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ABSTRACT: 
 
Accurate matching of multimodal remote sensing (RS) images (e.g., optical, infrared, LiDAR, SAR, and rasterized maps) is still an 
ongoing challenge because of nonlinear radiometric differences (NRD) between these images. Considering that structural properties 
are preserved between multimodal images, this paper proposes a robust matching method based on multi-directional and multi-scale 
structural features, which consist of two critical steps. Firstly, a novel structural descriptor named the Steerable Filters of first- and 
second-Order Channels (SFOC) is constructed to address severe NRD, which combines the first- and second-order gradient information 
by using the steerable filters to depict multi-directional and multi-scale structural features of images. Meanwhile, SFOC is further 
enhanced by performing the dilated Gaussian convolutions with different dilated rates on it, which can capture multi-level context 
structural features and improve the ability to resist noise. Then, a fast similarity measure, called Fast Normalized Cross-Correlation 
(Fast-NCCSFOC), is established to detect correspondences by a template matching scheme, which employs the Fast Fourier Transform 
(FFT) technique and the integral image to improve the matching efficiency. The performance of the proposed SFOC has been evaluated 
with many different kinds of multimodal RS images, and experimental results show its superior matching performance compared with 
the state-of-the-art methods. 
 
 

1. INTRODUCTION 

Image matching is a prerequisite step for remote sensing (RS) 
image processing and analysis applications, such as image fusion, 
change detection, and environmental monitoring. The key of RS 
image matching is to find an evenly distributed and high-
precision set of control points (CPs) as much as possible. 
Generally, RS images can be directly georeferenced by 
employing the rigorous sensor models or the generic sensor 
model. However, the georeferencing of RS image is usually 
biased that caused by the inaccurate measurement of the satellite 
ephemeris and instrument calibration, which results in the 
georeferencing having an offset typically ranging from several 
pixels to dozens of pixels in the image space (Jiang et al., 2015).  
 

    
Figure 1. Example of multimodal images with direct 
georeferencing. (a) Google (Left) and GaoFen-2 Panchromatic 
(Right) images. (b) Google (Nether) and Sentinel-1 SAR (Upper) 
images. 
 
Figure 1 exemplarily shows two pairs of multimodal images with 
direct geo-referencing, and it can be observed that the 
implementation of georeferencing only can address the obvious 
global geometric differences. However, there are still significant 
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nonlinear radiometric differences (NRD) between these 
multimodal images. Moreover, the interference of strong speckle 
noise is very serious on the SAR image. These challenges make 
it difficult to detect precise CPs even by visual inspection. 
Therefore, this paper will focus on developing a robust matching 
method to resist NRD and noise interference for multimodal RS 
images. 
 
To date, image matching methods can be commonly classified 
into three categories with the taxonomy of intensity-based 
methods (IBM), feature-based methods (FBM), and learning-
based methods (LBM). IBM evaluates the similarity of intensity 
information by using a template matching strategy in the spatial 
domain or in the frequency domain, which relies on the selection 
of similarity measures that play a pivotal role in this process. The 
most common similarity measures consist of four types in the 
spatial domain: sum of squared differences (SSD), normalized 
cross-correlation (NCC), mutual information (MI), and phase 
correlation. Nonetheless, phase correlation, SSD, and NCC are 
very sensitive to NRD that generally exists in different kinds of 
multimodal RS images (Ma et al., 2015). Although MI has been 
testified to be effective for resisting NRD, MI is clumsy and time-
consuming because it must compute the joint histogram based on 
statistical similarity.  
 
FBM differs from IBM to comprise the remarkable features (e.g., 
point, line, and region features), which evaluates the similarity of 
these invariant features rather than intensity information to 
achieve matching. Such methods generally consist of common 
feature extraction and feature matching, with the most common 
method to be Scale Invariant Feature Transform (SIFT) (Lowe, 
2004) and its variants, such as SAR-SIFT (Dellinger et al., 2014). 
The above algorithms take advantage of these invariant features 
to resist geometric distortions, but it is difficult to extract a large 
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number of stable features from multimodal images with 
significant NRD. To tackle these problems, a growing number of 
valid descriptors have been designed based on structural and 
shape features. Given the advantages of phase congruency in 
image perception, numerous phase-congruency-based methods 
have been proven to improve the performance of multimodal 
matching (Ye et al., 2017; Li et al., 2019). Although these phase-
congruency-based methods have been shown the superiority of 
the phase congruency in resisting NRD, they required the 
amplitude and orientation of phase congruency, leading to the 
complicated calculation and time-consuming processes. 
 
As deep learning has shown superior performance in image 
matching in the field of computer vision (Dusmanu et al., 2019), 
LBM has also been introduced into the RS image matching field 
(Wang et al., 2018b; Zhou et al., 2021). Although current LBMs 
have achieved remarkable progress, their disadvantages are also 
quite significant. The main drawback is that LBM usually 
requires a large amount of training and labeled data, which will 
greatly affect the practical application of image matching. Due to 
the number of neural network parameters being huge, the training 
efficiency is greatly related to the basic configuration of 
computer infrastructure. LBM’s superiority only is brought into 
play in multimodal image matching based on high-performance 
computer infrastructures, which is another disadvantage to limit 
its widespread use. 
 
Recently, many descriptors based on multi-orientated gradient 
information to depict structural features have also proved to be 
robust to NRD, among which channel features of orientated 
gradients (CFOG) (Ye et al., 2019), angle-weighted oriented 
gradient (AWOG) (Fan et al., 2021), and multi-Scale and multi-
Directional Features of odd Gabor (SDFG) (Zhu et al., 2021) are 
the most representative ones. Moreover, recent studies have 
shown that many local feature descriptors based on the first-order 
gradient information, such as SIFT and CFOG, are far from 
accurate in capturing visual features of human perception. Since 
the first- and second-order gradients are related to different 
geometric and structural features of images (Wallis and 
Georgeson, 2012), the second-order gradients have better 
performance in describing detailed information than the first-
order gradients. 
 
Although the CFOG, AWOG, and SDFG descriptors have been 
successfully used for multimodal image matching, the 
construction of gradient channels for CFOG is calculated by 
simple pixel differences, which are very sensitive to noises. 
While the horizontal and vertical gradients of AWOG are 
calculated by the Sobel operator that simply comprises the first-
order x-derivative and y-derivative operators. Meanwhile, the 
multi-scale information is deficient due to both the CFOG and 
AWOG neglecting the local inter-pixel relationships of images. 
Although SDFG integrates the multi-scale information for 
feature description, it is similar to CFOG and AWOG that only 
make use of the first-order gradients, which results in a lack of 
local shape attributes in terms of curvature that exploited by the 
second-order gradients (Huang et al., 2014). Hence, a more 
discriminative structural feature of the image can be depicted and 
reinforced when they are used in combination. These 
observations motivate us to develop a novel descriptor combining 
the first- and second-order gradient information of images to 
depict multi-directional and multi-scale structural characteristics. 
 
The main contributions of this paper are composed mainly of two 
essential components. First, we construct a novel and 
discriminative descriptor, called the Steerable Filters of first- and 
second-Order Channels (SFOC), through combining the first-

order gradients with the second-order gradients by using the 
steerable filters, which is utilized to address significant NRD 
between multimodal images. Then, we establish a fast similarity 
measure with a template matching strategy, namely Fast 
Normalized Cross-Correlation (Fast-NCCSFOC), by improving 
the traditional NCC using the Fast Fourier Transform (FFT) 
technique and the integral image, which is employed to accelerate 
the matching process. Therefore, the proposed method with 
template matching strategy can be regarded as a hybrid method 
combining IBM and FBM, because it evaluates the SFOC 
descriptor rather than intensity information to achieve matching. 
 

2. METHODOLOGY 

In this section, we will present a novel structural feature 
descriptor named SFOC based on steerable filters, and it’s used 
to define the fast similarity measure on the basis of NCC. First of 
all, steerable filters are introduced, consisting of first-order 
steerable filters and second-order steerable filters. Then, the 
proposed SFOC descriptor is constructed by utilizing the 
introduced first- and second-order steerable filter. Finally, the 
fast-matching similarity measure, namely Fast-NCCSFOC, is 
developed using the FFT technique and the integral image. 
 
2.1 Introduction of steerable filters 

The steerable filters refer to a class of arbitrary orientation filters 
that can be synthesized into a linear combination of base filters 
(Freeman and Adelson, 1991). Therefore, the steerable filters can 
adjust different angles to realize the adaptive control of the filters, 
with linear, multi-directional, and multi-scale characteristics, so 
as to provide more details in the image information of direction 
and edges. The higher-order directional derivatives of the 
Gaussian function have been proved to be steerable, among 
which the simplest steerable filter is the first-order Gaussian 
derivative. The Gaussian function G(x) in two-dimensional space 
is shown in the following equation: 
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Where (x, y) are Cartesian coordinates, σ  represents the 
variance of Gaussian function. Let Gn be the nth derivative of the 
G(x) in the x-direction, and θ  represents the rotation of any 
function concerning the origin. The first-order x Gaussian 
derivative is expressed as follows: 
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If the same function G(x) is rotated 90°, the following equation 
can be obtained: 
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The first-order steerable 1G  filter at arbitrary orientation θ  can 

be synthetized by making use of a linear combination of 
°0

1,G σ  and 
°90

1,G σ . Therefore, 
°0

1,G σ  and 
°90

1,G σ  are regarded as the basis filters 

of 1,Gθ
σ filter because all the sets of 1,Gθ

σ  can be combined by 
them.  

 
° °0 90
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In addition to the first-order steerable G1 filter, the second-order 
steerable G2 filter is also used in subsequent descriptor 
construction. Similar to the steerable G1 filter, the second-order 
Gaussian steerable filter G2 is defined as follows: 
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2.2 Construction of structural feature descriptor 

Formally, the construction of SFOC mainly consists of three key 
components: (1) the construction of the first-order steerable 
channels with multi-scale strategy, (2) the construction of the 
second-order steerable channels, and (3) dilated Gaussian 
convolution and normalization. Figure 2 demonstrates the 
construction flowchart of the proposed SFOC descriptor and 
more details of which are specified as follows. 
 
The construction of SFOC is divided into two critical channels: 
the first-order steerable channels and the second-order steerable 
channels. Since the convolution operation is a linear operator, 
thus the first-order steerable channels of an image I (x, y) at an 
arbitrary orientation θ  can be computed by convoluting the 

image with 
°0

1,G σ  and 
°90

1,G σ .  In the proposed descriptor, the 
establishment of first-order channels is composed of six 

directions: 2 3 4 50, , , , ,
6 6 6 6 6
π π π π π .  Meanwhile, the multi-scale 

strategy with different Gaussian standard deviations (STD) is 
embedded to further reinforce the descriptive completeness of 
local structural features with the purpose of increasing the 
discrimination. The specific calculation process is as follows: 
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Where σ  represents the Gaussian standard deviation, and * 
denotes convolution operation.  
 
Furthermore, in order to enhance the detailed information of 
images, thus the second-order gradients based on the three basic 
filters (i.e., 

°0
2,G σ , 

°60
2,G σ and 

°120
2,G σ ) are applied in the construction 

process of the second-order channels. Similarly, the second-order 
steerable channels of the image I (x, y) at an arbitrary orientation 
θ  can be computed by convoluting the image with 

°0
2,G σ , 

°60
2,G σ

and 
°120

2,G σ , which is expressed as Eq. (7).  
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Once the synthetical first- and second-order steerable channels 
are constructed, the specified direction features at different scales 
are summed to obtain as much useful information as possible in 
each direction. Subsequently, these synthetical steerable 
channels in specified directions are convoluted by three parallel 
Dilated (or Atrous) Gaussian kernels, then the three parallel 
convolutional results are combined through one summation 
operation, which is designed to integrate a wealth of local inter-
pixel information of images. The dilated Gaussian convolution 
with different dilated rates by inserting “holes” in the convolution 
kernels to expand its receptive field, which is inspired by the 
recent deep convolutional neural networks (Chen et al., 2017). In 
addition, the dilation rates r are set to [ 1, 2, 3] for avoiding the 
inherent “gridding” problem that exists in the current dilated 

Figure 2. Construction flowchart of the proposed SFOC descriptor. 
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convolution framework (Wang et al., 2018a). By this means, the 
multi-level context structural features of the synthetical first- and 
second-order steerable channels can be captured by utilizing 
dilated Gaussian weighting without increasing the computational 
complexity, and play a role in smoothing noise as well. 
 
Figure 3 clearly illustrates the advantages of utilizing the dilated 
Gaussian convolution for the construction of SFOC. Four 
different types of heatmaps concerning different features are 
acquired by performing template matching. It is obvious that the 
heatmap of the original image pairs is the messiest, and the 
heatmap of the SFOC features without Gaussian convolution has 
several peaks but the peak is not distinct, because it’s greatly 
affected by significant noise. In contrast, Gaussian convolution 
can effectively resist the interference of noise and make the peak 
more discriminative (see Figure 3 (e) and (f)). Furthermore, the 
dilated Gaussian convolution can not only smooth the noise, but 
also integrate the multi-level context structural features by the 
dilated Gaussian weighting. This is the reason why the heatmap 
of the SFOC features with parallel Dilated Gaussian convolution 
presents a smoother and more discriminative peak than the 
general Gaussian convolution, which indicates the matching 
robustness of SFOC with parallel Dilated Gaussian convolution 
may be superior. 
 

 
Figure 3. Illustration of the constructed descriptor utilizing 
different Gaussian convolution strategies. (a) SAR image. (b) 
optical image. (c) Heatmap of the original image pairs. (d) 
Heatmap of the SFOC features without Gaussian convolution. (e) 
Heatmap of the SFOC features with the general Gaussian 
convolution. (f) Heatmap of the SFOC features with parallel 
Dilated Gaussian convolution. 
 
In particular, compared with the synthetical first-order steerable 
channels, a larger σ  is used for the dilated Gaussian smoothing 
for the synthetical second-order steerable channels. This is 
because the second-order gradient describes more image detail 
but is accompanied by an increase in noises. Subsequently, the 
first- and second-order steerable channels are normalized 
respectively, then the final feature representation of SFOC is 
obtained by stacking them. 
 
2.3 Establishment of fast similarity measure 

The traditional normalized cross-correlation (NCC) is widely 
applied to determine corresponding CPs between the given image 
pairs with overlapping regions by evaluating the intensity 
similarity. However, it is often used only for CP detection of 
single-modal images and is often unable to keep the same 
performance for multimodal image matching. As mentioned 
above, the SFOC descriptor can capture the structural features of 
images, which effectively resists NRD between multimodal 
images. Accordingly, it makes sense to establish a novel 
similarity measure that combines NCC with the SFOC descriptor. 
 

SFOC is a 3D descriptor with a large amount of data, as well as 
the NCC also has the disadvantage of large calculation amount 
and high computational complexity. Hence, in order to maintain 
the matching accuracy and improve the computational efficiency, 
a fast-matching similarity measure is designed based on NCC and 
SFOC, it’s expressed as Fast-NCCSFOC. The proposed Fast-
NCCSFOC can be reformulated with more detail as follows in this 
subsection. 
 
First of all, the SFOC descriptor is used to calculate the structural 
features in the template image and the search image, which are 
denoted by T and S, respectively. Their normalized correlation 
value NCCSFOC (S, T) represents the similarity of the template 
window T (i, j, z) and the search window S (x, y, z) at the location 
(x, y), which is defined as. 
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Where z presents the dimension of the SFOC descriptor. S (i, j, z) 
and T (i, j, z) are the feature value of the search window and the 
template window at the position (i, j, z), respectively. The sizes 
of the template and search window are m×n×z pixels and M×N×z 
pixels, respectively. T  represents the average feature value of 
the template image, and S  represents the average feature value 
of the search image S under the current template image T. 
 
The reason for the high computational complexity of traditional 
correlation matching is that NCC is completely recalculated for 
any search position (x, y), while the internal relation of the NCC 
of adjacent search points is ignored. In order to reduce the 
computational complexity, an equivalent transformation is 
performed on Eq. (8), as follows: 
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There are only three items related to (x, y, z) are included in the 
above formula, which is respectively denoted as: 
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It should be noticed that the first term ( , , )STR x y z  in the 
numerator is convolution operation, and the convolution in the 
spatial domain is equivalent to the dot production operation in the 
frequency domain. Therefore, it can be converted to the 
frequency domain, and the FFT technique is used to improve 
computational efficiency. Accordingly, the new expression of the 
term is equivalent to the following form: 
 

 1 *( , , ) [ ( ) ( )]STR x y z S T−= ∫ ∫ ∫         (13) 
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Where ∫  is the signal of the Fourier transform, *∫  represents the 

conjugate complex operation of the transformed result, and 1−∫  
denotes the inverse FFT (i.e., IFFT). 
 
Additionally, the terms in the denominator and the other terms in 
the numerator of Eq. (9) require a lot of multiplications and 
additions. When the template is sliding, the sum of the squares 
and correlation values are recalculated, which results in 
computation time increased enormously. It can be seen that these 
terms, RS and RSS, fit the definition of the integral image (Viola 
and Jones, 2001). While the other two terms, RT and RTT, are only 
related to the template image, which results in their values being 
fixed. Therefore, the integral image is used to replace the original 
summation process with three simple addition and subtraction 
operations, which can effectively reduce the computational 
complexity of the original algorithm to calculate NCC, and 
improve the running time. 
 
As a result, these terms, RS and RSS, can be efficiently calculated 
utilizing the integral image. Since the integral process only 
involves a limited number of additional operations, the 
complexity of the algorithm is mainly determined by FFT and 
IFFT in Eq.(13). Typical FFT and IFFT require about 
2MNzlog2(MN) times of multiplication, and the Eq. (13) requires 
to calculate FFT and IFFT once in total. Accordingly, the total 
number of multiplications required by the proposed Fast-
NCCSFOC is as follows. 

 1 24 log ( )T MNz MN≈                          (14) 
 
With regard to the template matching strategy, the Eq. (8) is 
directly used to calculate NCC at each sliding position, and the 
calculation amount mainly depends on the dominant times of 
multiplication operation. For any search position, the Eq. (8) is 
used to calculate NCC for about three times of multiplication, and 
a total of (M-m+1) × (N-n+1) slidable positions need to be 
calculated for traversal search in the search window space. Thus, 
the number of multiplication operations required for NCC 
matching is: 

 2 3 ( 1)( 1)T mnz M m N n= − + − +                (15) 
 
From the Eqs. (14) and (15) , we can see that the computational 
complexity of the proposed Fast-NCCSFOC is independent of the 
template size, whereas the computational complexity of NCC is 
approximately proportional to the product of the template size 
and the search size, especially when m and n are small relative to 
M and N. The ratio of the computational complexity of the two 
similarity measures is:  

 1 2

2

4 log ( )
3 ( 1)( 1)

T MNz MNT
T mnz M m N n

= ≈
− + − +

 (16) 

 
To facilitate the illustration of the computational advantage of 
Fast-NCCSFOC, we assume that M=N, m=n, and M=2m. The curve 
of T changing with m is shown in Figure 4. As the template and 
search sizes increase, the ratio of the computational complexity 
between Fast-NCCSFOC and NCC decreases rapidly, that is, the 
larger the template and search sizes are, the greater the 
computational advantage of Fast-NCCSFOC is. Taking a template 
window m=100 as an example accompanied by a search window 
M=200, Fast-NCCSFOC takes about 0.799% of the time required 
by NCC, which greatly improves the computational efficiency. 
 

 
Figure 4. Graph of the variation of T with m. 

 
3. EXPERIMENTS 

In this section, the performance of the proposed SFOC was 
experimentally evaluated with different types of multimodal RS 
datasets (e.g., optical, infrared, LiDAR, SAR, and rasterized 
maps). Firstly, the experimental settings were presented, which 
include the detailed information of test datasets, the evaluation 
criteria, the implementation details, and the parameters 
predefined. Then, SFOC was compared with the five state-of-the-
art methods for verifying its effectiveness, including MI, 
matching by tone mapping (MTM) (Hel-Or et al., 2013), phase 
congruency structural descriptor (PCSD) (Fan et al., 2018), 
CFOG, and SDFG. Finally, we analysed the robustness of SFOC 
against Gaussian white noise and speckle noise. 
 
3.1 Experimental settings 

Eight cases of multimodal image pairs with significant NRD 
were employed to evaluate the performance of SFOC. The 
detailed information of these cases is given in Table 1, and these 
image pairs of each case are displayed in Figure 6. In addition, 
the two images of each case have been pre-registered with the 
same ground sample distance (GSD) to remove obvious rotation 
and scale differences. 
 

Category  Image source Size and GSD Data 

Optical 
-to- 

Infrared 

1 Daedalus optical 
Daedalus infrared 

512×512, 0.5m 
512×512, 0.5m 

04/2000 
04/2000 

2 QuickBird visible 
QuickBird infrared 

1028×1137, 2.4m 
1028×1137, 2.4m 

05/2006 
05/2006 

LiDAR 
-to- 

Optical 

3 LiDAR intensity 
WorldView-2 

600×600, 2m 
600×600, 2m 

10/2010 
10/2011 

4 LiDAR depth 
WorldView-2 

524×524, 2.5m 
524×524, 2.5m 

10/2010 
10/2011 

Optical 
-to- 

SAR 

5 Sentinel-2 optical 
Sentinel-1 SAR 

1501×1501, 10m 
1501×1501, 10m 

09/2018 
10/2018 

6 Google Earth 
TerraSAR-X 

628×618, 3m 
628×618, 3m 

03/2009 
01/2008 

Optical 
-to- 
Map 

7 Google Maps 
Google Maps 

700×700, 0.5m 
700×700, 0.5m 

unknow 
unknow 

8 Google Maps 
Google Maps 

621×614, 1.5m 
621×614, 1.5m 

unknow 
unknow 

Table 1. Detailed information of all test cases 
 
In the experiments, the block-based FAST operator was first 
employed to extract 200 uniformly distributed IPs from the 
reference image. Then, the CP detection was performed using 
different methods with the same template size of 80 × 80 pixels. 
Furthermore, four criteria were used to quantitatively evaluate 
the matching performance in terms of the number of correct 
matches (NCM), the correct matching ratio (CMR), the root-
mean-square errors (RMSE), and the matching time (MT). The 
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correct match was determined by manually selecting 50 evenly 
distributed CPs to estimate the projective model for the image 
pairs of each case. The projective model was used to calculate the 
location errors of the matches obtained by different methods, and 
the match within positioning errors of 1.5 pixels was defined as 
the correct CP. CMR was defined as CMR = NCM / total matches, 
where total matches refer to all matched CPs, including the 
outliers with large errors.  
 
To make a fair comparison, MI was calculated using a histogram 
with 32 bins, as this is usually accompanied by an optimal 
matching performance (Ye et al., 2019). And the parameters of 
the other comparative methods (i.e., MTM, PCSD, CFOG, and 
SDFG) used the best parameters recommended in their related 
papers. All experiments were performed using a personal 
computer (PC) with the configuration of Inter (R) Core (TM) 
CPU i7-10750H 2.6GHz and 16GB RAM. 
 
3.2 Comparison and analysis of matching performance 

In this section, the performance of the proposed method was 
quantitatively and qualitatively evaluated. Moreover, to evaluate 
the effectiveness of the second-order gradient in the generation 
process of SFOC, the SFOC descriptor was degraded by only 
using the first-order steerable channels without the second-order 
steerable channels. The degraded SFOC descriptor was 
represented by F-SFOC, and it was also used for matching 
performance comparison with other methods. 
 
The seven different methods, i.e., MI, MTM, PCSD, CFOG, 
SDFG, F-SFOC, and SFOC, were applied to eight multimodal 
image cases (Table 1) for the comparison of matching 
performance. Figure 5 depicts the comparison results of all the 
evaluation criteria (i.e., NCM, CMR, RMSE, and MT) for the 
different methods on each multimodal image pair. It is obvious 
that SFOC outperformed the other methods for the above four 
criteria in all test cases, which effectively demonstrates the 
superiority and robustness of the proposed SFOC. 
 

   
(a)                                               (b)   

  
(c)                                               (d)  

Figure 5. Performance comparison of different methods on the 
eight multimodal image cases with the template size of 80 × 80 
pixels. (a) NCM. (b) CMR. (c) RMSE. (d) MT. 
 
Among the six methods used for comparison, the worst matching 
performance was found in the MI and MTM. MI and MTM had 
comparable matching performance, but MTM performed slightly 

better than MI on two Optical-to-Infrared cases, while MI 
performed better than MTM on cases 3-8. This may be related to 
the fact that MTM only utilizes a piecewise linear function to fit 
the intensity changes widely existing in the multimodal images. 
However, the intensity relationship between optical and SAR (or 
LiDAR) images is too complex to be fitted by MTM, which 
results in its performance degradation. Although the performance 
of MI was slightly better than that of MTM, it was the most time-
consuming among all the methods because it requires calculating 
a large number of joint probability histograms. 
 
From the comparison results in Figure 5, we can also observe that 
PCSD, CFOG, and SDFG performed significantly better than MI 
and MTM, while SDFG had slightly better performance 
compared with CFOG and PCSD. The main reason is that PCSD 
is constructed by using the multi-scale phase congruency 
structural features, and CFOG is built making use of the dense 
channel features of orientated gradients, which is more robust to 
NRD than MI and MTM. When comparing PSCD with CFOG, 
its performance was slightly worse than that of CFOG. The 
reason for that is the PCSD may lose some detailed structural 
information because it employed the strategy of the phase 
congruency order-based region division for descriptor 
construction, As for SDFG, since it further increasingly adopted 
the multi-scale strategy on the basis of multi-direction using odd 
Gabor functions, its matching performance was more robust than 
CFOG, but the matching process was more time-consuming. In 
addition, the construction of PCSD relies on multi-scale phase 
congruency features, which results in it being time-consuming. 
Therefore, PCSD and MTM were the most time-consuming apart 
from MI in all the compared methods. 
 
For our degraded descriptor (i.e., F-SFOC), its matching 
performance was comparable to SDFG, and it yielded better 
results than CFOG on the criterion of RMSE, especially in the 
LiDAR-to-Optical and Optical-to-SAR cases. This phenomenon 
illustrates that the first-order Gaussian steerable filters and the 
dilated Gaussian convolution are effective to construct the 
descriptor. While the matching performance of F-SFOC was 
obviously lower than SFOC, which verified the feasibility and 
effectiveness of adding the second-order gradient in the 
generation of SFOC. In this way, the robustness and 
discriminability of SFOC can be effectively increased. As far as 
the MT, F-SFOC was slightly faster than CFOG, because it only 
took advantage of the first-order steerable channels without the 
second-order steerable channels resulting in a smaller 
dimensionality of its features than that of CFOG. Whereas SFOC 
required slightly more time-consuming than CFOG and SDFG, 
this is related to the multi-scale strategy with different Gaussian 
STD and the dilated Gaussian convolution with different dilated 
rates were embedded in the generation process of SFOC. Hence, 
considering the improvement of the matching performance for 
SFOC, it is acceptable to sacrifice a little running time. 
 
Moreover, qualitative evaluation was performed by displaying 
the correct matched CPs for the visual inspection. As shown in 
Figure 6, these CPs were established by SFOC on the image pairs 
of each case with a template size of 80 × 80 pixels. it is obvious 
that these obtained CPs on the image pairs of each case were 
evenly distributed, and the location accuracy of these CPs was 
reliable despite significant NRD and noise between these 
multimodal image pairs. 
 
3.3 Comparison and analysis of noise sensitivity 

In this section, the anti-noise performance of the above-
mentioned methods was evaluated and analyzed by adding 
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different levels of Gaussian white noise and speckle noise to the 
images, respectively. Because the NRD between multimodal 
images is difficult to be precisely fitted only by a simple 
mathematical model. Meanwhile, LiDAR and SAR images 
typically contain more noise than infrared images, which is not 
conducive to the assessment of noise sensitivity. Consequently, 
all the methods were performed with the template size of 80 × 80 
pixels for the selected four pairs of Optical-to-Infrared cases, and 
their average value of CMR was used for the subsequent analysis. 
Specifically, two types of series noisy images were generated by 
adding the different levels of Gaussian white noise with mean 0 
and variance v in the range [0, 0.01] with an interval of 0.001, 
and the different levels of speckle-noise with variances v in the 
range [0, 0.1] with an interval of 0.01, respectively.  
 
Figure 7 presents the average CMRs of different methods versus 
various noise consisting of Gaussian white noise and speckle 
noise. SFOC and its degraded version (i.e., F-SFOC) achieved 
superior capacities under increasing Gaussian and speckle noise, 
followed by SDFG and CFOG. It demonstrated that the 
generation of SFOC using the dilated Gaussian convolution with 
different dilated rates could be more effective for resisting noise 
than SDFG only utilizing the general Gaussian convolution, and 
the generation of SFOC and SDFG both using a series of filters 
was more useful in withstanding noise than CFOG only utilizing 
simple gradient computation with the pixel difference. While the 
orientation channels of CFOG were implemented by the 
Gaussian kernel, which is more effective to reduce the 
interference of noise than PCSD. In addition, the performance of 
MI was relatively stable under various noises, but its average 
CMR was still lower than SFOC, F-SFOC, and CFOG. And 
MTM also presented lower robustness to Gaussian and speckle 
noise compared with MI. 
 

  
(a)                                              (b) 

Figure 7. Average CMRs of different methods versus various 
noise. (a) Average CMRs of different methods versus various 
Gaussian white noise. (b) Average CMRs of different methods 
versus various speckle noise. 
 
The above results and coherence analysis demonstrate that SFOC 
has apparent effectiveness and advantages for resisting 
significant NRD and noise between multimodal images, as well 
as high computational efficiency. The good adaptive 
performance was mainly due to the following reasons. On the one 
hand, it not only employed the first-order steerable filters with 
the multi-scale strategy to depict the multi-directional and multi-
scale structural features between multimodal images, but it also 
utilized the second-order steerable filters and three parallel 
dilated Gaussian kernels to emphasize more detailed information 
and multi-level context structural features, respectively, which 
further improves the discriminative and anti-noise capability of 
the proposed method. On the other hand, the improved Fast-
NCCSFOC based on the FFT and integral image technique ensured 
its fast computational efficiency.  
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Figure 6. Matching results of all test cases by SFOC with the template size of 80 × 80 pixels. (a) Case 1. (b) Case 2. (c) Case 3. (d) 
Case 4. (e) Case 5. (f) Case 6. (g) Case 7. (h) Case 8. 
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4. CONCLUSIONS 

This paper presented a robust matching method of multimodal 
RS images, involving both a novel SFOC descriptor and a fast 
similarity measure (i.e., Fast-NCCSFOC). SFOC is first proposed 
by making use of the first- and second-order Gaussian steerable 
filters, which aims to capture distinctive multi-directional and 
multi-scale structural features for resisting significant NRD 
between multimodal images. Then Fast-NCCSFOC is established 
by combining NCC and SFOC, and it speeds up the image 
matching process by using the FFT technique and the integral 
image. The experimental resulted on eight various multimodal 
images have demonstrated the robustness and effectiveness of 
SFOG. In contrast to other state-of-the-art methods (i.e., MI, 
MTM, PCSD, CFOG, SDFG), the proposed SFOC achieved the 
best matching performance in the quantitative evaluation.  
 
Although SFOC presented robust performance for multimodal 
image matching, it is sensitive to global geometric distortions 
between images, that is, it cannot be adapted to multimodal image 
matching with large scale or rotation differences. Future research 
aims to design an enhanced descriptor that is adaptable to 
geometric distortions without the assist of geo-referenced 
information, and explore the matching technique with scale and 
rotation invariance. 
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