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ABSTRACT: 

 

Determination of discontinuities in rock mass requires scan-line surveys performed in in-situ that can reach up to dangerous and 

challenging dimensions. With the development of novel technological equipments and algorithms, the studies related to rock mass 

discontinuity determination remain up-to-date. Depending on the development of the Structure from Motion (SfM) method in the 

field of close-range photogrammetry, low-cost cameras can be used to produce 3D models of rock masses. However, the 

determination of rock mass discontinuity parameters must still be carried out manually on these models. Within the scope of this 

study, a Convolutional Neural Network (CNN) architecture is proposed to identify the discontinuities automatically as the first step 

for fully automated processing. The Kızılcahamam/Güvem Basalt Columns Geosite near Ankara, Turkey was determined as the study 

area. The orthophoto of this study area was produced using close-range photogrammetric methods and the training data was 

produced by manual mensuration. The dataset consists of labeled binary masks and images containing corresponding Red-Green-

Blue (RGB) bands. Furthermore, the amount of data was increased by applying augmentation methods to the dataset. The U-Net 

architecture was used to detect rock discontinuities based on the produced orthophoto. The preliminary results presented here reveal 

that the discontinuity determination capability of the proposed method is high based on the visual assessments, while problems exist 

with image quality and discontinuity identification. In addition, considering the small size of the training dataset, the accuracy of the 

model would increase when a larger dataset could be employed. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

The rock mass classification systems are mainly used for the 

determination of the strength and deformability characteristics 

of rock masses. The studies on the rock mass classification 

include Rock Mass Rating (RMR) system (Bieniawski, 1989), 

Q system (Barton, 2002), and Geological Strength Index (GSI) 

(Hoek and Brown, 1997). The parameters defined in these 

studies are mainly related to discontinuities in rock masses. In 

this respect, accurate determination of the discontinuities and 

calculating their orientations are essential for engineering 

structures constructed in and on rock masses and monitoring 

their stability.  

 

The discontinuities constitute the basis of works such as 

rockfall, tunnelling, and slope stability, etc. Compasses have 

conventionally been used for the measurement of discontinuity 

orientation during fieldwork. The field-based approach has 

several difficulties and limitations caused by environmental 

conditions and forms possible threats to human lives resulting 

from manual operation in inaccessible, hazardous, or dangerous 

regions. In the light of technological developments, geometric 

and semantic information about rock masses can be obtained 

without the need for physical intervention or access. Remote 

sensing instruments and methods have the advantage of 

producing information safely when compared with in-situ 

studies. 

Over the last decade, Light Detection and Ranging (LIDAR) 

(e.g., Riquelme et al., 2014; Singh et al., 2021; Chen et al., 

2017) and optical photogrammetric methods (e.g., 

Bogdanowitsch et al., 2022, Winkelmaier et al., 2020) have 

been widely used in the detection of rock mass discontinuities. 

Although to LiDAR technology has the capability to produce 

accurate models, it has high costs in terms of hardware, 

software and computation, which negatively affect its 

widespread use. The development of the Structure from Motion 

(SfM) method in the field of close-range photogrammetry 

enabled the use of images obtained from low-cost cameras, 

which eliminate such problems to a broad extent. Compared to 

LiDAR equipment, photogrammetric systems have a lower cost 

(Cawood et al., 2017). Advances in Unmanned Aerial Vehicle 

(UAV) and camera equipment have helped to reduce costs and 

ensured the widespread use of these systems. Moreover, the 

orientation of rock discontinuities can be determined by using 

overlapping images obtained with mobile phone cameras 

(Ozturk et al., 2019). While precise camera parameters and 

image orientation data are required in the workflow of the 

traditional photogrammetric approaches, the SfM method can 

solve these parameters by using a large number of overlapping 

images.  

 

The Deep Learning (DL) (LeCun et al., 1998) and in particular 

the Convolutional Neural Networks (CNN) have offered new 

possibilities in the field of image processing. They become 
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available for researchers in a wide range of applications thanks 

to the databases such as ImageNet (Deng et al., 2009). 

Additionally, with popular CNN architectures such as U-Net 

(Ronneberger et al., 2015), AlexNet (Krizhevsky et al., 2012), 

VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 

2016), etc.; the semantic segmentation (Mei et al., 2020), object 

recognition (Girshick et al., 2014) and image classification 

studies can be carried out. CNNs also have the potential to 

detect rock discontinuities based on images obtained with aerial 

or close-range photogrammetry techniques. 

 

With its known success in biomedical applications and in the 

field of image segmentation, U-Net was used also in crack 

detection studies (Hamishebahar et al., 2022). Liu et al. (2019) 

completed the crack detection work with high accuracy via U-

Net. In their studies, it has been seen that U-Net has achieved a 

successful result despite using small datasets compared to other 

architectures. Furthermore, it has been observed that CNN 

architectures unearth more successful results than edge 

detection operators such as Canny and Sobel in crack detection 

studies (Jenkins et al., 2018; Mei et al., 2020). Jogin et al. 

(2018) revealed that CNNs provided higher success compared 

to image classification methods such as logistic regression, K-

Nearest Neighborhood (KNN), Support Vector Machine 

(SVM), etc.  

 

The aim of this study is to detect rock discontinuities by close-

range photogrammetric images and a CNN architecture. In this 

context, overlapping images were taken from a study area near 

Ankara, Turkey. The digital surface model (DSM) and the 

orthophoto of the study area were produced using the SfM 

method from terrestrial images. The training dataset was 

prepared manually from the orthophoto, and the discontinuities 

were detected with CNN architecture as explained in this paper. 

 

2. STUDY AREA 

The Kızılcahamam/Güvem Basalt Columns Geosite near 

Ankara, Turkey was chosen as the study area. The site was 

selected due to the basalts, which have durability, generally 

smooth shapes, and clean faces. Furthermore, the study area is 

located 110 km from the center of Ankara and has good 

accessibility. There are also different basalt outcrops in the 

region. Figure 1 shows the location of the study area and an 

outcrop of the basalts to be evaluated.  

 

 
 

Figure 1. The location map of the study site and a typical 

outcrop of the columnar basalts employed. 

The size of the working area is approximately 7 m x 17 m. The 

lengths of each rock block in the basalts range between 5 cm to 

85 cm. In addition, as can be seen in Figure 1, some rockfalls 

were observed in the toe of the slope, which indicates that 

carrying out traditional scan-line surveys are dangerous for 

engineers and researchers. 

 

3. METHODOLOGY 

This study has two stages as close-range photogrammetric work 

and the detection of discontinuities with the CNN architecture. 

The overall workflow of the study is presented in Figure 2 and 

explained in detail in the next sub-headings. 

 

 

 

 
 

Figure 2. The overall workflow of the study. 
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3.1 Close-Range Photogrammetric Workflow 

The photogrammetry technique with a distance up to 300 m 

between the object and the camera is called close-range 

photogrammetric technique (Wolf et al., 2014). As in aerial 

photogrammetry, this method requires exterior orientation 

parameters including image rotation (Yaw, Pitch, and Roll) and 

position (X, Y, Z) at the time of exposure. These parameters can 

be determined with the SfM or self-calibration methods together 

with the camera interior orientation parameters in a bundle 

block adjustment process. The main requirement for 3D scene 

reconstruction is acquisition of overlapping images of the object 

of interest from different positions and angles (Westoby et al., 

2012). The images of the basalts in the study were captured 

with a Nikon D7000 professional camera. The technical 

specifications of the camera are given in Table 1, and examples 

to the images taken in the site are given in Figure 3. 

 

Camera type D-SLR 

Sensor CMOS 

Effective image pixel 16.2 megapixel 

Image size (pixel) 4928 x 3264 

Lens 18-105 mm VR lens 

Table 1. Camera specifications (Nikon, 2022). 

 

Within the study, in-situ measurements were carried out by an 

engineering geology expert (last author) to collect the ground 

truth. A GNSS (Global Navigation Satellite System) and a total 

station instrument were used to measure a number of Ground 

Control Points (GCPs) in the field. A total of 9 GCPs were 

defined and measured in the study area (Figure 4). In addition, a 

total of 17 images were captured from the basalt rocks area 

(Figure 5). 

 

 

 
 

Figure 3. Sample scene samples taken from the study area for 

3D modelling. 

 

 

 
 

Figure 4. GCPs measured in the field and in the images. 
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Figure 5. Camera positions with respect to the site. 

The 3D model and the orthophoto were produced by using 

Agisoft Metashape Professional Software version 1.8.1 (Agisoft 

LLC, 2022). In order to produce orthophoto in the software, a 

total of five steps can be followed such as; align photos and 

sparse point cloud generation with tie points, measuring GCPs 

and Check Points (CPs), dense cloud generation, the generation 

of digital elevation model, and orthophoto generation (Agisoft, 

2022). Out of nine GCPs, three of them were utilized as CPs in 

the bundle block adjustment process. The GCPs and the final 

products were defined in the Universal Transverse Mercator 

(UTM) zone 36N projection system referenced on the World 

Geodetic System 1984 (WGS 84). 

 

3.2 CNN Architecture 

With the technological advancements, the image data collection 

platforms and devices in close-range photogrammetry, such as 

well-equipped smart mobile phones and UAVs, have increased. 

In order to process the massive amount of data, efficient 

methods and computational environments are also required. The 

CNNs belong to the family of Artificial Neural Networks 

(ANNs) and DL methods. A CNN has a convolutional multi-

layer structure, consists of input, convolutional, pooling, 

activation and fully connected layers. When compared to ANN, 

in CNN the multi-layered image data is used as input in the 

architecture and the information in the dataset is extracted by 

applying image filters. The method is similar to ANN in that it 

performs the classification process in the form of forward-feed 

in the fully connected layer (Alzubaidi et al., 2021). 

 

Not having a fully connected layer, the U-Net CNN architecture 

was proposed by Ronneberger et al. (2015) initially for the 

segmentation of biomedical images. The Rectified Linear Unit 

(ReLU) function is used as the activation layer in U-Net. The 

ReLU (Nair and Hinton, 2010) is frequently used in CNN 

studies compared as activation function since it works faster and 

provides higher performance (Krizhevsky et al., 2012). The 

ReLU function changes the values as a result of the learning 

process between zero (included) and infinity. 

 

The fact that CNN architectures require large amount of training 

data compared to other image segmentation methods is an 

obstacle for the wider use of CNN. In order to minimize this 

disadvantage, image databases have been created. The databases 

can be categorized according to their subjects, promoting the 

work of researchers. An example of Crack detection is 

EdmCrack600 (EdmCrack600, 2022). Moreover, the success of 

CNN can be enhanced by increasing the number of train data 

with data augmentation methods. Techniques such as flipping, 

rotating the image, changing the color space, adding noise and 

cutting can be applied within the scope of data augmentation 

methods (Alzubaidi et al., 2021). 

 

Here, the U-Net architecture was employed with a training 

dataset generated by manual delineation of the discontinuity 

lines on the orthophotos. A raster ground-truth mask was 

generated and split as 256 x 256 images to be used as input. The 

input features include RGB images of the same size. In addition, 

data augmentation techniques were also applied to obtain better 

predictions with a relatively small training data size. In total, 25 

out of 259 images were reserved for testing. 24 of the remaining 

234 images were used for validation and 210 for training. 

Images augmentation was applied to the training set using 

Albumentations library (Albumentations, 2022), and a total of 

2100 images were obtained. An example to the training images, 

the augmented images and the produced masks are shown in 

Figure 6. 

 

(a) 

  

(b) 

  

(c) 

  

 

Figure 6. (a) A sample training image, (b,c) the augmented 

images and their corresponding masks. 

 

The CNN architecture developed here is based on U-Net, 

similar to Lee et al. (2022).  The CNN architecture is a modified 

version of U-Net architecture. Instead of the encoder part that is 

proposed in the original U-Net paper, ResNet-18 model was 

used as the encoder (He et al., 2016). Also, in decoder part, 

transposed convolutional layers were used instead of up 

sampling layers. In the CNN model, weights were produced 

with the data set in the study instead of pre-trained weights. 

Furthermore, the use of the ResNet-18 model in the encoder 

part of the model made learning more effective. The ResNet 

model won first place in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in 2015. Additionally, 
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ResNet has a deeper structure than the VGG model (He et al., 

2016). As in the study, various CNN models can be combined. 

This was also observed in the SegNet study, in which VGG-16 

was used in the encoder part (Badrinarayanan et al., 2017).  

 

Within the scope of the study, model hyper-parameters; 50 

epochs, batch size 8 and Adaptive Moment Estimation (Adam) 

were used and Adam was determined as the optimizer. Defined 

as a learning algorithm, Adam uses the gradient-descent method 

(Liu et al., 2019). It also reduces memory usage while ensuring 

that learning is fast (Alzubaidi et al., 2021). ReLU was used as 

the activation layer of the study and the sigmoid function was 

used in the last layer. In the model, the combined form of binary 

cross entropy and Dice loss was used as the loss function. The 

loss function was used to measure the closeness of the model to 

the true value and the combination of the two loss function 

types is widely used (Yeung et al., 2022). 

 

4. RESULTS AND DISCUSSIONS 

4.1 Photogrammetric Processing Results 

The photogrammetric processing accuracy is evaluated based on 

the CP coordinate differences between the ground-surveyed and 

those obtained from the bundle block adjustment method. The 

differences for the three CPs are given in Table 2. The 3D root 

mean square error (RMSE) obtained from the CPs was 3.88 

mm, which indicates high positioning accuracy of the model. 

The average image GSD was 1.74 mm. Additionally, the error 

ellipses of all GCPs are shown in Figure 7. Points 2, 5 and 7 

shown in Figure 7 were designated as CPs. In the Figure, the 

color tones of the ellipses represent the height error and the 

dimensions represent the point positioning error. 

 

Point No 

 

X  

(mm) 

Y  

(mm) 

Z  

(mm) 

Total 

(mm) 

Total 

(Pixel) 

2 -0.83 2.31 -2.33 3.38 0.07 

5 1.96 3.06 2.91 4.66 0.07 

7 3.07 1.47 0.55 3.45 0.14 

RMSE 2.16 2.37 2.18 3.88 0.10 

 

Table 2. CP ground coordinate differences obtained from the 

bundle block adjustment. 

 

 
 

Figure 7. GCPs error values and ellipses. 

 

The orthophoto produced in the study is shown in Figure 8. The 

dimensions of the orthophoto consisting of RGB bands are 3707 

x 9648 with a spatial resolution of 1.7 mm. The image 

radiometric resolution is 8 bits. The orthophoto was cropped in 

the edges to avoid the image quality issues in those parts. 

 

 
 

Figure 8. Orthophoto produced from the close range images 

 

4.2 The CNN Results 

The model training - validation accuracy obtained from the 

model are given in Figure 9. In the study, the accuracy of the 

CNN model was calculated as 58% according to the F1-Score. 

According to the Figure, it was observed that the model was 

overfitting after the 10th epoch. However, no image 

enhancement was applied on the input data and the size of the 

training dataset is relatively small as it was obtained from one 

site only. Examples to the test images, ground truth and 

prediction results are presented in Figure 10.  

 

 
 

Figure 9. Training and validation accuracy 

 

When these results are compared with those of crack detection 

studies; the latter ones revealed the high predictive performance 

of CNNs for crack detection on smooth surfaces such as 

buildings and roads (e.g., see Liu et al., 2019; Chen et al., 2020; 

Mei et al., 2020). The performance of CNN on complex 

surfaces such as rocks has not been sufficiently investigated yet. 

Lee et al. (2022) applied the method with 57,024 images and 

the validation results of the model according to the Intersection 

over Union (IoU) metric was 0.611. The main reasons are the 

small size (thinness) of rock discontinuity delineations, higher 

dimensionality (3D) of the rock surface when compared with 

building façades and road surface, and the variations on the 

rock surface characteristics caused by colour reflectance and 

roughness, such as shadows. In addition, since the IoU and F1-

score metrics are calculated on a pixel-by-pixel comparison 

basis, the scores are low even though a visual inspection on the 

results reveals a better prediction performance. As an example, 

in Figure 10, it can be observed that the main discontinuity 

structures could largely be detected by the model. As future 

work, issues such as line completeness and noisy observations 
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could be largely eliminated by applying post-processing 

methods, e.g., morphological filters. Thus, the accuracy metrics 

could also be improved. Furthermore, instead of using pixel-

wise metrics, problem-specific accuracy parameters such as line 

completeness in terms of percentage can be developed.  

 

Image      Ground Truth Prediction 

 

 

 

 

 

 

 

 
 

Figure 10. Sample images from the test data (left), ground truth 

(middle) and the CNN model results (right). 

On the other hand, although orthophotos were used for training 

data preparation in this study for its practicality, image blurring 

was observed on the discontinuities as gaps occur in these areas 

in the DSM (Figure 11). The lower image quality also affects 

the model prediction quality. Although it is possible to delineate 

discontinuities on raw images as an alternative, the selection of 

the same discontinuity lines/surfaces on multiple images would 

cause problems that may introduce further uncertainty on the 

detected discontinuities. 

 

       
(a)                            (b)                               (c) 

 
(d) 

Figure 11. (a) original (raw) image; (b) orthophoto; (c) shaded 

DSM; (d) mesh model. 

 

5. CONCLUSIONS 

The backbone of rock mass classification systems and analysis 

of discontinuity-controlled failures is the accurate determination 

of discontinuity orientation. However, sometimes, due to the 

inaccessibility of high and steep slopes, the measured number of 

discontinuities is limited. For this reason, in this study, it was 

aimed to detect discontinuities in rock mass by semantic 

segmentation of orthophoto with a CNN architecture, i.e., U-

Net + ResNet-18. The orthophoto was produced by close-range 

photogrammetric method. According to the results, the F1-score 

was 58%. Image artefacts were observed in orthophotos at the 

discontinuities, which is a major reason for accuracy 

deterioration. In addition, no image enhancement or post-

processing to prediction results such as morphological filters or 

smoothing was applied. Furthermore, the accuracy score was 

obtained from a pixel-wise comparison.  

 

Yet, the visual inspection results indicate a higher performance 

and attention needs to be paid to training data preparation, use 

of raw images as an alternative to orthophotos, application of 

morphological and image filtering methods to the results to 

ensure line completeness and reduction of the noise, and the 

selection of appropriate spatial metrics for the evaluation of the 
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results. In addition, the training data size needs to be increased 

for obtaining higher accuracy. The fact that the visuals are better 

than the score supports this idea. The future work of the study 

also includes investigations on different rock mass types and the 

determination of the rock mass boundaries in 3D. The results of 

the present study may help engineering geologists when 

applying scan-line surveys. 
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