameras, while the flags denote the GCPs. 

The procedure was similar to the well-known checkerboard 
calibration method (Zhang, 2000), but it allowed for 
maintaining an image scale comparable to that kept during the 
actual bridge survey. 
 

3.3 Reference photogrammetric model 

A reference photogrammetric model was built by using the 
commercial SfM software Agisoft Metashape 1.8.1. To this end, 
17 images, acquired from different point of view (Figure 11), 
were oriented by solving a Bundle Block Adjustment (BBA) 
based on 12 Ground Control Points (GCPs), with a prior 
accuracy of 1 𝑚𝑚𝑚𝑚. The same camera interior orientation 
parameters, estimated as in Section 3.2, were used as initial 
values in the BBA. Due to the high number of GCPs available 
and a rather good acquisition geometry, a self-calibration was 
carried out (James et al., 2020).  
 
The quality of the photogrammetric block was assessed based 
on the 4 remaining targets, used as Check Points (CP), resulting 
in a global RMSE =  0.7 𝑚𝑚𝑚𝑚, evenly distributed in the three 
directions. A photogrammetric dense point cloud was then built 
by using full-resolution images (i.e., Ultra-high Quality 
parameter in Metashape), and mild depth maps filtering, 
resulting in a point spacing comparable to the average GSD of 
the images (i.e., ~1 𝑚𝑚𝑚𝑚). This photogrammetric dense cloud 
will be the reference for assessing the estimated crack width. 
 

3.4 Crack edge and skeleton detection 

As first step of the workflow, images were undistorted, by using 
the calibrated interior orientation, to correct non-linear 
distortions. Afterwards, the algorithm described in Section 2.2 
was employed to detect crack edges and skeleton on both image 
A and image B. Moreover, for each skeleton pixel on both the 
images, the corresponding edge pixels were searched along the 
perpendicular direction to the skeleton. The crack skeleton 
chain and edges detected on image A are marked in Figure 12. 
The algorithm for detecting crack skeleton and edges well 
performed for most of the crack, both where the crack is 
significantly large (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ > 1 𝑐𝑐𝑐𝑐) and for thinner cracks 
(3 𝑚𝑚𝑚𝑚 < width <  1 𝑐𝑐𝑐𝑐). As the average GSD of the images 
was ~1 𝑚𝑚𝑚𝑚, the thinnest detectable crack width was considered 
as 3 × 𝐺𝐺𝐺𝐺𝐺𝐺 =  3 𝑚𝑚𝑚𝑚 (Liu et al., 2019). However, in some 
areas such as those represented in the magnified cut-out 
windows 4 and 5 of Figure 12, the crack skeleton and edges 
were not properly recognized. In the area of cut-out 4, the 
algorithm failed because of the presence of some small plants 
grown into the crack. In the area of cut-out 5, on the other hand, 
the crack had some very thin areas (≤ 1 𝑚𝑚𝑚𝑚), where the edge-
contrast was weak, and thus the binarization algorithm broke the 
skeleton and edge chains.  
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Figure 12. Crack skeleton pixel chain (red dots) detected from 
image A, superimposed to the undistorted RGB image A. In the 

five magnified cut-outs views (1-5), the detected edges and 
skeleton are represented respectively with green and red dots.  

The results obtained from image A and image B were overall 
comparable and the crack skeleton and edges were successfully 
detected in most of the images. On image A, 80% of the crack 
length was detected, while this percentage slightly reduced to 
73% on image B. Some discrepancies in crack edge detection 
between image A and image B occurred, mostly limited to few 
pixels, and located in tough areas, such as those with vegetation 
growth in the crack, with very small crack breath, or with 
shadows or occlusions. These differences may clearly lead to 
differences in crack reconstruction, when back-projecting crack 
information from the two images to the 3D model. To overcome 
this problem, the image acquired with an optical axis more 
perpendicular to the wall surface (i.e., image B, in this case 
study) will be considered as the most reliable, as occlusions or 
shadows issues are less severe. 
 

3.5 3D crack reconstruction 

Image A and image B were then oriented relatively by 
procedure illustrated in Section 2.3, and the sparse point cloud 
was computed by triangulating homologous points in the 
LCORS. The model was scaled by using the distance between 
two targets, measured by the multi-station Leica MS60, with 
millimetric accuracy. To speed up the procedure, no dense point 
cloud was computed at this stage, as it was considered not 
strictly necessary if enough and homogeneously distributed 
homologous points were detected on the image frames. 
 
A global mean-fitting plane was fitted on the entire point cloud 
and the image coordinates of the crack edge and skeleton were 
back-projected on this plane, by applying the method discussed 
in section 2.4.1. However, as a RC wall surface has usually 
some roughness and it is not perfectly homogeneous, a global 
mean-fitting plane may be a poor surface approximation for the 
whole crack. Therefore, a second iteration was carried out: for 
each point of the back-projected crack skeleton, a subset of the 
point cloud was extracted by looking for its 30 nearest 
neighbours, based on the Euclidean distance. A local-mean-
fitting plane was fitted again on this point cloud subset, and 
skeleton and edges image points were back-projected again on 
this local-mean-fitting plane. The whole procedure was repeated 
for both image A and image B. Finally, once crack and skeleton 
edges points were back-projected in the LCORS, the crack 
width was estimated for each point of the skeleton, by 
computing the 3D Euclidean distance between the two 
correspondent edge points.  

  From image A  From image B 
  X Y Z  X Y Z 

R
-P

 Mean [mm] 0.3 0.4 -0.1  0.1 0.4 -0.1 
Std [mm] 1.1 1.3 0.8  0.8 1.3 0.6 

RMSE [mm] 1.2 1.4 0.8  0.8 1.4 0.6 

R
-M

 Mean [mm] 0.2 0.1 -0.2  0.2 0.1 -0.1 
Std [mm] 0.8 0.5 0.8  0.9 0.5 0.6 

RMSE [mm] 0.9 0.5 0.9  0.9 0.5 0.7 
Table 1. Statistics of the differences between the back-projected 

coordinates of 10 targets with those measured on the field by 
the multistation Leica MS60. The back-projection method is 

marked with acronym R-P for ray-plane intersection, and R-M 
for ray-mesh intersection. 

 
To assess the ray-plane intersection procedure, targets placed on 
the wall surface were employed. A Helmert transformation from 
the LCORS to the WRS was estimated based on 4 targets 
(global RMSE computed on the remaining 10 targets of 
0.6 𝑚𝑚𝑚𝑚). The ray-plane intersection procedure was carried out 
in the WRS, starting from the image coordinates of the 
remaining 10 targets. The estimated 3D coordinates were then 
compared with those measured by the multi-station Leica MS60 
and the results are listed in Table 1. The RMSE was in the order 
of the millimetre for the 3 coordinates, which was comparable 
with the images GSD and with the accuracy of the reference 
measurements obtained with the multi-station. Moreover, no 
significant differences between the back-projected coordinates 
of the targets obtained from image A and B were found. 
 
Additionally, the ray-mesh intersection method (see Section 
2.4.2) was tested. To build the triangular mesh model, the 
software Agisoft Metashape was employed. Image A and image 
B were imported in Agisoft Metashape, maintaining the 
cameras exterior and interior orientation fixed to those obtained 
by roto-traslating the cameras from the LCORS to the WRS 
(i.e., the same configuration as that used to validate the ray-
plane intersection method was kept). The mesh model was 
derived directly by computing depth maps on full resolution 
images, and then exported to Matlab again. The 
TriangleRayIntersection algorithm, developed by Jarek 
Tuszynski, was employed to derive the 3D coordinates of the 10 
targets, starting from image coordinates of image A and image 
B.  The differences between the estimated coordinates and those 
measured by the multi-station Leica MS60 are listed in Table 1. 
As it could be expected, the result of the ray-mesh intersection 
procedure is slightly better than that obtained by the ray-plane 
intersection method (sub-millimetric RMSE for ray-mesh 
method), but still, it is in line with both the image GSD and 
accuracy of the target measurements. It can be concluded that if 
the wall surface is a plane, the two methods give comparable 
results. The ray-mesh intersection method, however, becomes 
mandatory when cracks lay on non-planar surfaces.  
 

3.6 Crack width estimation and validation of the results 

The crack width was estimated as described in Section 2.5, and 
associated to each skeleton point, so that it can be easily 
visualized as a 3D point cloud (Figure 13).  
 
To validate the results of the crack width estimation, the 3D 
point clouds of skeleton and edges were roto-translated into 
WRS by a Helmert transformation estimated based on 4 targets 
(see Section 3.5). The point clouds were then compared with the  
reference photogrammetric dense cloud obtained by Agisoft 
Metashape (see Section 3.3), by using the open-source software 
Cloud Compare (Cloud Compare, 2022). 
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Figure 13. 3D skeleton point, colorized based on the estimated 

crack width. The skeleton points are superimposed to the 
photogrammetric point cloud as reference. Next to the colorbar, 

the histogram shows the distribution of the estimated width 
values. 

To quantify the width estimation error, 11 skeleton points were 
selected, and the crack width was manually measured on the 
photogrammetric reference cloud. Among the 11 validation 
points, 5 were selected where the crack width was ranging 
between 3 𝑚𝑚𝑚𝑚 and 1 𝑐𝑐𝑐𝑐 (i.e., narrow crack), while the 
remaining 6 where the crack width was between 1 𝑐𝑐𝑐𝑐 and 2 𝑐𝑐𝑐𝑐 
(i.e., wide crack). The statistics of the differences, computed for 
narrow and wide cracks separately, are summarized in Table 2. 
The global RMSE was around 1 𝑚𝑚𝑚𝑚, that is in line with the 
average image GSD. 
 

 Image A  Image B 
 Narrow Wide   Narrow Wide 

Mean [mm] 0.7 1.0  0.7 0.7 
Std [mm] 0.6 0.7  0.4 0.9 

RMSE [mm] 0.9 1.2  0.8 1.1 
Table 2. Statistics of the differences between the estimated 
crack width, respectively from image A and image B, with 

manual measurements obtained from the reference 
photogrammetric point cloud on the same positions. 

Measurements are divided in two groups: Narrow group refers 
to narrow crack segments with  3 𝑚𝑚𝑚𝑚 < width < 1 𝑐𝑐𝑐𝑐; Wide 

refers to wide crack segments with 1 𝑐𝑐𝑐𝑐 < width < 2 𝑐𝑐𝑐𝑐. 
 

4. CONCLUSIONS 

This paper presents an image-based procedure for metric 
reconstruction of cracks in RC/PC structures, by acquiring 
stereo-pair of images with UAVs, enabling the inspection of 
large infrastructures such as highway bridges or viaducts.   
 
Cracks are identified on images by using image binarization and 
edge detection techniques, by exploiting pixel crack 
connectivity to identify the skeleton. Crack edges are further 
detected with edge-detection algorithms. This well-established 
method allows for a good identification of crack features in 
most of the image (between 70% and 80% of the crack length, 
in the performed study case), with crack misdetection in areas 
with shadows or occlusions, vegetation growth within the crack 
or with very thin breadth. 
 
UAV-based stereo-pair of images, from different point of view 
are employed to build a photogrammetric model by SfM. The 

model is built up to a similarity transformation. To retrieve 
metric information from the model, at least one (accurate) 
distance measurement is required, but no GCPs are in principle 
needed. To georeference the RC damage on a structure or to set 
up an image-based monitoring system to observe the evolution 
in time of a crack, GCPs are required. These can be acquired 
either with a total station or from an existing UAV 
photogrammetric model of the whole structure, which makes 
the procedure suitable for large infrastructure monitoring.  
 
Crack 3D metric reconstruction is then carried out by back-
projecting crack skeleton and edges, detected on one image, on 
a 3D model. This can be either a plane, when dealing with 
planar wall surfaces, or a triangular mesh model. When 
convergent images are used, the one with the image plane more 
parallel to the wall surface should be considered as the most 
reliable for skeleton and edges detection and crack 3D 
reconstruction.  
 
The procedure was tested in a field investigation on a large 
crack present on a bridge abutment. The choice was driven by 
the possibility to place on the structure several reference target 
for conducting an error analysis. Images were acquired with a 
camera mounted on a quadcopter, with an average GSD of 
1 𝑚𝑚𝑚𝑚 (flying at a distance of ~4 𝑚𝑚 from the abutment surface).  
The results of the test highlighted that cracks with breadth up to 
three times the average GSD were properly reconstructed with 
millimetric accuracy, which was comparable to the average 
GSD of the images. If smaller cracks have to be detected with 
sub-millimetric accuracy, longer focal lengths and shorter 
working distances are required.  
 
Future development of the procedure consists of improving 
crack detection methods, e.g., by exploiting the use of properly 
trained CNN, such as ResNet, for identifying cracks on images 
on a larger image dataset, with limited operator supervision. 
Moreover, more than two images may be used for sparse and 
dense reconstruction through SfM. This would allow for 
acquiring both convergent images, for improved scene 
reconstruction robustness, and images parallel to the wall 
surface for better crack skeleton and edges detection. Finally, 
the procedure may be extended, including additional surface 
structural defects (e.g., steel corrosion, spalling, humidity 
stains) to be detected on images.  
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