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ABSTRACT: 
 
A dense point cloud with rich and realistic texture is generated from multiview images using dense reconstruction algorithms such as 
Multi View Stereo (MVS). However, its spatial precision depends on the performance of the matching and dense reconstruction 
algorithms used. Moreover, outliers are usually unavoidable as mismatching of image features. The lidar point cloud lacks texture but 
performs better spatial precision because it avoids computational errors. This paper proposes a multiresolution patch-based 3D dense 
reconstruction method based on integrating multiview images and the laser point cloud. A sparse point cloud is firstly generated with 
multiview images by Structure from Motion (SfM), and then registered with the laser point cloud to establish the mapping relationship 
between the laser point cloud and multiview images. The laser point cloud is reprojected to multiview images. The corresponding 
optimal level of the image pyramid is predicted by the distance distribution of projected pixels, which is used as the starting level for 
patch optimization during dense reconstruction. The laser point cloud is used as stable seed points for patch growth and expansion, 
and stored by the dynamic octree structure. Subsequently, the corresponding patches are optimized and expanded with the pyramid 
image to achieve multiscale and multiresolution dense reconstruction. In addition, the octree’s spatial index structure facilitates parallel 
computing with highly efficiency. The experimental results show that the proposed method is superior to the traditional MVS 
technology in terms of model accuracy and completeness, and have broad application prospects in high-precision 3D modeling of large 
scenes. 
 
 

1. INTRODUCTION 

Three-dimensional Laser Scanners and digital cameras are top-
rated sensor devices in remote sensing mapping, intelligent 
driving, and smart cities. Multi View Stereo (MVS) (Seitz et al., 
2006, Strecha et al., 2008) is an important technology used to 
generate a dense point cloud through multiview images dense 
reconstruction. Both Semi-Global Matching (SGM) 
(Hirschmüller, 2007) and Patch-based Multi-view Stereo (PMVS) 
(Shen, 2013) are the two popular dense reconstruction methods. 
The dense point cloud model brings richer texture details and 
higher resolution, but the model’s spatial precision may be 
affected by various error factors. In comparison with  the dense 
point cloud, lidar point clouds have better spatial precision but 
lower texture resolution. It is possible to generate a high-quality 
dense point cloud. Both the precision and texture details can be 
improved by integrating lidar point cloud and multiview images 
for dense reconstruction. 
 
The following problems may exist in the dense reconstruction 
process based on multisource data. The first problem is that the 
spatial resolution of the point cloud, the viewing angle of the 
image, and the shape of the target surface all affect the modeling 
accuracy. For example, the lidar point cloud with higher spatial 
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resolution can keep the integrity of the dense reconstruction, and 
the forward-looking perspective for images can keep better co-
visibility. The spatial resolution of point clouds collected by 
different sensor devices will result in different densities of seed 
points. Because the image acquisition method is flexible and the 
shooting angles are diverse, the distribution of seed points may 
vary greatly when the point cloud is reprojected to the image. 
Object shape differences may also cause laser point clouds to 
have different projected pixel distributions on different views. An 
 

 

Figure 1. Schematic diagram of the point cloud reprojection on 
the image with different shooting angles and building shapes. 
(a) the reprojection for the ideal case; (b) the reprojection for 

the actual situation. 
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example of the above is shown in Figure 1. The yellow points in 
Figure 1(a) and Figure 1(b) represent the reprojections on the 
image for the point cloud. The left and right pictures refer to the 
reprojection distribution under the ideal condition and the 
practical condition, respectively. 
 
During dense reconstruction, a patch is a rectangular covering the 
surfaces visible in the input images, which is shown in Figure2. 
The details of the patch definition and the PMVS method have 
been explained by Furukawa (Furukawa, 2007). 
 

 
Figure 2. A patch and its associated images (Furukawa, 2007). 

 
The size of the seed patch depends on the image resolution and 
the spatial resolution of the point cloud. Therefore, it is difficult 
to choose the optimal growing patch size. Computational 
efficiency is the second problem. The traditional PMVS 
algorithm is based on the patch growth and expansion, which 
cannot be calculated in parallel due to the calculation sequence 
dependency, resulting in low calculation efficiency. During the 
modeling process, the data volume of the laser point cloud is 
generally huge. It makes the PMVS algorithm more demanding 
on hardware. The computational efficiency is difficult to 
guarantee. 
 
Locher proposed a progressive prioritized multiview 
reconstruction method, which can visualize the output point 
cloud during reconstruction, and the runtime is improved largely. 
The most contribution of the method is first delivering a dense 
point cloud using a sparse point cloud generated by SfM as a 
computational budget in a progressive manner (Locher, 2016). 
The accuracy of this method depends on the quality of the sparse 
point cloud. Moreover, the mapping relationship between the 
sparse point cloud and multiview images has been determined by 
SfM, while how to achieve dense reconstruction integrating 
multisource data does not be considered in this method. 
 
Based on the above research and analysis, this paper proposes a 
multiresolution patch-based 3D dense reconstruction method 
based on the integration of multiview images and the laser point 
cloud, which considers the spatial distribution constraints of laser 
point clouds. In this method, the laser point cloud is used as the 
seed points, and the octree structure and pyramid image are used 
for multiscale and multiresolution patch expansion to improve 
the efficiency and accuracy of dense reconstruction.  
 
The remainder of this paper is organized as follows: Section 2 
summarizes the related work; the details of the proposed method 
are introduced in Section 3; Section 4 arranges the experiments 
and the corresponding results; followed by conclusions and 
discussions in Section 5. 
 

2. RELATED WORK 

In the previous period, many scholars have studied the extraction 
of geometric shapes from images, such as textures, shadows, 
contours, and stereo correspondence. MVS is a method for 
extracting geometric information using stereo image pairs (Seitz 

et al., 2006, Strecha et al., 2008). The quality and the precision 
of images and the interior and exterior orientation elements of the 
camera determine the modeling effect of MVS. The development 
of Structure from Motion (SfM) technology makes the 
calculation of the interior and exterior orientation elements of the 
camera easy and simple, and SfM models the geometry of two or 
more views under strict scene assumptions (Hartley et al., 2000). 
Carlo Tomasi early presented a technical idea of visual 
reconstruction algorithms (Carlo et al., 2011). RANSAC (Mach, 
1981) allows SfM to robustly estimate the pairwise geometric 
relationship between two or more views under noise matching. In 
recent years, SfM and Visual Simultaneous Localization and 
Mapping (VSLAM) (Karlsson et al., 2005) have been rapidly 
developed and widely used in the field of urban 3D scene 
modeling, autonomous driving and indoor navigation, etc. Based 
on this, MVS algorithms can get better results and are widely 
used in various industries. 
 
In computer vision, MVS algorithms were initially developed in 
a laboratory environment (Tsai, 1983, OkutomiM et al., 1993, 
Faugeras, 1997), where the shooting conditions could be 
controlled, and the camera could be accurately calibrated. Then, 
they were used in small outdoor scenes (Strecha et al., 2004, 
Hornung et al., 2006, Ha Bb Ecke et al., 2007, Sinha et al.,2007, 
Vogiatzis et al., 2008) and finally, extended to large outdoor 
scenes (Labatut et al., 2007, Pollefeys et al., 2008, Vu et al., 2009, 
Furukawa et al., 2010,). Bundler developed by Noah Snavely's 
(Snavely, 2010) solves the problem of recovering structure from 
motion (SfM). VisualSFM developed by Changchang Wu 
(Changchang, 2013) is a GUI application for SfM. MVS software 
developed by Jancosek (Jancosek et al., 2011) performs well in 
practical applications. The Multi View Environment (MVE) is a 
complete end-to-end pipeline implementation for image-based 
geometry reconstruction developed by TU Darmstadt. Open 
Multiple View Geometry (OpenMVG) (Moulon et al., 2017) 
provides customizable tools for sparse reconstruction by SfM in 
multi-view geometry, such as feature extraction, feature 
matching, sparse point cloud generation, and so on. 
 
PMVS is an object-based dense matching reconstruction method, 
while SGM is an image-based dense matching modeling method 
(Hirschmüller, 2007), and the former has better accuracy while 
the latter has better efficiency. Moreover, especially for regions 
with large undulations, PMVS has better performance for aerial 
images dense reconstruction than SGM. In recent years, MVS 
modeling methods based on deep learning have achieved better 
results (Wang et al., 2021, Luo et al., 2019). However, these 
existing methods all take multiview images as the only data 
source. 
 
At present, multi-sensor integration and fusion are widely used 
in various industries, and dense reconstruction methods based on 
multisource data are still under development (Franceschi M et al., 
2015). This paper proposes a PMVS method for the integration 
of point clouds and images, using laser point clouds with higher 
precision as the frame and seed points, and using images for patch 
reconstruction based on point clouds to obtain high-quality 3D 
models. The main contribution of this work is that using the 
octree structure to store the laser point cloud. It proceeds 
multiresolution and multiscale patch expansion and branch 
according to the octree structure. 
 

3. METHODOLOGY 

The flowchart of the method presented in this paper is shown in 
Figure 3.  
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Figure 3. Flowchart of the proposed method. 

 
In the first stage, to obtain the mapping relationship between 
multiview images and the laser point cloud, an indirect rough-to-
fine registration strategy is adopted in this paper, i.e., a sparse 
point cloud is firstly generated by SfM using multiview images, 
which is then registered with the laser point cloud to get the 
correspondence between multiview images and laser point cloud. 
The buildings have noticeable point features, line features, and 
planar features. This work uses these features for rough 
registration. Iterative Closest Points (ICP) refined registration 
algorithm is proceeded for getting higher accurate results. 
 

   

Figure 4. The schematic of pyramid image (left) and octree 
point cloud (right). 

 
In the second stage, a multiresolution patch-based dense 
reconstruction is proceeded based on the integration of dynamic 
octree structure and multiple levels image pyramid, and Figure 4 
shows the schematic of pyramid image and octree laser point 
cloud. The green cubes represent octree cells. Both the pyramid 
image and laser point cloud structured with octree are used for 
patch expansion, and the proper correspondence between them 
needs to be determined first. The definition, expansion, and 
optimization of patches are crucial steps in such patch-based 
dense reconstruction techniques, which have a significant effect 
on the efficiency and accuracy of reconstruction. The point cloud 

generated by sparse reconstruction becomes denser as the patch 
expands, and each patch corresponds to a point in the sparse point 
cloud. In this paper, the laser point cloud is used as the input of 
dense reconstruction, and the seed patches for expansion are 
determined according to the mapping relationship between the 
laser point cloud and the multiview images. The optimal pyramid 
image level corresponding to the initial seed patches is predicted 
by the distance distribution of the projected pixels of the laser 
point cloud on the multiview images, which is used as the starting 
image level for multiresolution patch optimization and expansion. 
The point cloud during dense reconstruction is stored using a 
dynamic octree structure and dynamically updated with patch 
optimization and expansion. 
 
3.1 Prediction of the optimal starting level of the image 
pyramid 

Patch expansion and branch should be started from the images 
with the best resolution matching with the spatial resolution of 
the laser point cloud. Therefore, a pyramid image is necessary for 
reconstruction in multiple levels of the octree structure. 
 
In this paper, the optimal starting layer of the pyramid image is 
determined according to the mapping relationship between the 
laser point cloud and the multi-view image. Generally, the spatial 
resolution of the laser point cloud is lower than the image 
resolution. In this paper, the laser point cloud is reprojected to the 
pyramid images of multiview images according to the mapping 
relationship between the laser point cloud and the multi-view 
image. For laser points which do not be observed in the image, 
the reprojection is invalid and should be filtered (Azureology, 
2022). 
 
According to the distance distribution of the projected pixels of 
the laser point cloud on the pyramid image, the appropriate 
pyramid level can be predicted and used as the starting image 
level for patch optimization and expansion during dense 
reconstruction. All pyramid levels between the original image 
and the pyramid starting image level will be used for patch 
optimization.  
 
3.2 Seed patches generation and optimization under laser 
point cloud reprojection constraints 

 

c(p)

w
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Figure 5. The schematic of the spatial geometric relationship of 
patches. 

 
The determination of seed patches initialization is the first step in 
dense reconstruction. In this paper, the laser point cloud is used 
as the input, and the corresponding patches are initialized as 
follows: The number of covisibility views for each point in the 
laser point cloud can be determined according to the mapping 
relationship between the laser point cloud and the multiview 
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images, and those points with more than three covisibility views 
are taken as candidate seed points and used for patch optimization 
and expansion, and the remaining points are directly merged with 
the final results. 
 
Patch optimization determines the reconstruction accuracy. In 
this paper, Normalized Cross Correlation (NCC) of a patch’s 
projection in the image space gI(p) is used for patch optimization. 
The schematic of the spatial geometric relationship between a 3D 
patch and its corresponding 2D projection patches on the 
multiview images is shown in Figure 5. Where Ci denotes the 
position of a 3D point, Oi denotes the camera center. 
 
Let c(p) and n(p) represent the center and the normal vector of 
the patch, respectively, and they are optimized by maximizing the 
averaged NCC, i.e., minimizing the e(p) in  Equation (1) (Locher, 
2016). Here, for each patch, a pixel coordinate system is specified, 
and the x axis is parallel with the x axis of its corresponding 
reference image. The initial normal vector n(p) is orthogonal with 
the coordinate system. 
 

eሺpሻ ൌ
ଵ

|௏ሺ௣ሻ|ିଵ
∙ ∑ ሺ1 െ 〈𝑔ோሺ𝑝ሻ, 𝑔ூሺ𝑝ሻ 〉ሻூ∈௏ሺ௣ሻ\ோሺ௣ሻ        (1) 

 
where 𝑔ோሺ𝑝ሻ  denotes the patch’s projection in the reference 
image, V(p) and R(p) represents the visible image set and the 
reference set of the patch, respectively. The set of R(p) is 
composed of those patches for which the optical axis and the 
normal vector are the most similar.  
 

 
 

Figure 6. The schematic of the spatial geometric relationship of 
patches. 

 
The octree levels for patch expansion should match with image 
resolution to improve the accuracy of patch optimization. In this 
paper, pyramid images are used to provide 2D projection patches 
with multiresolution, and the schematic of the correspondence 
between the image pyramid and octree patch expansion is shown 
in Figure 6. Considering the patch’s scale, the corresponding 
optimal pyramid level 𝑙ூ is determined according to Equation (2) 
(Locher, 2016). 
 

𝑙ூ ൌ ඌ𝑙𝑜𝑔ଶ ൬
௙಴೔

௦ሺ௣ሻௗ಺೔

൰ඐ                                (2) 

 
where the scale of the patch is denoted by s(p), which is 
determined according to the relationship between pyramid image 
resolution and the spatial resolution of the laser point cloud;  𝑓஼೔

 

represents the focal length of the image 𝐶௜  , and 𝑑ூ೔
 is the 

corresponding depth. ⌊∙⌋ indicates rounding integer. 
 
All 2D patches are generated by the candidate 3D seed points 
projecting in all pyramid image levels between the optimal 
starting level and the original resolution level. Those multiscale 
patches through optimization are taken as the final seed patches, 
and the points of other patches are merged into the final results.  
 
3.3 Seed patches expansion in multiresolution and 
multiscale space 

A dynamic octree structure is used to store point clouds high 
efficiently in this paper. Both the octree structure and pyramid 
images are integrated to perform the multiresolution and 
multiscale patch expansion, which mainly includes patch 
expansion in the same level and patch branch in the higher level 
(shown in Figure 7). 
 

expansion

branch  
 

Figure 7. The schematic of the expansion and branch for the 
patch. 

 
(1) Expansion in the same level: all patches in the same octree 
level are sampled along a circle with radius R1 (equal to 0.9 times 
the width of the cell in the current octree level in this paper) to 
generate n new patches (n is often set to 6 or 8). If the new patch 
center locates in another octree cell and the octree cell has not 
been processed, the patch will be further optimized to determine 
whether it should be expanded. The expansion stops when there 
is only one patch in every node of the octree level. 
 
(2) Patch branch in the higher level: when all the patches in the 
same octree level have been processed, they will be branched into 
several smaller patches mm (this paper takes 55). Similar to 
expansion in the same level, each small patch is expanded along 
a circle with a smaller radius of R2 to generate several new 
patches. If the new patch center shares the same octree node with 
the old patch center, it will be optimized and branched. The patch 
branch stops until the point cloud has the same resolution as the 
original multiview images. 
 
In addition, the laser point cloud is used for patch optimization 
and expansion, and the octree structure is used as the storage 
framework, both of which can effectively avoid the wrong 
expansion of outliers with traditional methods. 
 

4. EXPERIMENTS AND RESULTS 

In this paper, both multiview images and laser point cloud data 
of the Tsinghua School of Tsinghua University are used for 
experiments (National Laboratory of Pattern Recognition 
Institute of Automation, Chinese Academy of Sciences, 
http://vision.ia.ac.cn/data). Multiview images for experiments 
are listed in Figure 8. 
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Figure 8. The thumbnail of multiview images. 

 
A sparse point cloud with 6,198 points is first generated by 

visualSFM (Wu, 2011, Wu et al., 2013, Wu, 2007), which is 
shown in Figure 9(a). Figure 9(b) shows the laser point cloud 
with 30,714 points. It can be seen from Figure 9 that the point 
cloud has been textured by reprojecting on multiview images 
according to the mapping relationship between the laser point 
cloud and multiview images. 
 

 
(a)  

 
(b) 

Figure 9. The input point clouds for dense reconstruction: (a) 
the sparse point cloud from VisualSFM; (b) the laser point 

cloud. 
 

Figure 10(a) shows the point cloud generated by traditional 
patch initial optimization (Locher, A. et al., 2016), and Figure 
10(b) shows the point cloud generated by initial patch 
optimization using the proposed method. The number of the two 
point clouds are 11,224 points and 19,772 points, respectively. It 
is easy to see that the proposed method preserves more seed 
points as it considers multiscale patches. While the traditional 
method filters more useful laser points during initial patch 
optimization. Here, the points with less than three covisibility 
views are not included in Figure 10, which will be merged into 
the final results. 

 

 
(a) 

 
(b) 

Figure 10. The point clouds generated by initial patch 
optimization: (a) the traditional method proposed by Locher 

(Locher, 2016); (b) the proposed method proposed in this work. 
 

 
(a) 

 
(b) 

Figure 11. The comparison of the dense reconstruction results: 
(a) visualSFM+ PMVS; (b) the proposed method. 

 
The dense reconstruction results with the traditional method 
(VisualSFM + PMVS) and the proposed method are shown in 
Figures 11(a) and (b), respectively. In Figure 11(a), there are 
totally 566,256 points generated by the traditional method. 
888,451 points are generated using the proposed method, which 
is shown in Figure 11(b).  
 
A denser laser point cloud is used to evaluate the accuracy and 
completeness of the proposed method. Figure 12 shows the 
denser laser point cloud with 206,551 points. 
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Figure 12. The denser laser point cloud for evaluation. 

 
Absolute distances between the laser point cloud and the 
generated dense point clouds are compared and analyzed, which 
are shown in Figure 13. Figure 13(a) shows the comparing results 
of the final dense point cloud expanding by the proposed method. 
To make a fair comparison, it doesn’t consider the initial laser 
point cloud merged here. It can be concluded that 84.92% and 
75.22% of the point-to-point distances for the proposed method 
and the traditional method are less than 0.03 meters, respectively.  
 

  
(a) 

 
(b) 

Figure 13. The absolute distances comparison between the 
original laser point cloud and the dense point clouds 

respectively generated by the traditional method proposed by 
Locher and by this work: (a) comparing to the dense point cloud 
from the proposed method (not including the initial laser point 

cloud); (b) comparing to the dense point cloud from the 
traditional method. 

 
The comparison between the traditional method and the proposed 
method clearly shows that the latter model performs better in 
terms of completeness and details.  
 

5. CONCLUSIONS 

This paper proposes a multiresolution and multiscale patch-based 
3D dense reconstruction method using multiview images and 
considering the spatial distribution of laser point clouds. The 
proposed method establishes the correspondence between laser 
point clouds and multiview images through an indirect 
registration pipeline. The laser point cloud is used as stable seed 
points, and stored with an octree structure, projections of which 
on different image pyramid levels constitutes multiscale optimal 
patches. These patches are optimized and expanded to generate 
dense points cloud. 
 
The method proposed in this paper has the following advantages: 
(1) The method selects the laser point cloud with better integrity 
and higher precision as the seed point, and combines the pyramid 

image to generate multiscale patches. The completeness and 
sophistication of the model are continuously improved as patches 
are optimized and extended. (2) The method predicts the optimal 
starting layer of the pyramid image, and selects multiscale seed 
patches to participate in optimization and expansion. Therefore, 
more laser seed points can be reserved to obtain more patches for 
expansion. (3) Different octree levels correspond to different 
spatial resolutions of point clouds. Combining octree levels with 
image pyramids for dense reconstruction can realize the 
hierarchical parallel expansion of point clouds, which 
simultaneously considers both the integrity and local details of 
the model. (4) For huge laser point clouds, computational 
efficiency is an essential issue for intensive reconstruction based 
on multisource data. The method adopts the octree space index, 
which can realize parallel computing, i.e., patch expansion in 
different octree nodes is performed simultaneously. Therefore, 
the computing efficiency improves significantly. 
 
The comparison experiment with the traditional image-based 
PMVS method shows that the number of initial seed points 
generated by the proposed method has been significantly 
improved because the multi-layer scale is considered, and the 
point cloud model generated by the proposed method has better 
integrity and higher precision. The method proposed in this paper 
has practical value in fine 3D modeling of large scenes. 
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