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ABSTRACT: 

 

The process of finding correspondence points among the overlapping images is called matching. The matching process is one of the 

fundamental steps in photogrammetry and computer vision with primarily application in 3D model reconstruction. The main 

limitation with matching algorithms is finding all the correct matches, so-called inliers, and consequently, reducing the incorrect 

matches, so-called outliers. A number of algorithms have been developed to increase the inliers. One of the well-known algorithms is 

RANdom SAmple Consensus (RANSAC). RANSAC, however, has a few limitations in terms of the number of iterations, high false-

positive rate (outliers), and computational time. To improve RANSAC we are proposing three enhancements steps. The 

enhancements utilise an Iterative Least-Squares-based Loop (ILSL), a Similarity Termination (ST) Criterion, and a Post-Processing 

(PoP) step. We tested our enhancements on unmanned aerial vehicles (UAV) images of a forested area. Results show that the 

proposed enhancements decrease the false-positive ratio (outliers) and increase the number of inliers, with a reduced computational 

time compared to the conventional RANSAC. This led to more accurate photogrammetry products including Digital Surface Model 

(DSM). 
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1. INTRODUCTION 

 

The process of finding corresponding points between two or 

more overlapped images is called matching which has many 

applications in photogrammetry and computer vision. Matching 

is one of the basic and important steps in producing 

photogrammetric and computer vision products (Xiong and 

Zhang, 2009) such as orthophoto, sparse points cloud, 3D 

model, and digital surface model (DSM). 

One of the main photogrammetric products is DSM. In general, 

the steps involved in producing the DSM are, in order, feature 

and tie points detection, tie points matching, finding the best 

matches, image orientation, sparse point cloud generation, 

dense point cloud generation using the oriented images, 3D 

surface reconstruction, and DSM generation. Finding the best 

matches is essential to generate the sparse points cloud, and 

consequently a precise DSM. 

One of the challenges in a matching process is the presence of 

high number of outliers (false positives) and low number of 

inliers (correct matches). Outliers decrease the accuracy and 

reliability of point cloud and DSM products (Lin et al., 2021). 

Another challenge in a matching process is its huge 

computational processing, since it is an iterative process (Wang 

and Chen, 2021), especially when applied to super high-

resolution imagery with multiple overlapping images, such as 

those acquired by unmanned aerial vehicles (UAVs). This 

challenge is enhanced for DSM and 3D model generation of 

spectrally and texturally similar environments such as treed 

areas, where finding the correct corresponding points (inliers) is 

more problematic. Furthermore, cameras (sensors) on-board 

UAVs are often non-metric and that introduces additional 

challenges in processing such data, especially in the matching 

step in comparison to traditional photogrammetric (Raguram et 

al., 2008).   

To decrease the number of outliers, consequently, increase 

accuracy and reliability, various algorithms have been 

developed to find and remove outliers before the sparse point 

cloud generation step. Among many algorithms are M-

estimators, L-estimators, R-estimators, Least Median Squares 

(LMedS), and Hough transform (Choi et al., 1997). One of the 

well-known methods is the Random Sample Consensus 

(RANSAC) (Fischler and Bolles, 1981). This method, first, 

selects an initial random sample (points) to estimate model 

(collinearity equations or fundamental matrix) parameters, then 

it evaluates the number of inliers and calculates the maximum 

iteration number (N). 

To date, various modified RANSAC versions have been 

introduced to improve its performance such as M-estimator 

SAmple Consensus (MSAC) (Torr and Zisserman, 2000), 

Locally Optimized RANSAC (LO-RANSAC) (Chum et al., 

2003), Progressive Sample Consensus (PROSAC) (Chum and 

Matas, 2005), RANSAC for Quasi Degenerate data 

(QDEGSAC) (Frahm and Pollefeys, 2006), Optimal RANSAC 

(Hast et al., 2013), Universal framework for random SAmple 

Consensus (USAC) (Raguram et al., 2012), Marginalizing 

Sample Consensus (MAGSAC) (Barath et al., 2019), Latent 

RANSAC (Korman and Litman, 2018), and; Geometrical 

Constraint SAmple Consensus (GCSAC) (Le et al., 2018), and 

so on. A comprehensive survey of different RANSAC-based 

methods shows the MSAC has the better performance in 

comparison to other modified versions in terms of accuracy and 

computational cost (Fischler and Bolles, 1981; Frahm and 
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Pollefeys, 2006; Torr and Zisserman, 2000). However, it has a 

number of limitations including the increased false-positive 

rates of outliers and consequently resulting in fewer inliers, 

unnecessary high number of iterations, and high computational 

time. Such deficiencies possibly result from the random 

sampling process, the presence of noise, and incorrect 

assumptions of the initial values.  

This paper proposes a modified version of RANSAC-based 

methods to address some of the RANSAC limitations by 

introducing three enhancement steps. These three enhancements 

are to a) increase the stability and number of inliers using a 

locally iterative least-squares-based loop (ILIS), b) improve the 

convergence rate and consequently reducing the number of 

iterations using a similarity termination (ST) criterion, and c) 

remove the remaining outliers at the end of the processing loop 

using a POst-Processing procedure (PoP). 

 

2. METHODS 

 

Our proposed three basic enhancements improve RANSAC 

functionality in terms of number of inliers and computational 

time. Since our proposed method modifies RANSAC, it is 

important to understand RANSAC-based algorithms in 

photogrammetry. Thus, the remainder of this paper describes 

conventional RANSAC followed by our enhancements steps. 

We will then present the results of applying the enhancements 

on UAV images over a forested area. 

 

2.1 RANSAC in Photogrammetry  

 

RANSAC is an iterative two-step process. In the first step a 

minimum number of random samples (tie points), usually eight 

points (Elnima, 2015), are selected to solve the collinearity 

equations or fundamental matrix between two overlapping 

images. The interior camera parameters and relative orientations 

(transformations and rotations) are calculated simultaneously 

using the collinearity equations or fundamental matrix. Using 

more points to solve the equations increases the degree of 

freedom, thus, increases the accuracy and reliability. 

In the second step, the model is tested against the rest of tie-

points through a distance function (e.g. Euclidean or Sampson 

distance) to determine the number of inliers using a predefined 

threshold. If the number of inliers is higher than a threshold or 

the number of iteration reaches to a predefined number N, the 

calculations stop and the final collinearity equations’ 

coefficients are recalculated using all the inliers (Fischler and 

Bolles, 1981). Eqs 1 and 2 are used to determine the number of 

inliers (I), the inlier-ratio (e) and the number of iterations (N). ρ 

is the desired probability, and M is the total number of points 

(Fischler and Bolles, 1981). 

 

     (1) 

 

      (2) 

 

where  e = inlier-ratio 

 M = total number of points 

 S = selected initial random sample 

 I = the number of inliers 

 ρ = the desired probability of selecting a good sample 

 

Our proposed three enhancements to standard RANSAC are 

depicted in Figure 1. It is worth mentioning that none of the 

proposed enhancement steps requires additional input 

parameters from the user. 

 

 

Figure 1: The proposed enhancements shows in blue 

 

2.2 Iterative Least-Squares-based Loop (ILSL) 

 

As mentioned, the RANSAC-based models randomly select 

eight points (minimum number required to solve collinearity 

equations including three rotations, three transformations, two 

interior orientation parameters (Cx,Cy), and three coordinates 

(X,Y,Z) for each pair of point)s to find the unknown equations’ 

coefficients and check the model against all the other matched 

points to find inliers. If the number of inliers is more than the 

previous set of points, the algorithm updated the inliers. 

However, what is missing in RANSAC is that it does not 

consider the inclusion of these early-found inliers to regenerate 

and improve the model. To include the early-best matches 

(inliers) in improving the model at each iteration, we propose a 

Locally Iterative Least-Squares-based (LILS) loop. The LILS - 

loop uses all inliers found in the previous iteration to re-

estimate the equations and count the inliers again, then, apply a 

least square solution to improve the model until the number of 

inliers does not change. If the number of iterations reaches to K 

or inliers ratio meets the threshold, the LILS - loop stops. The 

LILS - loop increases the number of inliers, enhances the 

stability, and increases the convergence rate. 
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2.3 The Similarity Termination (ST) Criterion 

 

The process in the RANSAC-based method algorithms is 

terminated when N iteration is reached or the inlier-ratio is 

greater than the threshold. To increase the convergence rate, we 

define a stop criterion not only to balance the computational 

time but also to avoid selecting a local optimum. The additional 

Similarity Termination (ST) criterion considers the similarity of 

inliers points between two consecutive iterations to terminate 

the process if the similarity is more than 95%. The ST criteria 

increases the convergence rate and decreases the computational 

time. 

 

2.4 Post-Processing 

 

To remove any possible remaining outliers (based on the 

experience, the final results still contain outliers), a post-

processing procedure is introduced to remove any outliers. 

Once the outliers are removed, the final coefficients are 

recalculated. This enhancement does not add any computational 

time, but increases the stability and accuracy. 

 

3. DATASET AND PLATFORM 

 

We used a set of four overlapping images acquired by a For this 

study, images were taken by a DJI Phantom Phantom over an 

area covered by bare land, a single building, road and forests 

(mostly coniferous trees)3, over Rich’s Seashore Dr., Rigolet, 

Newfoundland, Canada (Figure. 2). The area is located in UTM 

Zone 21 N (54°10'21.48" N, 58°26'6.74" W) and mostly 

covered by of coniferous trees. The parameters of the UAV 

images are listed in Table 1. Among the acquired UAV images, 

four different overlappinged images wereare selected over 

dense, semi-dense, and sparse forestry areas to assess the 

proposed enhancements. 

 

 

Figure 2: UAV image of the test area 

 

Table 1: The specifications of the used UAV imageries 

Weight (g) 1280 

Diagonal size (mm) 350 

Max speed (m/s) 16 

UAV model DJI Phantom 3 

Camera  

Model FC330 

Sensor 1/2.3″ CMOS (Effective pixels: 

12.4 M) 

Lens FOV 94°20 mm 

Hover Accuracy 

Range 

Vertical ±0.5 m (with GPS Positioning) 

Horizontal ±1.5 m (with GPS Positioning) 

Max. flight time (minute) 23 

Date of imaging 1/9/2016 

Image size (pixels) 4000×3000 

Ground resolution size of images 

(cm/pix) 

2 

Average flight altitude (m) 53.8 

Focal length in 35 mm format 

(mm) 

20 

ISO speed 174 

Exposure 1/60 

Aperture value 2.8 

Image area coverage ( ) 81×61 

Total area coverage ( ) 0.09 

 

 

4. RESULT 

 

The proposed improvements are evaluated both qualitatively 

and quantitatively. First, comparing the number of inliers and 

the relative computational time to RANSAC is done to assess 

the quantitative analysis. Then, quantitative analysis was 

conducted by comparing DSM generated after our proposed 

enhancements and that generated by well-known commercial 

software (AgiSoft) (AgiSoft PhotoScan Pro). The Scale-

Invariant Feature Transform (SIFT) algorithm was utilised to 

extract match-points for all images (Lindeberg, 2012), in this 

paper. The proposed enhancements methods were implemented 

and applied to four UAV image datasets over forested areas (as 

mentioned previous section) to remove outliers and generate 

sparse point cloud and the DSM, using The basic collinearity 

equations (with a normalised 8-point model (Elnima, 2015) ).  

 

4.1 Quantitative assessment  

 

Table 1 shows the results of the proposed methods compared to 

RANSAC in terms of computation time and number of inliers 

for four data sets (1, 2, 3, and 4). The first row in Table 1, 

shows the number of input match points (containing inliers and 

outliers) resulting from applying the SIFT to each dataset. 

Results reported in Table 1, shows that the proposed method 

outperforms RANSAC in finding more inliers in all four 

datasets. Furthermore, the computational time is less in three 

datasets than that of RANSAC. 

 

Table 2. Comparison of the proposed and RANSAC method in 

terms of computational time and number of inliers 

   Dataset 1 2 3 4 

Number of SIFT-points 7791 2621 1083 420 

Computational time of 

proposed method relative to 

RANSAC (RANSC is 

considered 1) 

1.67 0.76 0.31 0.13 

Number 

of 

inliers 

Proposed method 5394 1598 559 133 

RANSAC 4516 1374 491 119 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-147-2022 | © Author(s) 2022. CC BY 4.0 License.

 
149



 

4.2 Qualitative assessment  

 

As mentioned, we also generated the sparse point cloud and 

DSM using the proposed method and using AgiSoft commercial 

software to compare the final products. One of the image pairs’ 

results are shown in Figure 3. As shown in this figure, the 

proposed method resulted in a denser sparse and dense point 

cloud (more inliers) (Figure 3a, 3c) than that of AgiSoft (Figure 

3b, 3d). The point cloud difference shows the proposed method 

outperformed the AgiSoft (Figure 3e), and this results in a more 

accurate DSM (Figure 3f) than that of AgiSoft (Figure 3g). To 

facilitate the comparison, some areas are indicated in red circles 

in the two DSMs. These are individual trees and it is clear that 

the proposed method successfully picked those trees in the 

DSM while AgiSoft failed to do so. 

 

 

(left image) 

 

(right image) 

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 

Figure 3. The two overlapped images as input data; the 

generated sparse point cloud using the proposed method (a) and 

using AgiSoft software (b); the generated dense point cloud 

using the proposed method (c) and using AgiSoft software (d);  

the dense point clouds difference (e); the DSM generated using 

the proposed method (f) and AgiSoft (g)  

 

5. CONCLUSION  

 

This study modifies the RANSAC method by using three 

enhancements for improving the performance of RANSAC-

based methods in terms of increasing the stability, the number 

of inliers, accuracy, and the convergence rate. The three 

enhancements include a local iterative least-squares-based loop 

to increase the number of inliers, as well as the stability of the 

method, a similarity termination criterion to decrease the 

computational time, and a final post-processing procedure to 

increase the accuracy and reliability of the results. The proposed 

method has been evaluated using the basic collinearity 

equations. The key points have been extracted using the SIFT 

algorithm. 

The comparative analysis show that the proposed method could 

find more inliers, with lower computational time, especially in 

low inlier-ratios. However, it is observed that when the inlier-

ratios is about higher than 70%, the proposed method is slightly 

slower than the RANSAC, but with meaningfully higher 

accuracy. Also, the proposed method does not need to tune new 

parameters or generate a high number of samples. The point 

cloud and DSM comparison showed the proposed methods can 

detect and extract more single trees than AgiSoft can do, which 

is a direct result of finding more inliers by the proposed method. 

Moreover, the sparse point cloud has more well-distributed 

points, especially in forest areas than that of AgiSoft. The 

proposed method is an important step in improving the 

processing workflow and products of ever-increasing UAV data 

for DSM and Orthophoto generation for environmental 

monitoring including forest 3D modelling.  
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