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ABSTRACT: 
 
In recent years, the popularity of airborne, vehicle-borne, and terrestrial 3D laser scanners has driven the rapid development of 3D 
point cloud processing methods.  The 3D laser scanning technology has the characteristics of non-contact, high density, high accuracy, 
and digitalization, which can achieve comprehensive and fast 3D scanning of urban point clouds.  To address the current situation that 
it is difficult to accurately segment urban point clouds in complex scenes from 3D laser scanned point clouds, a technical process for 
accurate and fast semantic segmentation of urban point clouds is proposed. In this study, the point clouds are first denoised, then the 
samples are annotated and sample sets are created based on the point cloud features of the category targets using CloudCompare 
software, followed by an end-to-end trainable optimization network-ShellNet, to train the urban point cloud samples, and finally, the 
models are evaluated on a test set. The method achieved IoU metrics of 89.83% and 73.74% for semantic segmentation of buildings 
and rods-like objects respectively. From the visualization results of the test set, the algorithm is feasible and robust, providing a new 
idea and method for semantic segmentation of large-scale urban scenes. 
 

1. INTRODUCTION 

3D laser scanning measurement has the characteristics of fast, 
accurate, and non-contact, which can directly obtain the 3D dense 
point cloud on the surface of the object, and plays a very 
important role in the point cloud extraction of large-scene urban 
roads (Pierdicca et al., 2020). Firstly, the 3D laser scanner is used 
to scan the target and the 3D point cloud data is obtained which 
is exactly consistent with the field size, and then builds a true 3D 
real-world model of the physical scene through data processing 
software, and its touchless, high-precision and high-efficiency 
scanned scene data provides strong data support for the recently 
proposed smart city brain infrastructure (Han et al., 2016). Due 
to the complex and large scale of urban scenes, the acquired laser 
point cloud data often have the problems of large data volume, 
discrete type, serious noise, and loopholes, etc. Therefore, how 
to process urban road point cloud data quickly and at a high level 
is the current challenge to be solved (Duan et al., 2019). 
 
The MLS (Mobile Laser Scanning) system is used to scan urban 
areas and the resulting high-density point cloud contains various 
types of objects such as buildings, street lights, trees, etc. (Lari et 
al., 2011). In the existing studies, the geometric information of 
the point cloud is mostly used to identify various target features 
in the scene (Huang et al., 2019). Fewer studies have attempted 
to use color point clouds for urban scene analysis. 
 
Point cloud segmentation divides point cloud data according to 
certain rules, usually by labeling points with the same 
characteristics as the same class. 3D point cloud segmentation 
methods have been developed for a long time, and a large number 
of traditional classical segmentation algorithms have emerged, 
which can be mainly classified into the following categories: 
there are edge-based methods, region-based methods, model-
based methods, graph-based methods, and attributes-based 
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methods, etc. Edge-based (Himmelsbachc et al., 2009) 
segmentation algorithms filter boundary points by geometric 
features of the point cloud, then connect the filtered boundary 
points to form boundary lines and finally segment the point cloud 
surface area into independent point sets according to the 
boundary lines. Region-based (Dong et al., 2018) methods group 
points with similar geometrically defined properties into a plane 
by selecting seed points, while continuously correcting the 
feature parameters of the seed region fitted surface until there are 
no points that still satisfy the threshold condition. Model-based 
(Schnabel et al., 2007) approach uses the mathematical 
parametric model of simple geometric tuples as the most a priori 
information to classify the point cloud into the corresponding 
tuples category. Graph-based (Yang et al., 2014) segmentation 
approach treats the point cloud data as vertices, constructs edges 
using the spatial neighborhood relationship of the points, and 
constructs a graph by weighting the connected edges using the 
similarity of the neighborhood points. Attributes-based (Filin, 
2002) approach is the geometric structure features or spatial 
distribution features exhibited by the point cloud are used to 
cluster the features of the point cloud to achieve segmentation. 
However, due to the noise points, object occlusions, and uneven 
acquisition density of the point cloud data we obtain, these 
methods are difficult to fit onto the object (Nguyen et al., 2013), 
which greatly affects the accuracy. 
 
According to the 3D point cloud data processing method, the 3D 
point cloud semantic segmentation methods based on deep 
learning are divided into two categories, namely direct semantic 
segmentation methods and indirect semantic segmentation 
methods (Qi et al., 2017). The former is to extract feature 
information directly from point cloud data, and the architecture 
retains the intrinsic information within the original points to 
predict point-level semantics without transformation to voxels 
and multi-views (Su et al., 2015); The latter converts the original 
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point cloud data into a regular 3D voxel mesh or multi-view, 
indirectly extracting features from the 3D point cloud data by 
means of data transformation and completing the segmentation. 
The features are indirectly extracted from the 3D point cloud data 
by means of data transformation for semantic segmentation 
purposes. The significant development of the point cloud data 
processing algorithm, although the accuracy rate in the scene 
segmentation task has been achieved, the training speed is slower 
and the network structure is complex. For example, PointCNN 
weights and displaces the input features at the same time, and 
then applies a typical convolution, but the convergence rate is 
slower; Pointwise uses point-by-point convolution to obtain the 
local features of the points, using voxel positioning weights to 
make it inflexible. The ShellNet algorithm used in this paper uses 
efficient ShellConv convolutional operators to directly process 
large-scale data sets. Since the neural network has fewer 
parameters, it can maintain a very fast training speed, and the 
experimental results also ensure the effectiveness of the network. 
 
In summary, this study proposes a technical process for 
segmenting target point clouds in urban scenes based on the 
elevation, intensity, and geometry of the point clouds, with 
respect to the characteristics of various target point clouds in 
complex urban scenes. The experimental data verified that the 
technical flow has a good segmentation effect and improves the 
automation of the segmentation of urban scenes. 

 

2. METHODOLOGY  

2.1 Point Cloud Denoising 

In recent years, the availability of point cloud data has been 
increasing. When point cloud data is directly obtained from the 
MLS system, the inaccuracy of deep acquisition will cause the 
point cloud to be noisy and may contain many outliers (Javaheri 
et al., 2017). Point cloud denoising, as the first step in data 
preprocessing, has a relatively large impact on the follow-up and 
is therefore required in this study. 
 
Based on the property that outlier points will move away from 
their neighbors, this study uses radius outlier removal, where 
each point is connected to its neighbors within the radius with a 
small graph (Schoenenberger et al., 2015). A threshold of the 
minimum number of neighbors within the neighborhood of the 
radius is set up to identify outliers. 
  
2.2 ShellNet Network Structure 

In recent years the field of point cloud research, it has been a 
research hotspot on how to perform efficient feature computation 
for unstructured data like point clouds (Chen et al., 2020). This 
study uses an algorithm for segmenting urban scenes-ShellNet 
(Zhang et al., 2019). To achieve an efficient point cloud neural 
network, a convolution that can directly use point clouds needs 
to be defined. ShellConv is the core part of ShellNet network to 
obtain features of local point sets. The main idea of ShellConv is 
to output a deeper sparse point set by merging point sampling into 
the convolution (Joshi et al., 2021). The function implemented by 
ShellConv is to calculate the characteristics of the sample point. 
The input point cloud is randomly sampled to form a set of points 
centered on the representative points, distributed on these 
spherical shells, and then the local characteristics of the layer 
shell are derived by maxpooling. Finally, the characteristics of 
the sampling point are obtained by the local characteristics of 
multiple shells. This is shown in Figure 1. In this method, 
although the number does not increase, a larger acceptance area 
can be obtained.  A set of representative points is randomly 

selected from the input point set, for a particular representative 
point p, its neighbor q is obtained by the nearest neighbor method, 
then the convolution on point p is 
 

                           �(�)(�) = ∑ �(�)(�)�(�)�

�∈��
(�)

(���)
           (1)  

 
where F represents the input characteristics of the point set for a 
particular channel, W is the weight of the convolution. The 
superscript (n) is used to indicate the parameters of the n layer. 
F(p) and F(q) denote the characteristics of point p and point q. 
 

 
 

Figure 1. ShellConv. (a) The red dot is a random sampling 
point. (b) The set of points centered on the sampling point is 

distributed on the spherical shell. (c) The characteristics of these 
points are enhanced by maxpooling. (d) Output features. 

 
ShellConv is used in ShellNet instead of the traditional 2D 
convolution. The segmentation network follows U-net, which is 
a classical full convolutional network that can combine local 
information and global information (Zhang et al., 2018). The 
deconvolution part starts from the set point of N2 in Figure 2. 
Through the three-layer ShellConv operator, the output points of 
the deconvolution layer gradually increase, but the characteristic 
channels gradually decrease, until the points upsampled are the 
same as the number of input points N. 
 

 
 

Figure 2. Technology Roadmap. For the input point cloud, pre-
processing is first performed, including point cloud denoising, 
sample set labeling, and generation, where N is the number of 
raw point clouds, and XYZ coordinates and intensity are the 

four feature inputs for the point. Entering the ShellNet network, 
through three layers of ShellConv, a matrix of size N2 × C2 is 
obtained, where N2 is the number of representative points that 

are finally extracted from the input point cloud. Each point 
contains a high-dimensional feature vector of size C2. This 
matrix is entered into the mlp module, size (256, 128), to 

generate a probability plot for object classification. 
 

2.3 PointNet++ Network Structure 

PointNet (Qi et al., 2017) is a pioneering effort that directly 
processes point sets. The main idea of PointNet++ is to add a 
multi-level feature extraction structure to PointNet, which is to 
divide the input point cloud into several local point sets, and 
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extract the global features of each point set, then make the 
features continuously abstracted, so as to obtain higher-level 
features, each set is called set abstraction. Each set abstraction 
consists of three parts: the sampling layer, the grouping layer, and 
the PointNet layer (Yao et al., 2019). In the sampling layer, FPS 
(farthest point sampling) is used to collect the centroids; in the 
grouping layer, KNN is used to find the k nearest points around 
the centroids to form the local area; finally, PointNet is used to 
extract the local features from each local area given by the 
grouping layer. 
 
For the segmentation task, each point is given a corresponding 
class label, that is, the set of points is restored to the original data, 
which is done mainly by interpolation and hopping connections. 
The interpolation is a weighted average of the inverse of the 
distances of the k nearest neighbors. The jump join is the stitching 
of the output features obtained from each of the previous set 
abstraction layers with the features of the interpolated points (Ma 
et al., 2022). As the obtained feature dimension is too high, which 
will affect the training speed and training effect, it will go through 
unit PointNet to reduce the feature dimension and improve the 
robustness of the model. This process is repeated until the 
features are propagated to the original set of points. 
 

 
 

Figure 3. Set abstraction.  N is the number of input points, d is 
the coordinate dimension of points, and c is the intensity. 

 
 

3. EXPERIMENT AND DISCUSSION 

In this section, the efficiency and effectiveness of our solution for 
segmenting urban targets from MLS point clouds are investigated 
and discussed. Note that all experiments are performed on the 
same workstation with an Intel Gold 6130 @2.7GHz CPU and an 
NVIDIA RTX3090 GPU. During the training process, the initial 
learning rate is set to 0.001, and each iteration will be 0.7 times 
the original. 
 
3.1 Dataset 

In order to fully verify the feasibility and robustness of the 
algorithm in this paper, Nanjing Olympic Sports Center(In the 
WGS84/UTM coordinate system, the x-coordinate of the dataset 
is between 661650.06 ~ 666158.03m and the y-coordinate is 
between 3541576.99 ~ 3545957.31m.) was used as the 
experimental object in this study, as shown in Figure 4. The 
training data required for the experiments were scanned by a 
Lynx SG1 vehicle-mounted scanner released by Optech of 
Canada, containing relatively fine details covering a wide variety 
of urban scenes: apartments, gymnasiums, offices, buildings 
under construction, street lights, utility poles, billboards, etc. As 
Figure 5 shows, the data set is displayed in terms of height. 
 
In total, the dataset consists of more than 60 million 3D points 
and contains 32 labeled urban scenes. Each scene has up to 108 
points with XYZ coordinates and intensity information. This 
research proposes a set of technical processes for semantic 
segmentation, which is practically applicable in urban scenes. 
Whether it is a smart city or a modern industrial application, the 

point cloud data acquired is massive. In order to be able to 
realistically reflect the accuracy of this research method, we, 
therefore, chose to use this dataset. In addition, the small amount 
of data can lead to overfitting, which in turn affects the training 
results. 
 
The data are manually labeled into three semantic categories, 
including buildings, rods-like objects, and others. 
 
(1) Buildings: apartments, gymnasiums, offices, buildings under 
construction, etc. 
(2) Rods-like objects: street lights, utility poles, billboards, street 
signs, etc.  
(3) Others: objects that do not belong to the previously mentioned 
classes. 
 
To verify the segmentation performance, 26 of these 32 scenes 
are randomly selected as the training set and the remaining 6 as 
the validation set in this paper. 
 

 
 

Figure 4. Top view of Nanjing Olympic Sports Center. 
 

 

 
 

Figure 5. Point cloud colorized by height. 
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3.2 Evaluation 

In order to evaluate the segmentation results, after the point 
clouds for each category have been extracted, the accuracy is 
assessed using an accuracy evaluation method. Overall Accuracy 
is a commonly used metric in multi-category segmentation 
problems but can be affected by uneven sample distribution. In 
order to more scientifically assess the effectiveness of this paper's 
method for each category of segmentation, specifically precision, 
recall, F-score, and IoU metrics will be used as evaluation metrics 
for comparison. In this study, we designate an object such as a 
building as a positive sample and denote it as TP if it is segmented 
correctly, or FN if it is segmented as other objects or rods-like. 
Rods-like are denoted as FP if they are segmented as buildings, 
and rods-like are denoted as TN if they are segmented correctly. 
Based on the above metrics, the required accuracy evaluation 
value can be calculated as follows. 

                                   precision =
TP

TP + FP
                                  (2) 

                                     recall =
TP

TP + FN
                                      (3) 

                     F − Score = 2 ×
precision × recall

precision + recall
                     (4) 

                                     IoU =
TP

TP + FP + FN
                                 (5) 

 
For precision and recall, the two are not necessarily correlated. 
However, in the real world, these two metrics can exhibit mutual 
constraints due to overly large data sets. In this study, we need to 
weigh these two metrics together and therefore include the F-
score as an evaluation metric. IoU is generally calculated based 
on categories, that is, the IoU of each category is calculated and 
then accumulated and averaged to obtain a global-based 
evaluation, which has been used as a standard metric in semantic 
segmentation. 
 
3.3 Results and Discussion 

In this study, semantic segmentation experiments were 
conducted on the constructed outdoor point cloud data using the 

ShellNet network, and the urban scene of Nanjing Olympic 
Sports Center was mainly selected and the segmentation results 
of this scene were visualized. In order to demonstrate the superior 
performance of the target segmentation algorithm proposed in 
this paper in terms of category segmentation, a PointNet++ 
network was used for comparison experiments, and the 
segmentation results are shown in Figure 6. The experimental 
results show that PointNet++ achieves 99.39%, 99.48% and 
99.42% in terms of recall, precision and F-Score, respectively. 
However, the results of ShellNet are slightly higher with 99.53%, 
99.58%, and 99.54%. When comparing the IoU indices, ShellNet 
and PointNet++ achieve 73.74% and 68.39% for rods-like 
objects and 89.83% and 83.87% for building objects, respectively. 
In summary, it can be seen from Table 2 that ShellNet 
outperforms PointNet++ in general, obtaining accurate 
segmentation, which illustrates its superior performance in 
segmenting urban scenes. 
 
In order to get a better impression of the effectiveness of ShellNet 
on large scale data sets, this paper has selected scenes from six 
validation sets with good results and compared the segmentation 
results of ShellNet, PointNet++ and real ground scenes. As 
shown in Figure 6 for building 1, building 2 and building 3, it is 
clear that PointNet++ has a large error in segmenting buildings. 
ShellNet's segmentation results do not have this large error, 
except for building 2, where there is a significant mis-
segmentation, but are basically the same as the real ground scene. 
As shown in Figure 6 for rods-like 1, rods-like 2, rods-like 3, 
PointNet++ also has many misclassifications when segmenting 
rods-like, misclassifying part of the point cloud on a rods-like as 
a building, in rods-like 2 ShellNet misclassifies the upper part of 
the point cloud on the rods-like as a building, in rods-like 3 
classifies the rods-like into other classes. The specific accuracy 
evaluation values are shown in Table 1. In the fifth and sixth 
scenes, the accuracy evaluation values for ShellNet rods-like are 
lower than those of Pointnet++, which we suspect may be due to 
the small number of samples of rods-like in these two scenes, but 
this problem does not occur in the other scenes. Overall, the 
segmentation of PointNet++ is numerically good, but its 
visualisation results show a lot of errors, which is particularly 
evident in the comparison with ShellNet.      

 
 

Method Validation set 
The evaluation index 

Precision(%) Recall(%) F-Score(%) IoUa(%) IoUb(%) IoUc(%) 

PointNet++ 

1  99.44  99.40  99.41  99.35  95.23  72.98  

2  99.11  99.12  99.11  99.10  76.96  54.03  

3  99.24  99.24  99.24  99.11  97.51  62.62  

4  99.58  99.56  99.56  99.55  87.11  80.51  

5  99.74  99.61  99.61  99.61  62.52  63.22  

6  99.76  99.38  99.38  99.41  0.00  77.00  

ShellNet 

1  99.80  99.79  99.79  99.77  98.12  90.77  

2  98.96  98.97  98.93  98.94  70.60  66.57  

3  99.50  99.50  99.50  99.50  98.83  68.20  

4  99.76  99.74  99.75  99.73  92.50  86.88  

5  99.75  99.59  99.64  99.59  78.90  55.21  

6  99.73  99.59  99.66  99.62  0.00  74.79  

 
Table 1. In the six scenes divided into our data set, PointNet++ and ShellNet were used for segmentation experiments respectively, 

and the accuracy of their results was evaluated and compared with specific values 
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Figure 6. Test results for buildings, rods-like, and other objects. For obvious contrast, ground truth values and results are rendered in 
different colors, with buildings rendered in green, poles in red, and other objects in blue. Yellow rectangles show misclassified cases. 
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Method Recall(%) Precision(%) F(%) IoUa(%) IoUb(%) IoUc(%) 
PointNet++ 99.39 99.48 99.42 99.36 83.87 68.39 
ShellNet 99.53 99.58 99.54 99.51 89.83 73.74 

IoUa of other objects 
IoUb of buildings 
IoUc of rods-like 
 

Table 2. Evaluation of the overall segmentation effect of PointNet++ and ShellNet on our dataset. 
 

4. CONCLUSION 

In order to minimize human intervention in the current situation 
where automatic semantic segmentation of complex urban scenes 
is difficult, this paper employs the ShellNet deep learning 
network for automatic semantic segmentation. The network is an 
end-to-end deep neural network for the point-by-point 
classification of outdoor large-scale point clouds, effectively 
segmenting the entire urban scene into three categories on our 
own dataset. Through semantic segmentation experiments on 
buildings, poles, and other objects, the results show that the 
research method in this paper is feasible and robust, and the 
accuracy of its test data meets the requirements in production 
activities. Compared to traditional methods, ShellNet and 
PointNet++, two deep learning methods, appropriately address 
the disorderly nature of point clouds and exploit the spatial 
relationships between points to aggregate information in a 
tandem fashion between local and global features. Compared to 
PointNet++, ShellNet's network model is a little more accurate, 
avoids misclassification, and can also correctly classify edge 
areas of buildings. The ShellNet model has fewer parameters and 
also outperforms PointNet++ in time, enabling fast classification 
of point clouds with large data volumes and is more suitable for 
point cloud classification in large-scale outdoor scenes.  
 
In recent years, smart cities have become a strategic choice for 
promoting global urbanization, improving urban governance, and 
developing the digital economy. As a part of the smart city, 
architecture is one of the important carriers, and it is becoming 
more and more intelligent from the perspective of the building 
itself. Therefore, this study focuses on the division of buildings 
and rods-like. Due to the different characteristics of the 
distribution of point clouds and the intensity of various objects in 
the city, the next step is to select more algorithms for more 
complex urban scenes. 
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