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ABSTRACT: 

 
Efficiently detecting features from historical maps is a challenging task due to its inconsistent manual scribbling styles and the lack 
of large scale labelled training data. To tackle this issue, this paper proposes an automatic feature detection pipeline utilizing CNN-
based template matching (TM), which can lead to efficient feature extraction with minimal input, i.e. one single template. Three 

CNN-based TM models equipped with different feature extractors are investigated and compared in this research, namely pre-trained 
VGG19 CNNs, autoencoders, and the combination of both. Experiments conducted on six tiles of the Swiss Old National Map 
demonstrate that the combined architecture achieves the best result in wetlands detection, resulting in a mean intersection over union 
(IoU) of 69% and an average F1 measure of 82%. 
 
 

 
 Corresponding author 

1. INTRODUCTION 

Historical topographic maps represent the earth’s surface in the 
past with rich geographic features and high geospatial accuracy. 
It can provide valuable information enabling large scale time 
series analysis for diverse scientific domains, including ecology, 
urban planning, transportation, natural hazards, archaeology etc. 
(Heitzler and Hurni, 2019). Precisely extracting geographic 
features from historical maps in a modern geodata format is of 
utmost importance for breaking down barriers to accessing these 
information. This task is typically achieved by manually 
digitizing the map content (Chiang et al., 2020). Due to the 

huge cost of time and money needed for manual digitization, 
automated feature extraction methods are being actively 
exploited by researchers in recent years. Specifically, deep 
convolutional neural networks (CNNs) based models prove to 
be highly efficient. Heitzler and Hurni (2020) trained an 
ensemble of U-Nets to detect building footprints from Swiss 
historical maps and achieved an average intersection over union 
of 88.2% and an average precision of 98.55%. Promising results 
have also been achieved by Uhl et al. (2020), who applied 
CNNs to extract human settlement patterns from United States 
Geological Survey historical topographic maps. The success of 

CNNs lies in their capability of extracting representative 
spectral and geometric features from raw input. However, 
CNNs based methods are often claimed to be data-hungry. 
Large amounts of labelled training data need to be generated in 
advance, which is impractical in many cases.  
 
Template matching (TM) is another commonly used technique 
in computer vision applications. Classic TM finds the match 
between a template and the target image by comparing raw 
pixel values within a searching window using various similarity 
metrics, such as sum-of-squared-differences (SSD) and 
normalized cross-correlation (NCC). Unlike CNNs, no 

annotated data is needed during this procedure. However, 
classic TM does not handle well complex cases when the 
transformation between the template and the target image is 
non-rigid or contains occlusions, which is quite common in 
real-life (Talmi et al., 2017). In order to provide more tolerance 

in TM, recent methods perform TM using deep features 
produced by pre-trained CNNs, instead of raw colour pixels 
(Cheng et al., 2019; Gao and Spratling, 2020). These CNN-
based TM methods can take advantage of the feature extraction 
ability of CNNs to make TM more discriminative and also more 

tolerant to appearance change, while not at the cost of tedious 
data annotation task. One successful example is called QATM 
(quality-aware template matching), developed by Cheng et al. in 
2019. QATM uses deep features extracted from conv1_2 and 
conv3_4 layers of a pre-trained VGG19 CNN. A soft-ranking of 
the similarity measure between the feature representation of the 
template patch and the target image patch among all matching 
pairs is used to assess the matching quality. In this way, the 
uniqueness of each pair can be taken into consideration. 
Experimental analysis shows that QATM outperforms state-of-
the-art TM methods, including Best-Buddies-Similarity (BBS) 

(Dekel et al., 2015), Deformable Diversity Similarity (DDIS) 
(Talmi et al., 2017) and Co-occurrence based template matching 
(CoTM) (Kat et al., 2018), plus the classic TM using SSD and 
NCC, on standard template matching benchmarks. Therefore, 
we choose QATM as our baseline model in this research. 
 
The main idea of CNN-based TM is to change the feature space 
in which the comparison between the template and the image is 
performed from the high-dimensional raw observations to a 
lower-dimensional representation. Except for pre-trained CNNs, 
autoencoders can also learn useful representations of data 
without any label. Besides, features learned from the first few 

layers of CNNs pretrained on a large and versatile dataset 
(ImageNet) are generic features such as lines and strokes, while 
features learned from autoencoders are more tailored to input 
data (Guérin et al., 2021). This is due to the fact that 
autoencoders are trained to reconstruct the original input from 
the encoded low-dimensional representation. Therefore, the 
fusion of generic features extracted by pre-trained CNNs and 
specific features extracted by autoencoders might provide a 
better picture of the targeted feature space. In this study, we 
introduce autoencoders to the QATM framework by 
concatenating the feature maps generated by autoencoders and 

pre-trained CNNs. We use the modified framework to detect 
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wetlands from historical maps. The main contributions of this 

study are the following: 
 
1) We introduce the combination of generic features extracted 
by pre-trained CNNs and specific features generated by 
autoencoders to construct better feature representations; 
2) We design a pipeline to detect wetlands from historical maps 
automatically without the need of labelled training data. 
 

2. METHODOLOGY  

2.1 Study area 

In this research, we aim to detect wetlands from the Swiss Old 
National Map 1  series covering the densely populated Swiss 

Plateau area from 1952 to 1994. Wetlands are of high ecological 
value, but they are also threatened by the expansion of cities, 
transport infrastructure and agricultural land. Revealing the 
evolution of wetlands is essential to find out the impact of 
human activities to wetland ecosystems, as well as to guide 
future sustainable development. 
 

 
Figure 1. Extent of the study area and the location of the 

selected tiles for experimental analysis. 
 

 
Figure 2. The selected map tiles and the template (in red 

bounding box from T1).  
 

Figure 1 shows the extent of Swiss Old National Map sheets in 
Swiss Plateau area. Six tiles of 1000×1000 pixels were selected 

 
1 https://www.swisstopo.admin.ch/en/geodata/maps/historical/ol

d-national-maps.html 

for our experimental analysis. These six map tiles spread across 

the whole study area and are from different years with slightly 
different scribbling styles. As shown in Figure 2, some wetland 
signatures have long and dense strokes, while some are short 
and sparse. We use these six different tiles to test the 
generalization ability of our model. The wetland signature 
template is cropped from tile 1 with a size of 20×48 pixels 
(Figure 2). It is aimed to detect wetlands from all these six 
different tiles with a single template. The underlying intention is 
to detect as much wetlands as possible with as little input as 
possible.   
 
2.2 Overall Methodology 

The overall methodology is presented in Figure 3, including 
three major steps, i.e. wetland signatures detection, wetland 
boundaries generation and accuracy assessment.  
 

 
Figure 3. Overall methodology.  

 
Step 1 is wetland signatures detection. In order to detect 
wetland signatures, we applied and compared three TM models. 
The first one is QATM developed by Cheng et al. (2019). This 
is one of the state-of-the-art CNN-based TM models using pre-
trained VGG19 CNNs to construct the feature space for 
comparison. We use this model as our baseline model. In the 

second model, the feature space generated by pre-trained 
VGG19 is replaced with the ones generated by an autoencoder, 
while in the third model, a combination of feature maps from 
both networks (VGG19 and autoencoders) is adopted. The 
corner coordinates of the bounding boxes indicating matching 
locations are exported for further analysis. In step 2, we take 
these corner coordinates as input and create their concave hull 
with α-shape to approximate the wetland boundaries. The 
generated boundaries are finally compared with the reference 
data to evaluate the accuracy in step 3. In the following 
sections, we will give a detailed explanation for each step.  

 
2.3 Step 1: Wetland Signatures Detection 

We detect wetlands by taking one wetland signature as the 
template (Figure 2) and try to find all of the matching locations 
in the target map tiles. It is a challenging task as different map 
tiles have different drawing styles resulting from its manual 

inconsistent production process.  
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The TM models used in this research are modified from QATM 

(Cheng et al., 2019). Given a template image T and a search 
image S, their feature representations are first generated using a 
feature extraction model, i.e. a pre-trained VGG19 CNN. More 
precisely, the output feature map of conv1_2 layer is resized and 
concatenated with the output feature map of conv3_4 layer as 
the constructed feature representation. Table 1 presents the 
convolutional blocks of VGG19, excluding the top dense layers. 
Given an input image with a size of H × W × C, in which H, W 
and C namely represent the height, width and channels of the 
image, the output feature map of Conv1_2 layer has a size of H 
× W × 64, and the output size of Conv3_4 layer is H/4 × W/4 × 
256. Therefore, the final feature representation has a size of H/4 

× W/4 × 320.  
 
After that, a predefined similarity measure between the feature 
representations of the template patch and the search image patch 
is calculated. In their paper, cosine similarity is used to assess 
the patch-wise similarity. However, the final matching quality 
score is not defined by this measure. Alternatively, a likelihood 
function is introduced to define the soft-ranking of the current 
pairs compared to all other pairs in terms of matching quality.  
 

Layer Type Output Shape 

Input Image input  (None, 1000, 1000, 3) 

Conv1_1 Convolution (None, 1000, 1000, 64) 

Conv1_2 Convolution (None, 1000, 1000, 64) 

Pool1 Max Pooling (None, 500, 500, 64) 

Conv2_1 Convolution (None, 500, 500,128) 

Conv2_2 Convolution (None, 500, 500, 128) 

Pool2 Max Pooling (None, 250, 250, 128) 

Conv3_1 Convolution (None, 250, 250, 256) 

Conv3_2 Convolution (None, 250, 250, 256) 

Conv3_3 Convolution (None, 250, 250, 256) 

Conv3_4 Convolution (None, 250, 250, 256) 

Pool3 Max Pooling (None, 125, 125, 256) 

Conv4_1 Convolution (None, 125, 125, 512) 

Conv4_2 Convolution (None, 125, 125, 512) 

Conv4_3 Convolution (None, 125, 125, 512) 

Conv4_4 Convolution (None, 125, 125, 512) 

Pool4 Max Pooling (None, 62, 62, 512) 

Conv5_1 Convolution (None, 62, 62, 512) 

Conv5_2 Convolution (None, 62, 62, 512) 

Conv5_3 Convolution (None, 62, 62, 512) 

Conv5_4 Convolution (None, 62, 62, 512) 

Pool5 Max Pooling (None, 31, 31, 512) 

Table 1. The convolutional blocks of VGG19, taking an input 

image with a size of 1000 × 1000 × 3 as an example to calculate 
the output shape. 

 
In this study, we propose two variants of QATM by changing 
its feature extraction module. In the first one, this module is 
totally replaced by an autoencoder trained on the template 
patch, and in the second one, a combination of the original pre-
trained VGG19 and the autoencoder is applied via 
concatenating the feature maps produced by both networks. The 
architecture of the autoencoder used in both variants is 
presented in Figure 4. The encoder part consists of two 

convolutional layers and two max-pooling layers, which 
compress the input into a latent space representation. The 
decoder part consists of two transposed convolution layers and 
one convolutional layer to reconstruct the compressed data. As 
we have only one template patch, the autoencoder is trained on 

this single input image for 500 epochs. The reconstructed image 

is also visualized in Figure 4, which highly resembles the 
template. After training, we take the encoder part to generate 
feature representations for both the template and the search 
image. Given an input image with a size of H × W × C, the 
feature map generated by the encoder has a size of H/4 × W/4 × 
64. As a result, the final feature representation of the first 
variant using autoencoders alone as its feature extractor has a 
size of H/4 × W/4 × 64. The second variant concatenates the 
feature maps produced by VGG19, thus receiving a feature 
representation of size H/4 × W/4 × 384.  
 
The matching quality score is calculated following the original 

settings in QATM. By thresholding the matching quality score, 
we get the final matching locations of the wetland signatures 
and forward them to the next step.  
 

 
Figure 4. Architecture of the autoencoder. The output shape of 

each layer is also presented. 
 
2.4 Step 2: Wetland Boundaries Generation 

The output from step 1 are the corner coordinates of the 
bounding boxes showing the matching locations of the wetland 
signature. We approximate the wetlands’ bounding hulls on 
these corner points using α-shapes. An α-shape is a subgraph of 
the closest point or furthest point Delaunay triangulation 
(Edelsbrunner et al., 1983). It can identify the area occupied by 
a set of points using a “fine shape” or a “crude shape” when 
different α values are applied (Asaeedi et al., 2017). We fine-
tuned the α values via visual interpretation to generate the 

wetland boundaries. 
 
2.5 Step 3: Accuracy Assessment 

Four accuracy measures are assessed to compare the bounding 
hulls against the ground truth, namely Precision (P), Recall (R), 
F1-score (F1) and Intersection over Union (IoU). Precision 

measures the ratio of correctly detected wetlands to all detected 
wetlands, while recall indicates the ratio of correctly detected 
wetlands to all wetlands in reference. F1 is the harmonic mean 
between precision and recall, which can be regarded as an 
overall accuracy measure. IoU is the percentage of the 
intersection area over the union area of the predicted wetlands 
and the ground truth.  
 

3. RESULTS 

We compared experimental results of the three models on six 
testing tiles respectively. As the main difference of the three 
models is the feature extraction module, we distinguish them by 
their feature extraction module type, namely VGG19 (in 
original QATM, model 1), autoencoders (AEC, model 2), 
VGG19 plus autoencoders (VGG19 + AEC, model 3).  
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Figure 5. The detection results of Tile 1 and Tile 6 with their similarity score maps. T1-M1 refers to the result of Tile 1 generated by 
Model1, and S1-M1 is its corresponding similarity score map. The rest of the coded captions can be understood accordingly. 

Detected wetland signatures are marked in red bounding boxes; Red boundary is the generated wetland boundary and the green 
boundary marks the ground truth. 

 
Figure 5 and Figure 6 compare the bounding boxes of the 
detected wetland signatures and the final generated wetland 
polygons produced by the three models with the corresponding 
reference. Based on visual interpretation, almost for all testing 
tiles, the shape of the bounding hull can well identify the area 
covered by the bounding boxes when an α value of 0.04 is 
applied. We also picked two random tiles and visualized their 
similarity score maps in Figure 5. Generally speaking, despite 

the differences in drawing styles, most wetland signatures from 
the six testing tiles are successfully detected by the three 
models, indicating the good generalization ability of the models.  
From all six tiles, the performance of model 3 ranks first due to 
its high detection rate and low error rate, followed by model 1, 
which detects similar amounts of wetland signatures as model 3, 
but with more obvious false positives. The performance of 
model 2 is in general the worst. This result shows that the
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Figure 6. The detection results of Tile 2, Tile 3, Tile 4, and Tile 5. T2-M1 refers to the result of Tile 2 generated by Model1, and the 
rest of the coded captions can be understood accordingly. Detected wetland signatures are marked in red bounding boxes; Red 

boundary is the generated wetland boundary and the green boundary marks the ground truth. 
 

combination of generic features and specific features can better 
distinguish the target from the rest. Evidence can also be 
witnessed from the similarity maps (Figure 5). Similarity maps 
produced by model 3 have salient peaks and a steady 
background, indicating regions with and without wetland 
signatures respectively, while those produced by model 1 and 
model 2 have messier backgrounds and thus making it harder to 
identify the target. Although the visual results of model 2 is the 
worst, we still cannot deny the performance of autoencoders as 

it is trained on only one image, which is the template in our 
case. By contrast, pre-trained VGG19 is trained on the 
ImageNet database that contains a million images (Bansal et al., 
2021). In summary, integrating autoencoders in the original 
QATM framework which only employs pre-trained VGG19 as 
its feature extractor improves the detection result, resulting in 
better aligned wetland polygons with less false positives.                                                
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Table 2 shows the quantitative results obtained by the three 

models. The mean IoU of the six testing tiles achieved by model 
3 is 69%, against 66% of model 1 and 59% of model 2, 
demonstrating that the wetland polygons detected by model 3 
align better with ground truth than the other two models. Model 
3 also outperforms model 1 and 2 in terms of F1 measure, with 
an average value of 82% against 79% and 74% respectively, 
indicating its better overall performance. More concretely, 
compared to model 1, model 3 has higher average precision 
while slightly lower average recall. This shows that model 3 
improves the overall performance mainly through preventing 
false positives. Moreover, all three models achieve the best 
result on tile 1 amongst all testing tiles. This is because the 

template is extracted from tile 1.  
 

Accuracy T1 T2 T3 T4 T5 T6 Mean 

Model1 

P 0.87 0.88 0.64 0.65 0.62 0.60 0.71 
R 0.97 0.72 0.92 0.94 0.97 0.99 0.92 
F1 0.92 0.79 0.76 0.77 0.75 0.75 0.79 
IoU 0.85 0.66 0.61 0.62 0.61 0.59 0.66 

Model2 

P 0.80 0.74 0.46 0.60 0.62 0.60 0.64 
R 0.85 0.88 0.71 0.92 0.96 0.96 0.88 
F1 0.83 0.80 0.56 0.73 0.76 0.74 0.74 
IoU 0.71 0.67 0.39 0.57 0.61 0.58 0.59 

Model3 

P 0.89 0.89 0.67 0.69 0.71 0.71 0.76 
R 0.96 0.71 0.90 0.90 0.96 0.98 0.90 
F1 0.92 0.79 0.77 0.78 0.82 0.82 0.82 
IoU 0.86 0.65 0.62 0.64 0.69 0.70 0.69 

Table 2. Quantitative results of the testing tiles. 
 

4. DISCUSSION 

The findings of this study clearly show that using combined 
feature maps of pre-trained VGG19 and autoencoders can build 
a feature space better representing the template and the target 
image, resulting in better performance in wetlands detection. 
One explanation for the performance gain is the superiority of 
integrating generic features learnt from large datasets with 
specific features learnt from application-specific data. There are 
some limitations of this study, which are also the focuses of our 
future research: 
 
1) Tuning the weight of generic features and specific features in 

the constructed feature space. In our experimental settings, the 
feature map generated by pre-trained VGG19 has 320 channels, 
while that generated by autoencoders has only 64 channels. In 
other words, generic features account for a larger proportion 
than specific features in the integrated feature space. We tried to 
increase the feature map channels by directly increasing the 
numbers of the filters in the corresponding convolutional layers 
of the autoencoder. However, we only ended up with many 
empty layers (pixel values are all zero) in the output feature 
map. Considering we have only one input image to train the 
autoencoder, simply increasing the number of filters cannot add 

up useful features to the output. In the future, we can try to use 
more complex architectures for the autoencoder or to train the 
autoencoder with more input images (more templates). 
 
2) Try to use the model in an iterative manner. This study is 
limited by using only one template to train the autoencoder, 
resulting in highly overfitting models. However, this study can 
also be regarded as the starting step of an iterative experimental 
procedure. We start from one template. Use it to train an 
autoencoder and run the detection model to return the 
coordinates of the detected patches. We extract these patches 
and use them as our new templates. After that, we iterate the 

first step. Use the new templates to train a better autoencoder, 
and to run the detection model again to find matching locations 

of the multiple templates. By using the model iteratively, we 

might approximate the goal of detecting all targets. 
 

5. CONCLUSIONS 

This paper proposes a novel pipeline for wetlands detection 
from historical maps using CNN-based TM and α-shape. We 
get rid of the extensive data annotation task as is often required 

by many CNN-based methods via employing pre-trained 
networks and self-supervised autoencoders. Moreover, we 
compared three different feature extraction models in the CNN-
based TM framework. Experimental analysis shows that 
combining pre-trained CNNs and autoencoders as the feature 
extractor achieves the best result. Aspects that need to be further 
investigated are the weight distribution when combining feature 
maps from pre-trained CNNs and autoencoders and the iterative 
utilization of the proposed method to improve accuracy.   
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