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ABSTRACT:

Automatic georeferencing for historical-to-nowadays aerial images represents the main ingredient for supplying territory evolu-
tion analysis and environmental monitoring. Existing georeferencing methods based on feature extraction and matching reported
successful results for multi-epoch aerial images acquired in structured and man-made environments. While improving the state-
of-the-art of the multi-epoch georeferencing problem, such frameworks present several limitations when applied to unstructured
scenes, such as natural feature-less environments, characterized by homogenous or texture-less areas. This is mainly due to the
lack of structured areas which often results in sparse and ambiguous feature matches, introducing inconsistencies during the pose
estimation process. This paper addresses the automatic georeferencing problem for historical aerial images acquired in unstructured
natural environments. The research work presented in this paper introduces a feature-less algorithm designed to perform historical-
to-nowadays image matching for pose estimation in a fully automatic fashion. The proposed algorithm operates within two stages:
(1) 2D patch extraction and matching and (ii) 3D patch-based local alignment. The final output is a set of 3D patch matches and
the 3D rigid transformation relating each homologous patches. The obtained 3D point matches are designed to be injected into
traditional multi-views pose optimisation engines. Experimental results on real datasets acquired over Fabas area situated in France
demonstrate the effectiveness of the proposed method. Our findings illustrate that the proposed georeferencing technique provides
accurate results in presence of large periods of time separating historical from nowadays aerial images (up to 48 years time span).

1. INTRODUCTION AND MOTIVATION

Generating historical 3D maps from aerial photogrammetric sur-
veys acquired at different epochs represents a valuable inform-
ation for a wide range of civilian and military applications. De-
tecting environmental changes across several epochs (Lucas
and Gayer, 2021), (Feurer and Vinatier, 2018), supplying in-
frastructure for ecological transformation (Pinto et al., 2019),
but also natural disaster prevention and management are sev-
eral applications requiring automatic frameworks for producing
accurately georeferenced historical Geographical Information
Systems (GIS) encoded as orthoimages, Digital Surface Mod-
els (DSMs) or land cover maps.

Traditional georeferencing methods rely on operator’s interven-
tion for generating ground control points (GCP) (Pinto et al.,
2019). While providing accurate solutions, such techniques
are laborious at small scale and unfeasible when applied on
massive datasets acquired over wide areas and coming from dif-
ferent epochs. Recently reported automatic frameworks exploit
feature-based approaches (Feurer and Vinatier, 2018), (Zhang
et al., 2021), being suitable for scenes representing structured
environments. Therefore, introducing fully automatic techniques
capable to provide accurate georeferencing of multi-epoch aer-
ial imagery acquired in natural feature-less environments re-
mains an open issue.

This paper addresses the automatic georeferencing problem for
multi-views partially overlapped historical aerial images, ac-
quired in unstructured natural and rural environments. Gener-
ally, the key issue standing behind the automation of the multi-
epoch georeferencing process is represented by the capability
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to extract homologous “features” or “landmarks” in presence
of consistent environment changing which characterizes multi-
epochs acquisition scenarios. This problem becomes more severe
for images acquired in natural and rural environments which are
generally less structured than built urban areas and where the
absence of reliable detectable and trackable features over time
can not be guaranteed. Natural environments are opposite to
urban, man-made areas for which it is easier to extract homo-
logous inter-date features (points or lines) in the neighbourhood
of anthropic objects. In addition, as stated in (Giordano et al.,
2018), the detected trackable features must be homogenously
dispersed over the entire 2D image space in order to ensure a
stable multi-view pose optimization process via the bundle ad-
justment algorithm (Hartley and Zisserman, 2003), (Rupnik et
al., 2017).

In order to address the aforementioned key issues, this paper
presents a fully automatic patch-based method designed for ac-
curately georeferencing historical aerial images acquired in nat-
ural environments. The present paper is organized as follow-
ing: the next section summarizes existing georeferencing meth-
ods for historical datasets, emphasizing our main contributions.
Section 3 presents the global overview of the proposed geor-
eferencing algorithm, while highlighting the composing pro-
cessing stages, each of which being detailed in the following
two sections. Experimental results and their performance eval-
uation are presented in Section 6, while Section 7 draws the
conclusions of our contribution and synthesizes future research
directions.

2. RELATED AND PROPOSED WORK

Designing methods for supplying automatic georeferencing of
aerial images acquired across different epochs requires to com-
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pute the optimal 3D rigid transformation lying between histor-
ical and recent images. Multi-epoch algorithms often proceed
by first establishing homologous feature points between the his-
torical and the recent images. In a second stage, image matches
are injected into the pose computation process (Rupnik et al.,
2017), (Hartley and Zisserman, 2003), (Moulon et al., 2016)
and multi-view optimization via the bundle adjustment algorithm.

The main weakness of the existing multi-epoch georeferencing
frameworks is represented by the difficulty to establish long-
term feature matches based on which the pose computation can
be performed. This paper focuses on the inter-epoch homolog-
ous image points computation stage which must be ensured in
order to allow automatic georeferencing of multi-epochs aerial
images acquired in natural environments.

Following the image matching strategy, it is possible to distin-
guish two main categories of methods. The first category relies
on Ground Control Points (GCP) which are usually provided
by an operator (Pinto et al., 2019) or supplied automatically
(Giordano et al., 2018). While generating accurate results, manual
GCP-based frameworks (Pinto et al., 2019) remain fastidious
and difficult to be applied on large scale scenes. The second
category of georeferencing methods is represented by feature-
based approaches. Reported frameworks exploit SIFT descriptors
(Feurer and Vinatier, 2018), (Zhang et al., 2021), line segments
(Cléry et al., 2014) and deep learning approaches (Zhang et
al., 2021). In (Feurer and Vinatier, 2018), authors combine
SIFT extraction and matching (Lowe, 2004) techniques, with
Structure from Motion (SFM) and multi-view bundle adjust-
ment frameworks (Rupnik et al.,, 2017). In (Zhang et al.,
2021), authors introduce an additional processing stage for fil-
tering image matches provided by deep learning approaches,
such as SuperGlue (Sarlin et al., 2020). This illustrates that
deep learning techniques present several drawbacks when ap-
plied to the multi-epoch image matching problem. In addition,
such algorithms require exhaustive learning which is not feas-
ible in the context of multi-epoch images acquired over large-
scale sceneries. While improving the state-of-the-art, feature-
based method remain limited to structured and man-made en-
vironments.

Beside the need of finding long-term feature matches between
multi-epoch images, an additional challenge is introduced by
natural environments for which feature-based methods provide
sparse and ambiguous image matches which are not uniformly
dispersed over the image space (Giordano et al., 2018), there-
fore introducing inconsistencies into the multi-view optimisa-
tion procedure.

This paper introduces a two-step strategy for establishing reli-
able multi-epoch point matches for aerial images acquired in
natural environments. The first stage focuses on finding 2D
patch matches in the image space. This step overcomes the
main issue introduced by instable features accumulated over
time, such as forests or high-vegetation areas. The second stage
is performed in the 3D space and starts with the ground extrac-
tion procedure, followed by the 3D patch-based local alignment
process. This allows to generate a set of 3D homologous points
and the associated 3D rigid transformation lying between each
3D patch match.

3. OVERVIEW OF THE PROPOSED METHOD

The present research work introduces a fully automatic tech-
nique for georeferencing historical images onto nowadays im-

ages. The algorithm first generates their DSMs and orthoim-
ages, out of images (Giordano et al., 2018). The obtained
products are coarsely georeferenced, out of the available image
metadata.

The proposed georeferencing technique presented in this paper
takes as input the coarsely georeferenced 2D orthoimages, cor-
responding to both epochs, together their associated DSMs and
outputs the 3D poses together with homologous 3D points. The
proposed georeferencing pipeline is composed of two stages.
In the first stage, the algorithm performs patch extraction and
matching in the 2D image space. The second stage associates
the DSM corresponding to each 2D homologous patch and per-
forms patch-based alignment in the 3D space. Figure 1 illus-
trates the workflow of the proposed DSM georeferencing tech-
nique which is summarized through the following description.

2D Patch extraction and matching. The first stage proceeds
by extracting a set of patches in the historical image. The patch
matching procedure computes homologous patches between the
recent and the historical orthoimages through the use of the
Histogram of Gradients (HOG) algorithm (Dalal and Triggs,
2005). For each patch extracted in the historical image, the as-
sociated HOG is computed. Its homologous patch is searched
in the recent image by maximizing the Zero Normalized Cross
Correlation (ZNCC) score between the HOGs associated to the
historical patch and the recent patch, extracted in a searching
area centered around the recent patch. The procedure outputs
a set of 2D homologous patches which allows to estimate a
2D global translational motion model for the considered set of
patches.

3D Patch-based DSMs alignment. The historical and the re-
cent DSMs are associated to the 2D homologous patches in or-
der to generate the 3D point cloud corresponding to each patch.
The global 3D translation motion lying between 3D homolog-
ous patches is computed via the barycenter approach. The es-
timated translation is applied to the historical 3D point cloud,
allowing to obtain a coarse 3D global alignment of the historical
DSM with respect to the recent DSM.

In order to eliminate 3D points coming from unstable features
accumulated over time (such as forest), a ground filtering pro-
cedure is performed based on curvature computation (Rusu and
Cousins, 2011). This operation allows to discriminate points in
two classes: ground and above-ground 3D points. The resul-
ted 3D point clouds belonging to the ground are further injec-
ted into the local alignment process which is applied to each
pair of 3D patch matches. The fine alignment procedure in-
cludes pose estimation based on the Iteratively Closest Point
(ICP) algorithm (Besl and McKay, 1992), barycenter compens-
ation and outlier rejection. The final output of the algorithm is
a set of homologous 3D patches and their associated 3D rigid
transformations. The resulted 3D homologous points are de-
signed to be injected into traditional bundle adjustment engines
(Hartley and Zisserman, 2003), (Rupnik et al., 2017) for multi-
view pose estimation and optimization, which may include the
use of other homologous features.

4. 2D PATCH MATCHING VIA HISTOGRAM OF
GRADIENTS (HOG)

Let 14 and I, be the historical orthoimage and its associ-
ated recent orthoimage. The local patch matching procedure

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI1-B2-2022-21-2022 | © Author(s) 2022. CC BY 4.0 License. 22



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

Recent (o][]
Input :
dataset dataset
Orthoimages + DSMs atase
(2010) (1962)

y

Reference DSM

2D Patch-HOG
Extraction & Matching

Historical DSM

L
>

3D homologous patches generation

A

3D Gilobal translation motion

computation & compensation

A

Output:

Curvature-based ground filtering

3D Patch-based local alignment

Red color - reference DSM

Green color - historical DSM

Output :
3D Homologous Points

Figure 1. The workflow of the proposed automatic method for georeferencing archival aerial images acquired in unstructured
environments. Example illustrated on the Fabas dataset (situated in France).

starts by extracting a list of [V square patches in the I,;4 image,
Poia = {Potd,i € Ioia,i = 1,..., N}, each patch being defined
by a square neighborhood W(uoi4,;) centered around the im-
age point uyq,;. The size of each patch is given by the patch
ray size, noted r, which provides (27 + 1) x (2r + 1) pixels per
patch. For each patch P(uo4,i) € Poiq extracted in the image
Io1a, we search for its optimal patch match in the image Inew
by exploring a windowed searching area, centered around u;,
noted W54 (u;) € I,c. The patch matching process is per-
formed by maximizing the Zero Normalized Cross Correlation
(ZNCC) score (noted Z') between the HOGs (Dalal and Triggs,
2005) associated to each patch.

Let PS2, = {P; € Ihew(w;),j = 1,..., M} be the number of
M patches found by exploring the searching area W54 (u;) €
Inew with 1-pixel steps. Please note that the input orthoimages
have the same spatial resolution. The best match Ppeq,; iS ob-
tained by computing the similarity score, Z, for each patch and
by maximizing the score over the entire searching area space
selected in the image I,,e.,. This yields a list of 2D homologous
patches P(uoid,i) «— P(Unew,i),? = 1,.., N and the possib-
ility to compute a 2D local translational motion for each match.
Figure 2 illustrates the output of the patch matching procedure,
displaying the corresponding index for each patch match.

5. 3D PATCH-BASED DIGITAL SURFACE MODELS
ALIGNMENT

The historical and the recent DSMs are associated to the pre-
viously computed homologous 2D patches in order to generate

Figure 2. The output of the 2D patch matching procedure
obtained for the dataset Fabas situated in France, with N = 4
homologous patches: (a) historical orthoimage 1,4 (1962), (b)
recent orthoimage e, (2010); patch ray size » = 140 pixels,
encoding a surface area of 252.9 m? per patch.

the 3D point clouds corresponding to each patch. Let P3p pew =
{pnew,i(xy Y, Z)yi = 1, ooy Nnew} and P3D,old = {pold,i(xy Y, Z)7
i =1,.., Noig} be the 3D point clouds obtained by computing
the terrain projection. Figure 3 illustrates the 3D point cloud
obtained by associating orthoimages and DSMs for recent and
historical datasets. When analyzing Figures 3 (a) and 3 (b),
it is possible to observe the initial positioning of the historical
dataset P3p oi1q With respect to the reference 3D point cloud,
P3p.new. It can be seen that the 2D coregistration is, at this
stage already quite good, but the translation in the Z direction
remains important. Figures 4 (a) and 4 (b) show the 3D homo-
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(a)

Figure 3. The 3D point clouds obtained by associating orthoimages and DSMs for the dataset Fabas. (a) P3p o1q With Noig = 1M pts
situated in the upper side of the image, P3p new With Npew = 1M pts illustrated in the down side of the image; (b) input point
clouds, P3p o1d, P3p,new, displayed with respect to elevation values.

logous patches obtained by associating the 3D coordinates to
the 2D patch matches illustrated in Figure 2, generated by the
2D patch matching procedure described in Section 4.

5.1 3D Patch-based Global Coarse Alignment

In order to provide a coarse global alignment, the global 3D
translation motion lying between the 3D homologous patches
is computed via the barycenter approach by applying the fol-
lowing equation:

n
_ Zk:l Pnew,k — Pold,k
n

tsp

&)

where n denotes the number of homologous 3D points belong-
ing to all NV patch matches, expressed as n = sz[ card(P35 )
= Zii\’ card(’PfL?w,i). The estimated translation,t3p, is ap-
plied to the historical 3D point cloud poa,x, k = 1,..,n, al-
lowing to obtain a coarse 3D global alignment of the historical
3D point cloud with respect to the recent 3D point cloud, noted

ﬁnew,ky k’ = 1, N
ﬁnew,k = Pold,k + E3D (2)
In order to refine the obtained global alignment, a local 3D

patch-based alignment procedure is designed to be further ap-
plied to each 3D patch match.

5.2 Curvature-based Ground Filtering

In order to eliminate 3D points coming from unstable features
accumulated over time (such as forest) or from noisy DSMs,

this paper proposes a ground filtering procedure based on curvature

values computed for a given 3D point, px, k = 1, .., n, belong-
ing to a 3D patch. This operation is performed on each 3D point
cloud separately (historical and recent 3D patches) and allows
to discriminate 3D points in two classes: ground and above-
ground 3D points.

In the present research work, the curvature is estimated follow-
ing the approach described in (Rusu and Cousins, 2011). For
each 3D point p(z,y, z), a neighbourhood is selected around

the point. The method proceeds by estimating the plane nor-
mal and the curvature for each 3D point. The curvature, noted
c(p), is estimated through the use of the eigen values, A1, A2
and A3, associated to the covariance matrix, being given by the
following expression:

Z?:l Al

Let ¢(px) be the curvature associated to a 3D point py (z, y, 2).
Being given the previously obtained 3D homologous patches,
for each 3D point cloud Pglg’i and Pﬁ?w,i, the mean curvature
is computed, noted Coiq and Cpew, respectively. Since 3D points
belonging to the ground are described by low curvature values,
the ground extraction is performed by rejecting 3D points with
higher curvature values than the mean curvature, ¢, computed
for each 3D point cloud. The ground extraction is performed by
associating a weight, wy, to each 3D point px(z,y, z) through
the use of the following weighting procedure:

-]

where, the parameter J denotes the threshold factor which al-
lows to discriminate 3D points situated above the ground, cor-
responding to unstructured areas, such as forests and other high
vegetation areas. Figure 4 (c) illustrates the result of the ground
extraction procedure applied on the recent dataset Fabas, P;?’L?w,i,
t = 1,..,N. It is possible to observe that the 3D points rep-
resenting the ground were correctly extracted. Moreover, 3D
points situated above the ground (forest, high vegetation) were
eliminated efficiently. The ground filtering procedure elimin-
ates unstable features, therefore allowing to perform a consist-
ent 3D local alignment for each patch in order to refine the
global alignment.

c(p) 3)

wk:0
wk:1

if e(pr) > d¢
otherwise.

Let Pe = {pr(z,y,2)|wr = 1,k = 1,..,n¢} be a 3D point
cloud representing the ground, where n denotes the total num-
ber of 3D points. When analyzing the obtained result, it can be
observed that 42.8% of the total amount of the 3D points rep-
resent the ground. The homologous 3D points assigned to the
ground surface are further employed for registering locally each
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Figure 4. Experimental results obtained on the dataset Fabas. Figures (a), (b): N = 4 homologous 3D patch matches, Figure (a)
P;Q’LeDw’i, i =1, .., N: reference (recent) 3D point cloud, (b) P;?ﬁ,i, i =1, .., N: historical 3D point cloud; total overlap: n = 285962
points; Figure (c): the result of the curvature-based ground filtering procedure obtained by running the algorithm on the reference
(recent) 3D point cloud illustrated in Figure(a), Pg?w,i,i =1,.., N; before ground extraction: n = 285962 3D points; ground
filtering parameter § = 0.3; after ground extraction: ng = 122517 3D points representing the ground, i.e. 42.8% of the total amount
of homologous points; Figure(d): superposed registered 3D point clouds: red color - reference (recent) DSM, green color - historical
DSM.

3D patch match.
5.3 3D Patch-based Local Fine Alignment

Let us note with Pew,¢ and Py, the 3D point clouds rep-
resenting the ground for the recent and the historical dataset,
respectively. In order to refine the 3D global patch alignment,
each 3D patch match is injected into the local alignment proced-
ure which includes rigid pose estimation via the ICP (Besl and
McKay, 1992) algorithm, barycenter compensation and outlier
rejection.

LetPrewc = {Pl,ii=1,..,N}andPoac = {P3a,,i=
1,.., N} be the list of N homologous 3D patches representing
the ground. For each 3D patch match, (Pﬁfwl — Pflg,i),
the local 3D patch alignment procedure estimates iteratively
the optimal transformation T; = [R, t] which best aligns the
3D points belonging to each patch by minimizing the Resid-
ual Mean Square Error (RMSE), noted Q[R,E]’ expressed in the
following equation:

1 & - .
Qi = . > lIPncws — R ' poiar — E| )
k=1

The accuracy of the obtained 3D matches is evaluated in terms
of RMSE computed between the reference and the optimally
aligned homologous 3D points. The local alignment procedure
is performed individually for each patch ¢ = 1, .., N. For sim-
plicity reasons, let us now drop the subscript ¢ through the fol-
lowing description. Let T = [R, t] be the optimal rigid trans-
formation obtained by applying the ICP algorithm to each 3D
patch match.

The second stage of the proposed 3D patch-based pose esti{na—
tion procedure exploits the estimated rigid transformation T' =

[R, ] to perform barycenter compensation between 3D points
belonging to the overlapping area. The barycenter compensa-
tion is performed by registering the translation computed via
the barycenter approach.

The third stage of the local alignment process is the outlier re-
jection step based on the residual errors expressed as:

e = |Prewk — R "Potar — &l ()

3D points with a residual error 7, > 7 (where 7 denotes the
mean residual error) are rejected by updating the weights wy, k =
1,..,ng, associated to homologous 3D points for each patch, as

following:
. { W =0 ifry >r
Wy =

wr =1 otherwise.

This allows to obtain a set of inliers matches n;,; for each 3D
patch ¢ = 1,.., N. The resulted matches are further injected in
the ICP procedure for pose refinement. The goal is to minimize
the criterion

1
Qi = D" (©)
where 7y, are the weighted residual errors defined by:
i = Wk|[Prew,s — R Pota,x — B @)

The final output of the 3D patch-based local alignment is a set
of 3D point matches (Prew,k ¢— Poid,k), &k = 1, .., Nin, be-
longing to each patch and their associated rigid transformations
lying between each patch, T; = [R, t]i,i =1,..., N, where N
denotes the number of patch matches. Figure 5 illustrates the
result of the iterative pose estimation process generated by the
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ICP algorithm, for a single patch match, Pfﬂi — begw’i,
with ¢ = 4. The accuracy of the algorithm is measured in
terms of fitness score (Rusu and Cousins, 2011), noted f[Ryﬂ,
defined as the mean of squared distances between each 3D point
in the reference patch (recent DSM) to its closest point belong-
ing to the target (historical DSM). The current ICP implement-
ation (Rusu and Cousins, 2011) employs a 3D point cloud sub-
sampling stage which allows to decrease the runtime of the es-
timation procedure, while ensuring pose correctness. The pro-
posed patch-based pose estimation algorithm alternates an ICP
estimation cycle (100 iterations) with barycenter correction and
outliers rejection. By analyzing Figure 5, it can be observed
that the algorithm starts the estimation process with the initial
fitness score of f[ﬁ’ﬂ = 2.41(m) and converges to the minimum
fitness score fig 3z = 0.03(m) in the 3rd cycle, during the last
100 iterations.

Fitness score ICP vs. Nb. Iteration: Patch Match #4

2.5
i 7 Barycenter
'. compensation
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Figure 5. The output of the patch-based pose estimation
procedure generated for the Fabas dataset: iterative pose
estimation process obtained for the patch match {4, ng = 54592
3D points (representing the ground), n;, = 33668 inliers.

Figure 6 illustrates the output of the local 3D patch-based align-
ment generated for the dataset Fabas. By visually inspecting
Figures 6 (a) and 6 (b), it is possible to observe that the obtained
patch matches are coherent in terms of radiometry values. In or-
der to evaluate the accuracy of the generated matches in terms
of geometry, the altimetric residual values are computed, noted
DoD (Difference of DEMs), which are expressed in the follow-
ing equation:

DOD[f{.,f] (k) = pnew,k(z) - ﬁnew,k[R7 {:‘](Z) (8)

where, Prew x[R, t] = R poiar —t. k = 1, .., nin denote the
historical 3D points registered with respect to the reference (re-
cent) dataset. Figure 6 (c) displays the altimetric residual values
obtained for the dataset Fabas. A more detailed analysis of the
obtained result in presented in the following section. In order
to illustrate the final alignment result in terms of geometry, Fig-
ure 4(d) displays the initial reference 3D patches (recent DSM)
superposed with the optimally aligned patches (historical DSM)
generated via the 3D local alignment procedure. By visually
inspecting the obtained result, it is possible to observe that the
3D local alignment procedure provides a geometrically correct
alignment for which the qualitative evaluation is presented in
the following section.

6. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

This section presents the experimental results together with the
performance evaluation in terms of accuracy and computation
time. The first part is dedicated to a description of the dataset,
while the second part focuses on experimental results and their
evaluation.

Historical and Recent Datasets. Experimental results are per-
formed on the historical dataset acquired in 1962 over the Fa-
bas area, situated in France, which is essentially composed of
natural and rural areas. Land-cover changes are mainly due to
forest evolution and to agricultural parcels clustering. The ref-
erence dataset is represented by recent orthoimages and DSMs,
acquired in 2010 and extracted from the French national image
databases. A detailed description of the dataset can be found in
(Giordano et al., 2018). Experimental results performed on sev-
eral datasets extracted from the Fabas study area allowed us to
conclude on the effectiveness of the proposed approach. In or-
der to provide a consistent analysis of the output generated by
each composing stage of the algorithm, the experimental res-
ults illustrated throughout this paper exploit the same dataset
extracted from the Fabas survey.

Accuracy evaluation. The first measure for qualifying the ac-
curacy of the proposed approach is the Difference of Digital
Elevation Models (DEMs), noted DoD, expressed in Equation
8. Figure 7 illustrates the DoDs (elevation residual values) ob-
tained for each homologous patch P35, ; +— [Pfl’fi’,i, Ti],i =
1,.., N, indicating that the proposed method generates accur-
ate registration results in terms of elevation values. As illus-
trated previously in Figure 6 (c), from Figure 7 (b) it can be ob-
served that the maximum altimetric residual values are defined
over the interval [—1, 1]m, being obtained for the patch match
#2. Moreover, when analyzing the corresponding 3D output for
each patch match displayed in Figure 7, one can observe that
high altimetric residual values correspond to the patch matches
1 and #2, from which a high amount of 3D points were elim-
inated through the curvature-based ground filtering procedure.
For these patches, the remaining points describe a non-uniform
area. In addition, it is also possible to observe that for the patch
matches £3 and f4, which describe a dominant flat area, lower
altimetric residual values were obtained.

The second evaluation measure employed for analyzing the ac-
curacy of the local alignment procedure is the RMSE measure
computed between the reference patch and the locally aligned
patch. Table 1 illustrates the residual mean error obtained for
each patch match, expressed in Equation 6. When analyzing
the results, one can observe that the mean residual errors, 7,
are consistent with their corresponding DoD values illustrated
in Figure 7. More precisely, when comparing the accuracy ob-
tained for matches f1 and 42 with the accuracy corresponding
to matches £3 and #4, it can be observed that more accurate
results are obtained for matches #3 and #4 which describe flat
sceneries. Moreover, by analyzing the altimetric residual val-
ues illustrated in Figure 7, it is possible to conclude that the
obtained results confirm the residual values, 7;,, obtained for
matches £1 and #2, which represent non-uniform areas and for
which higher values were obtained.

Computation time. The proposed algorithm is implemented in
C/C++ and exploits OpenCV (Bradski, 2000) and PCL (Rusu
and Cousins, 2011) libraries for 2D images and 3D point cloud
processing, respectively. The algorithm runs on a desktop com-
puter equipped with 32 Gb of RAM and an Intel processing
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Figure 6. The output of the local 3D patch-based alignment procedure obtained for the dataset Fabas. (a) reference 3D point cloud, (b)
historical 3D point cloud, (c) DoD (Difference of DEMs): elevation residual differences.

Index Patch Match (7) ng 7 (m) Nin Tim (M)
11 8444 | 25.77 | 5340 0.35
12 25997 | 10.15 | 12621 0.84
13 33484 | 5.65 | 18849 0.18
14 54592 | 9.17 | 33668 0.15

Table 1. Accuracies obtained by running the patch-based local
alignment procedure on the dataset Fabas, with N = 4
homologous patches; ng: the number of 3D points representing
the ground (input), n;,: the number of inliers output by the pose
estimation procedure.

unit running at 3.5 GHz. Table 2 summarizes the runtime of
each processing stage composing the algorithm. When analyz-
ing different processing stages, it can be observed that the most
time consuming stage of the algorithm is the 3D fine alignment
phase. Several optimization schemes are possible in order to
improve the runtime. In terms of algorithm, 2D ICP techniques
allow to cut down the combinatory when computing a first pose
estimation which will decrease the searching area space for the
final 3D pose refinement. When applied to the multi-view geor-
eferencing context, parallelization schemes allow to decrease
the computation time considerably.

Processing stage runtime
2D Patch extraction+matching 30 sec
Coarse 3D-Global alignment 0.5 sec
Curvature-based filtering 10 sec
Local 3D-patch fine alignment | 11.69 min

Table 2. Computation time obtained for the dataset Fabas, with
N = 4 homologous patches.

7. CONCLUSIONS AND FUTURE RESEARCH WORK

The presented workflow addresses the archival images georefer-
encing problem for natural (or rural) feature-less environments
through the use of a two-step patch matching and alignment

procedure. The first stage outputs a coarse 3D global alignment
which initializes the pose refinement stage performed locally
for each patch. Experimental results and a qualitative evaluation
performed on several epochs allowed us to conclude on the ef-
fectiveness of the presented method. Our findings demonstrate
that the proposed georeferencing technique provides accurate
results in presence of large periods of time separating histor-
ical from nowadays aerial images (up to 48 years time span).
One of the main research perspective is directed toward the
multi-view georeferencing stage via the bundle adjustment pro-
cedure, including the design of runtime optimization schemes.
Beside the multi-epoch image georeferencing application, the
proposed method is able to supply automatic marker-less pose
estimation for several applications undertaken in rural and/or
natural environments, overcoming therefore the difficulty of es-
tablishing homologous features.
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