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ABSTRACT: 

 

The identification of accurate and reliable image correspondences is fundamental for Structure-from-Motion (SfM) photogrammetry. 

Alongside handcrafted detectors and descriptors, recent machine learning-based approaches have shown promising results for tie point 

extraction, demonstrating matching success under strong perspective and illumination changes, and a general increase of tie point 

multiplicity. Recently, several methods based on convolutional neural networks (CNN) have been proposed, but few tests have yet 

been performed under real photogrammetric applications and, in particular, on full resolution aerial and RPAS image blocks that 

require rotationally invariant features. The research reported here compares two handcrafted (Metashape local features and RootSIFT) 

and two learning-based methods (LFNet and Key.Net) using the previously unused EuroSDR RPAS benchmark datasets. Analysis is 

conducted with DJI Zenmuse P1 imagery acquired at Wards Hill quarry in Northumberland, UK. The research firstly extracts keypoints 

using the aforementioned methods, before importing them into COLMAP for incremental reconstruction. The image coordinates of 

signalised ground control points (GCPs) and independent checkpoints (CPs) are automatically detected using an OpenCV algorithm, 

and then triangulated for comparison with accurate geometric ground-truth. The tests showed that learning-based local features are 

capable of outperforming traditional methods in terms of geometric accuracy, but several issues remain: few deep learning local 

features are trained to be rotation invariant, significant computational resources are required for large format imagery, and poor 

performance emerged in cases of repetitive patterns. 

 

 

1. INTRODUCTION 

1.1 EuroSDR RPAS Benchmark 

A desirable development in any application of airborne 

photogrammetry is the freeing of processing pipelines from the 

need for supporting information in terms of ground control points 

(GCPs) and/or local Global Navigation Satellite System (GNSS) 

base stations. Reported experiences and professional opinions 

vary as to what extent this is feasible for high quality geometric 

survey, but it is clear that its ultimate achievement would bring 

significant time and cost benefits to National Mapping and 

Cadastral Agencies (NMCAs). As a result, a EuroSDR 

benchmark was initiated in 2021 with the aim of evaluating the 

true geometric quality of real-world survey data generated from 

Remotely Piloted Aircraft System (RPAS) photogrammetry and 

LiDAR under different control configurations, focussing 

primarily on the geometric quality of data generated in the 

absence of ground control and local GNSS base station 

information. Further details on the EuroSDR RPAS Benchmark 

can be found at Geospatial.github (2022). 

 

1.2 Handcrafted versus learning-based feature detection  

The requirement for precise, repeatable and stable tie points in 

order to derive camera pose and sparse 3D representation of a 

surveyed scene is well understood in Structure-from-Motion 

(SfM) photogrammetry. However, the rigorous identification of 

tie points in large image datasets is still an open research topic in 

the photogrammetric and computer vision communities. Tie 
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points may be established by extracting keypoints using 

handcrafted feature detector and descriptor methods (e.g. Lowe, 

2004; Bay et al., 2006; Bellavia et al., 2021). The scale-invariant 

feature transform (SIFT) constitutes one of the most well 

established feature detector and descriptor operators. It detects 

points of interest in images at the local extremes created by the 

difference-of-Gaussians smoothing function (Lowe, 2004). 

Similar to SIFT, various handcrafted feature detectors have been 

implemented in SfM photogrammetric software packages over 

the years (e.g. Snavely et al, 2008; Metashape, 2011; 

Schonberger and Frahm, 2016). Despite the ease and success of 

their implementation, especially in “black-box” SfM software, 

the SIFT-like feature detector operates in isolation, disconnected 

from the entire SfM self-calibrating bundle adjustment pipeline, 

focusing purely on tie point extraction during the initial step of 

descriptor matching (Bellavia et al., 2021; Remondino et al., 

2021). With recent advances in deep learning technology, 

solutions based on convolutional neural network (CNN) methods 

have been proposed (Bellavia et al., 2022a) that jointly train the 

detectors and descriptor to increase reliability and matching 

success rate (e.g. DeTone et al., 2018; Dusmanu et al., 2019; Ono 

et al., 2019; Revaud, 2019; Luo et al. 2020). Other approaches 

have combined the strengths of state-of-the-art neural networks 

and traditional handcrafted algorithms (e.g. Schonberger et al., 

2017, Jin et al., 2021; Bellavia et al., 2022b). 

 

In parallel, Remondino et al. (2021) compared state-of-the-art 

handcrafted and learning-based methods for the establishment of 

tie points in various image datasets. The investigation highlighted 

the practical challenges for feature matching and evaluated 
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selected methods under different acquisition conditions and 

scene characteristics. Local features were extracted on down 

sampled images (1500 x 1000 pixels) because of CNN 

computational constraints. In particular, the performance of eight 

different methods was evaluated in relation to the number of tie 

points extracted, time required and root mean square errors 

(RMSEs) against surveyed independent check points (CPs) 

utilising RPAS images capture in various network configurations 

(i.e. nadir / oblique). Among others, the Local Feature Network 

(LFNet) (Ono et al., 2018), Key.Net (Barroso-Laguna et al., 

2019) and SIFT-like variants implemented in a SfM self-

calibrating bundle adjustment such as COLMAP (Schonberger 

and Frahm, 2016) were evaluated. Remondino et al. (2021) 

reported that learning-based methods provided similar RMSEs to 

those of the handcrafted solutions, especially in cases of strong 

imaging network configurations. 

 

The research reported in this paper builds upon the previous 

investigations and rigorously evaluates the different approaches 

to extract image correspondences to apply an aerial triangulation 

using the EuroSDR RPAS benchmark. It is known that RPAS 

image blocks have many characteristics that can negatively 

influence learning-based methods, e.g. high resolution, camera 

rotations, scale changes, etc. This research analyses such 

characteristics using imagery collected with a top-end DJI RPAS 

sensor / platform combination, the DJI Zenmuse P1 (DJI P1, 

2022), for which performance with handcrafted / learning-based 

algorithms has not previously been investigated. Therefore, this 

research demonstrates for the first time the potential and 

limitations of state-of-the-art deep learning neural networks 

implemented with the latest DJI RPAS datasets. 

 

 

2. STUDY SITE AND RPAS DATASET ACQUISITION 

2.1 Study site 

Guided by a task force of NMCA experts and academics, in 

August 2021 a coordinated test field of GCPs, CPs, test objects 

and profiles was established at Wards Hill quarry in 

Northumberland, UK. The quarry was actively producing 

limestone in the 1920s. Nowadays, the site is privately owned 

and primarily used by the owners for livestock grazing. The study 

site (Figure 1) has an extent of 350 x 250 m and a c. 40 m ground 

lowering where the limestone was quarried. The site is mainly 

vegetated with coarse grass as well as occasional shrubs and 

small trees. 

 

The established test field consisted of 51 CP and eight GCP 

targets. An overview plan of the test field layout can be seen in 

Figure 1. The CP test field approximates to a 6 (labelled A-F) x 

8 (labelled 1-8) array, with CPs randomly placed in each grid 

square and identified using an alphanumeric code according to 

their position in the field (e.g. A4). Three supplementary targets 

were added to densify the test field in the base of the quarry and 

were labelled S1, S2 and S3. The eight GCPs were labelled with 

a prefix of G, followed by their position in the 6 x 8 array - GA1, 

GA5, GA8, GC6, GD4, GF1, GF4 and GF8.  

 

All targets were circular Perspex disks of 300 mm diameter with 

a 100 mm diameter black centre to aid pointing. CP targets were 

fabricated in white Perspex and GCP targets in yellow (Figure 2). 

In order to aid identification in RPAS LiDAR datasets (not used 

herein), and to keep clear of low-lying vegetation, targets were 

mounted in the field on wooden stakes that were driven into the 

ground and secured with a single screw through the centre of the 

target. A spirit level was used to approximately level the surface 

of the circular targets during setting out. The height of the target 

planes above ground level ranged from c. 0.15 m to c. 0.45 m. 

Figure 3 shows an example of a target (CP A7) set-up in the field. 

It should be noted that targets were marked with both a white A4 

clipboard ID and a red / white ranging rod, which may have been 

vertical or horizontal at the time of data acquisition, to support 

target identification during processing and location in the field. 

 

 

Figure 1. Test field target distribution at Wards Hill quarry, 

Northumberland, UK, Map data: Google Earth 2021. 

 

 

Figure 2. 300 mm diameter targets - CPs (l) and GCPs (r). 

 

 

Figure 3. CP A7 located in the field and marked with a 

clipboard and ranging rod. 
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Four Global Navigation Satellite System (GNSS) reference 

stations were established at the study site and surveyed during the 

EuroSDR RPAS Benchmark field campaign (22nd to 26th August 

2021, inclusive). Stations were observed in GNSS static mode, 

delivering sub-cm level 3D accuracy relative to a local base 

station in Ordnance Survey Great Britain 36 (OSGB36). Details 

on ETRS89 to OSGB36 coordinate transformation can be found 

in Ordnance Survey (2020). The GNSS observations from the 

reference stations were used to calculate the coordinates of the 59 

targets. Three Leica GS18 GNSS receivers in “Static and 

kinematic” mode were used to collect data during four separate 

occupations.  The three antennas were mounted on bipods with 

all antenna heights set to 1.800 m. Three minutes of ‘static’ data 

were collected at targets in the east and west of the study site, 

with 5 minutes of ‘static’ data collected at targets in the central 

area, which were generally in the quarry itself and hence subject 

to reduced sky visibility. The receivers / antennas were held 

upright when moving between the different stations, with 

kinematic data logging continuously at 1 Hz throughout in order 

to ensure long data arcs were recorded. This enabled improved 

ambiguity resolution rather than only recording GNSS data when 

set up for 3-5 minutes on the targets alone. All GNSS processing 

was undertaken using Leica Infinity 3.5.0. The average standard 

deviations of all calculated targets’ coordinates across the four 

occupations were 5.3 mm in Easting, 6.1 mm in Northing and 

3.4 mm in height. 

 

2.2 RPAS dataset acquisition 

The study site was simultaneously surveyed using a number of 

different RPAS mounted instruments, each limited to a single 

survey flight to represent “real-world” operation. The research 

reported in this paper utilised a DJI Zenmuse P1 (DJI P1, 2022) 

dataset acquired using a DJI Matrice 300 RPAS platform 

(Heliguy, 2022), as shown in Figure 4. The DJI Zenmuse P1 

carries a 45 megapixel full-frame sensor (35.9 x 24 mm), with 

4.4 μm nominal pixel size and the DJI DL F2.8 LS ASPH lens 

with a 35 mm nominal focal length (DJI P1, 2022). The DJI 

Zenmuse P1 sensor is mounted on a 3-axis stabilised gimbaled 

system, which is fixed on the DJI Matrice 300 RTK RPAS 

platform (DJI M300, 2022). 

 

 

Figure 4. DJI Zenmuse P1 M300 RPAS data acquisition. 

 

The DJI Zenmuse P1 flight was conducted by Heliguy (2022) on 

23rd August 2022, at a 50 m height above ground level at an 

aircraft speed of 5 m/s. The DJI Zenmuse P1 sensor was set up 

with an automatic camera exposure and a continuous focus, 

capturing images with an 80% forward and 70% lateral overlap. 

It should be noted that the RTK link was disabled, as this dataset 

was used for Phase 1 of the EuroSDR RPAS Benchmark, where 

no GCPs or GNSS base station information were made available 

(Geospatial.github, 2022). A total of 974 nadir-looking images 

were collected from 24 parallel flight lines and 25 oblique images 

were captured with a 45º off-nadir angle. To reduce the 

computational power while maintaining a high image overlap 

(Figure 5), a subset of the full DJI P1 image network, 

corresponding to 423 images, was utilised in the analysis 

presented here. From the full image network, one nadir-looking 

image was selected every two images along the flight lines and 

all oblique images and those at the edges of the study site were 

disregarded. The resulting ground sampling distance (GSD) of 

the photogrammetric block was 7 mm.   

 

 

 

Figure 5. Image overlap for 423 DJI P1 images with 507,580 

tie points as estimated in Metashape (see Table 2). 

 

 

3. METHODOLOGY 

The methodological workflow consists of two main stages. In 

stage 1, a circular black and white (b/w) target detection 

algorithm was developed to automatically estimate the centre of 

the circular targets in image space, which were then used as input 

in the following stage. Stage 2 evaluates two handcrafted, 

Metashape SIFT and RootSIFT (Arandjelović and Zisserman, 

2012), and two learning-based methods, LFNet and Key.Net, 

estimating cameras interior orientation (IOP) and exterior 

orientation (EOP) parameters as well as RMSEs on targets. 

 

3.1 Stage 1: Circular b/w target detection 

In stage 1 the automated circular b/w target detection comprises 

established image processing and computer vision (OpenCV, 

2015) routines developed in Python (Burger and Burge, 2009). 

Every RPAS image was converted to grayscale, then a Gaussian 

Blur was applied using a 7 x 7 convolution kernel. A Canny edge 

detector (Canny, 1986) was applied with minimum and 

maximum threshold intensity values of 253 and 255, 
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respectively. After image processing, contour extraction was 

applied to the binary Canny image. To remove noise at this point 

of the workflow, detected contours of any shape with areas of 20 

pixels or less were filtered and removed. The area bounded by 

the closed contour was calculated in OpenCV according to 

Green’s formula (Green, 2008). For the remaining contours 

detected in each image, a best fitting circle was used as an 

approximation to the contour shape and its radius was calculated. 

Only circles with radii within the range 1-100 pixels were used, 

while other circles were removed. The aforementioned settings 

and criteria were specified after fine-tuning each step via a “trial 

and error” procedure.  

 

To check that the detected circles from the contour function 

correspond to the actual circular b/w targets, a Hough circle 

transform was also applied with four different sets of parameters, 

as listed in Table 1. 

 

Hough circle 

transform 

setups 

Parameter 1 Parameter 2 Min 

radius 

[pix] 

Max 

radius 

[pix] 

1 1 10 1 10 

2 1 20 1 20 

3 1 30 1 30 

4 20 30 20 30 

Table 1. Parameterisation setup for Hough circle transform in 

OpenCV after a “trial and error” procedure. 

 

Parameters 1 and 2 refer to threshold limits for edge detection 

and centre of the circle estimation, respectively. The minimum 

and maximum radii correspond to the range of the circular target 

size. The parameters in Table 1 were set up after a “trial and 

error” procedure using a small subset of the 423 RPAS images. 

To specify the parameters, the 7 mm GSD that was estimated via 

the SfM pipeline in Metashape (Table 3), and the minimum 

100 mm and maximum 300 mm diameter of the target’s physical 

size (Figure 2) were considered. The settings shown in Table 1 

were found to provide optimal results, detecting either the inner 

black and / or the outer white circle of the signalised targets. A 

final criterion compared the coordinates of the centres detected 

using contours and those using a Hough circle transform. If 

differences of the centre coordinates in the x and y-axis in image 

space were greater than 2 pixels, then the detected circles were 

disregarded. This condition allowed for filtering out erroneous 

detections such as rounded shapes with similar brightness to the 

targets. The final coordinates of each target’s centre were 

extracted from the fitted circle that met the aforementioned 

2- pixel condition.  

 

To assess the accuracy of the automated circular b/w target 

detection algorithm, the centre of the targets was also manually 

marked in Metashape, following common practice often adopted 

in the SfM photogrammetric pipeline. After resolving an initial 

relative orientation of the image block, epipolar lines per stereo 

image pair supported the manual identification of each target 

centre. Target labels were also manually set in Metashape. The x, 

y coordinates in image space of each target’s centre visible in all 

images were extracted from Metashape and compared against 

those estimated from the automated target detection algorithm. 

To ensure a consistent comparison, 0.5 pixels were added to the 

x and y image coordinates of the OpenCV algorithm to align with 

the interior coordinate system of Metashape. The coordinate 

system in Metashape has its origin in the middle of the top-left 

pixel with (x, y) equal to (0.5, 0.5) (Metashape, 2022). 

 

3.2 Stage 2: Aerial triangulation with handcrafted and 

learning-based feature detection 

In stage 2, aerial triangulation was undertaken using tie points 

obtained by traditional handcrafted features as well as with 

learning-based methods. The limitations of handcrafted local 

features in dealing with strong illumination and perspective 

changes have been addressed in recent years by new detectors 

and descriptors based on CNNs. Among several approaches, end-

to-end methods jointly train the detector and the descriptor, 

sharing the computations either partially or completely. The basic 

idea is to minimise a cost function, maximising the 

discriminability of the descriptor where the network extracts the 

keypoints. However, these methods are often not designed to 

handle rotations, a property that is currently little investigated in 

the computer vision community since many of the datasets used 

for training do not contain such images. On the contrary, in aerial 

photogrammetry, rotation invariance is fundamental in order to 

handle the 180-degree inversion of the photographic sensor 

between nadir strips. Therefore, despite the abundance of 

learning-based methods, those that are rotation invariant are few 

in number.  

 

Among the end-to-end methods available, it was chosen to test 

LFNet, where the architecture respects the classical pipeline 

based on detection, patch orientation estimation, and patch 

description, but the training process is unique. Superpoint 

(DeTone et al., 2018) has some rotation invariance, but extracts 

a limited number of keypoints which makes it unsuitable for 

aerial datasets (Remondino et al., 2021). RoRD (Parihar et al., 

2021) is one of the few rotationally invariant end-to-end methods 

for which source code is available, and it is planned to extend the 

analyses reported in this paper to it in the future. No other 

learning-based end-to-end methods are believed to currently be 

available for testing. 

 

Another approach is the detect-then-describe method that can 

combine different detectors and descriptors, both learning-based 

and handcrafted. This study tests Key.Net+AffNet+HardNet8, in 

the following reported simply as Key.Net, that has performed 

well in previous evaluations. Key.Net is the detector that is 

almost completely learning-based, apart from the first few layers 

that are handcrafted, while HardNet8, an evolution of the original 

HardNet (Mishchuk et al., 2017), is a learning-based descriptor 

for which invariance to rotation is guaranteed by AffNet 

(Mishkin et al., 2018). 

 

In addition to rotation invariance, the other major limitation of 

learning-based methods is the high computational demand that 

does not permit processing of large-format images. To overcome 

this limitation, it was decided to tile the images at full resolution 

(8192 x 5460 pixels) into tiles of 2500 x 2500 pixels, from which 

keypoints and descriptors are first extracted using the methods 

described above. Images are then reassembled to form a unique 

database with the keypoints appropriately translated in a unique 

2D reference system, together with their associated descriptors. 

To further optimize computation times, a maximum of 10200 

keypoints per image were extracted, without significantly 

affecting the final accuracy of the model, as demonstrated in the 

results section. 

 

While COLMAP was used for incremental reconstruction, for the 

matching step it was not possible to use the matcher integrated in 

the software, optimized for the use of the GPU, since the LFNet 

and Key.Net descriptors have a size of 256 and 128 respectively, 

while COLMAP only manages SIFT-like descriptors with 128 

parameters. Therefore, the OpenCV-Python matcher was 
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adopted following a brute-force approach with a matching filter 

that uses cross-check and ratio-test. The values of the ratio-test 

thresholds were 0.80, 0.85, and 1.00 for RootSIFT, HarNet, and 

LFNet, respectively. The values chosen are those proposed in the 

literature, apart from LFNet which, using the value 0.95 (Jin et 

al., 2020), loses most of the matches. The matches were imported 

into COLMAP for geometric verification and image orientation. 

After assessing different camera models, the "OPENCV" camera 

model was found to be the most appropriate for the lens used: 

focal length (fx, fy), principal point (cx, cy), two radial distortion 

(k1, k2), and two tangential distortion (p1, p2) parameters. 

 

Knowing the orientation parameters of the cameras, it was 

possible to triangulate forward the targets with the 

"point_triangulator" COLMAP API. Finally, the model was 

scaled, rotated and translated through a Helmert transformation 

using all available targets. This operating mode was chosen since 

COLMAP does not allow users to use points as control points, 

i.e. by adding constraints in the bundle adjustment. To validate 

the comparisons made in COLMAP and for double-checking the 

results obtained, independent processing was carried out with 

Metashape, whose local features approach is unknown. 

 

 

4. RESULTS  

4.1 Stage 1: Circular b/w target detection 

Out of all 423 RPAS images, 331 images included targets. In 

those 331 images, a total number of 461 correct target detections 

(i.e. true positives) were extracted from the automated OpenCV 

algorithm, whereas the manual target identification in Metashape 

resulted in 542 target detections (Table 2).  

 

Target 

detection 

method 

Total 

detections 

True 

positives 

False 

positives 

False 

negatives 

Metashape 

(manual) 

542 542 0 0 

OpenCV 

(automated) 

1379 461 81 837 

Table 2. Output of the automated circular target detection 

OpenCV algorithm with comparison against Metashape output. 

 

 

 

Figure 6. Examples of correct and erroneous target detections, 

the latter removed from the final outputs via the developed 

automated OpenCV workflow. 

 

Figure 6a (top left) shows an example of a true positive, as 

detected using the OpenCV contour formula with its fitted circle 

in red and its centre marked in blue “x” symbol. The same target 

was detected with the Hough circle transform and the estimated 

location of its centre coincided with the one identified with 

OpenCV contours, hence passed the criterion of the 2 pixel 

coordinate difference. As evidenced in Figure 6a and b, OpenCV 

contours erroneously identified shapes other than circles. Since 

detections from the Hough circle transform at those locations had 

their centre locations further than 2 pixels from the centres 

extracted with OpenCV contours, these were automatically 

disregarded. 

 

As reported in Table 2, the 81 false positives obtained with the 

OpenCV workflow were missed possibly due to that fact that the 

Hough circle transform algorithm was finely tuned to recognise 

targets primarily viewed from above. There were few targets 

located at the edges of the images that were seen from an oblique 

angle as depicted in Figure 7, which could not be located either 

with OpenCV contours or with the Hough circle transform. 

Whilst the automated OpenCV algorithm missed only 81 targets 

from the 542 total detections, it produced a relatively high noise 

with 837 false negatives (Table 2). The resulting noise is 

attributed to the fact that both the OpenCV contours and Hough 

circle transform algorithm were finely tuned to identify as many 

circles as possible, therefore the specified settings (e.g. Table 1) 

were possibly too sensitive to noise. 

 

 

Figure 7. Example of false positives mis-detected with the 

OpenCV algorithm due to a relatively oblique viewing angle. 

 

4.2 Stage 2: Aerial triangulation with handcrafted and 

learning-based feature detection 

The quantitative comparisons between the handcrafted and 

learning-based local features are based on several statistics that 

COLMAP (Schönberger et al., 2016) provides downstream from 

the SfM pipeline, and the RMSE on the residuals calculated on 

all available targets obtained from the Helmert transformation, as 

reported in Table 3. The COLMAP statistics include the number 

of points in the sparse cloud, the mean track length (MTL), and 

the mean reprojection error (MRE). The MTL in particular 

provides the redundancy of the observations that enter the bundle 

adjustment, while the MRE, although important to be minimized 

during the adjustment, is not able to provide an estimate of the 

geometric accuracy of the model alone (Remondino et al., 2021). 

 

In this comparison the reference model is the RootSIFT model 

run in COLMAP, its results reported in row (e) of Table 3. To 

verify the quality of this reference, it was compared with a model 

obtained from Metashape setting the alignment parameters 

similarly to those of COLMAP: high accuracy (i.e. keypoints 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1183-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1187



 

extracted on full size images), the key point limit set to 10200, 

the same camera parameters of the OpenCV camera model (fx, 

fy, cx, cy, k1, k2, p1, p2), and not using the targets as constraints 

in the bundle adjustment (i.e. no camera model optimization). 

The resulting RMSE at the CPs for COLMAP is 4.7 cm, quite 

similar to the 4.2 cm reported by Metashape in row (d), 

demonstrating that the COLMAP pipeline is equivalent to that of 

Metashape under the same operating conditions. 

 

Since the RMSE appeared to be quite high when considering the 

GSD of 7 mm, this value was found to be related to the lack of 

radial distortion factor k3 in the camera model. In fact, if 

parameter k3 is added in Metashape (keeping all other parameters 

of model (d) equal), an RMSE equal to 1.8 cm is obtained (model 

(c) in Table 3). Unfortunately, COLMAP does not allow the 

addition of the k3 parameter, so comparison with the learning-

based methods was conducted with the OpenCV camera model. 

In (b) the photogrammetric model is still not optimized and has 

been scaled with only six targets used to optimize the camera 

model in (a). The optimized model (a) has been reported for 

completeness, as it represents the procedure in aerial 

photogrammetry where greater accuracy is achieved when a high 

quality ground survey is available in support, as in this case, with 

standard deviations of a few millimetres. Finally, note how 

between (b) and (a) the number of extracted keypoints increases 

from 10200 to 50000 without a significant increase in accuracy. 

 

With the RootSIFT model cross-validated, it is now possible to 

analyse the results of the learning-based methods. LFNet, model 

(f), could not identify sufficient valid tie points to be able to 

register the entire block of images correctly, registering only 

213/423 images. However, Key.Net, model (g), managed to 

orientate the entire block, obtaining an RMSE of 3.7 cm, slightly 

better than that of both RootSIFT and Metashape. It is also 

interesting to note the 50% increase in the MTL of Key.Net over 

the other methods (4.5 versus a MTL of 3 for others). Finally, it 

should be noted that there is no direct relationship between the 

values for MRE and those of the RMSE, as already previously 

reported in Remondino et al. (2021) and Bellavia et al. (2022). 

 

It is also worthwhile to dwell on why LFNet fails to record all 

images. First of all, it should be taken into account that the value 

recommended by Jin et al. (2020) for Key.Net + HardNet is 0.95, 

based on the descriptor distribution. With this threshold, for 

certain images, LFNet could not even hold a match. The reason 

is that the images in this dataset are challenging with patches very 

similar to each other (grass fields), while the LFNet descriptor is 

not very discriminative, an assertion demonstrated both by the 

high ratio threshold value of 0.95 and by the test reported in 

Figure 9. In Figure 9 it is possible to compare the matches before 

the geometric verification, and it is clear how LFNet contains a 

high number of outliers probably linked to the low 

discriminability of its descriptor. 

 

 
Figure 8. Sparse cloud calculated with COLMAP and 

Key.Net local features. 

 

5. CONCLUSIONS AND FUTURE WORK 

The paper has introduced the EuroSDR RPAS benchmark 

datasets and its activities related to the image orientation based 

on learning-based tie points. In stage 1, the automated OpenCV 

algorithm has provided an independent method of target 

detection that does not rely on the “black-box” SfM 

photogrammetric software packages such as Metashape, while 

eliminating the time consuming and labour intensive task of 

manual inspection. However, to reduce the high number of false 

negatives and remove the noisy results, investigations to apply 

and incorporate RANSAC filtering within the automated 

OpenCV algorithm is under development.   

 

In stage 2, the investigation has focused on the rigorous 

evaluation of object space accuracy arising from triangulation 

using tie points derived from handcrafted and learning-based 

feature extraction methods for aerial photogrammetric surveys. 

First of all, this work has set itself the goal of pushing previously 

reported evaluations to more extensive datasets, at full resolution, 

focusing on RPAS images that require local features able to 

manage the rotations of the sensor during flights. The large 

format images have been processed by dividing the original 

images into tiles computationally manageable by the learning-

based local features. Rotation invariance can only be managed by 

networks trained ad-hoc for this specific task. It is emphasized 

that learning-based methods which are invariant to rotation are 

currently lacking in the literature, a very limited category if 

compared to the numerous methods proposed in recent years that 

are not invariant to rotations. Furthermore, all these methods 

remain slow in terms of the time taken for feature extraction, 

while demanding high computational resources. 

 

Among the tested methods, LFNet, which represents the family 

of end-to-end methods proven not to have very discriminative 

descriptors, a factor which in this dataset is amplified by the 

presence of repetitive textures. On the contrary, Key.Net 

demonstrated slightly better results than RootSIFT and 

Metashape, demonstrating the ability of these new methods to 

compete with well-established handcrafted methods such as 

RootSIFT. Furthermore, Key.Net displayed a significantly higher 

MTL than the other methods, an interesting feature for more 

difficult datasets, for example with little overlap between images, 

or where there are strong variations in the image content and in 

the radiometric distribution, such as imagery from multi-

temporal datasets. In the future, extensive tests on multi-temporal 

aerial datasets will be conducted in order to take full advantage 

of the robustness of the learning-based descriptors on imagery 

with significant changes in radiometric content. 
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Local 

features 

Optimization 

Camera Model 

# kpts 

# tie pts 

RMSE [m] 

on GCPs 

RMSE [m] 

on CPs 

# 

GCPs 
# CPs #3D points MTL 

MRE 

[pix] 

(a) Metashape 
Optimized 

OpenCV + k3 
50000 

no limits 
0.006 0.014 7 49 507580 3.1 0.20 

(b) Metashape 
Not optimized 

OpenCV + k3 

10200 

10200 
0.019 0.019 7 49 223399 3.0 0.31 

(c) Metashape 
Not optimized 
OpenCV + k3 

10200 
10200 

- 0.018 0 56 223399 3.0 0.31 

(d) Metashape 
Not optimized 

OpenCV 

10200 

10200 
- 0.042 0 56 223557 3.0 0.33 

(e) RootSIFT 
Not optimized 

OpenCV 
10200 
10200 

- 0.047 0 56 187815 3.0 0.57 

(f) LFNet 
Not optimized 

OpenCV 

10200 

10200 
- 

incomplete 

registration 
0 56 29065 3.1 0.36 

(g) Key.Net 
Not optimized 

OpenCV 
10200 

10200 
- 0.037 0 56 208803 4.5 0.81 

 Table 3. Overall comparison between handcrafted and learning-based tie point extraction methods. In each self-calibrating bundle 

adjustment the adopted cameral model followed the OpenCV convention (fx, fy, cx, cy, k1, k2, p1, p2). 

 

  

RootSIFT – Brute Force RootSIFT – Geometric Verification 

  

LFNet – Brute Force LFNet – Geometric Verification 

  

KN+HN – Brute Force KN+HN – Geometric Verification 

 

Figure 9. Image matching comparison before and after geometric verification. 
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