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ABSTRACT: 
 
As a strategic resource, urban underground space can be used for rail transportation, commercial streets, which has high economic and 
social benefits, and is of great significance to sustainable city development. Due to denied Global Navigation Satellite System (GNSS) 
signal, traditional mobile mapping systems have difficulty collecting accurate 3D point clouds in urban underground space. Thus, a 
helmet-based laser scanning system, named "WHU-Helmet", is integrated in this paper to make up for the shortcomings of the existing 
traditional mobile mapping systems. "WHU-Helmet" is mainly equipped with four types of sensors: a GNSS receiver (optional), an 
IMU, a laser scanner, and a global shutter camera. "WHU-Helmet" is not relying on GNSS signal and has the advantages of low cost, 
small volume and easy operation. Using "WHU-Helmet", a multi-scale Normal Distributions Transform (NDT) based LiDAR-IMU 
SLAM is implemented to collect underground 3D point cloud in real-time. To validate the performance of "WHU-Helmet" in 
aboveground and underground 3D mapping, experiments were conducted in a typical urban metro station. The experiments show that 
the average and RMSE of HLS point errors of "WHU-Helmet" are 0.44 meters and 0.23 meters, respectively, showing great potential 
of "WHU-Helmet" in the application of aboveground and underground 3D mapping. 
 
 

1. INTRODUCTION 

With the improvement of urbanization, the contradiction between 
rapid urban development and limited land resources is becoming 
prominent (Von der Tann et al., 2020). As a strategic resource, 
urban underground space can be used for rail transportation, 
commercial streets, and other public infrastructures. Thus, urban 
underground space has high economic and social benefits, which 
is of great significance to sustainable city development. Rational 
utilization of urban underground space, promoting the collective 
development of aboveground and underground, is a promising 
solution for improving efficiency use of urban land, reducing 
urban population density, and expanding capacity of public 
infrastructure (Qiao et al., 2019). Nevertheless, 3D mapping of 
the urban underground space is the premise of reasonable 
planning and maintenance of urban underground resources. 
 
Mobile mapping system (MMS) is one of the most advanced 3D 
mapping technologies in the field of photogrammetry, and has 
been widely used in urban infrastructure digitalization (Dong et 
al., 2018; Mi et al., 2021). Traditional mobile mapping systems 
(e.g., UAV laser scanning system (Li et al., 2019), car-based laser 
scanning system (Jaakkola et al., 2010), and et al.) are mainly 
equipped with two types of sensors, namely, position and 
orientation system (POS), and laser scanner. Using direct-
georeferencing technology (Skaloud and Legat, 2008), the 
observations of laser scanner could be transformed to the 
mapping system. However, the POS is relying on the Global 
Navigation Satellite System (GNSS), and could not be applied in 
the urban underground space. Long-time and accurate 3D 
mapping in large-scale GNSS denied underground environment 

 
*  Corresponding author 
1 https://geoslam.com/ 

is a research hotspot in both academia and industry (Rouček et 
al., 2019).  
 
In recent years, a lot of wheeled robot-based systems for 3D 
mapping in GNSS-denied environments using simultaneous 
localization and mapping (SLAM) are developed (Chang et al., 
2019; Zhang and Singh, 2018). However, the large-weight and 
high-cost limits the wheeled robot-based mapping system in 
complex urban underground environments. Wearable mapping 
systems have the advantages of low cost, small volume and easy 
operation, which attract attention of the field of photogrammetry 
(Karam et al., 2020) and robotics (Alliez et al., 2020). Su et al. 
(2020) developed a backpack laser scanning system, and applied 
the system in forest inventory successfully. The handheld laser 
scanning system ZEB developed by GEOSLAM 1  has been 
applied in several applications, including forest inventory 
(Camarretta et al., 2021), building information system (Previtali 
et al., 2019), and protection of ancient buildings (Di Stefano et 
al., 2021). However, there is still no helmet-based laser scanning 
system. Thus, a compact helmet-based laser scanning (HLS) 
system, named WHU-Helmet, is integrated for aboveground and 
underground 3D mapping of a metro station in this paper. 
 
The remainder of this paper is organized as follows: the hardware 
description of the HLS system is elaborated in Section 2. A multi-
scale Normal Distributions Transform (NDT) based LiDAR-
IMU SLAM is implemented in Section 3. In Section 4, the 
experimental studies are undertaken to evaluate the point cloud 
accuracy collected by the HLS, after which conclusions are 
drawn at the end. 
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2. HARDWARE DESCRIPTION OF THE HELMET-
BASED LASER SCANNING SYSTEM 

2.1 Sensor configuration 

 
Figure 1. Hardware configuration of the helmet-based laser 

scanning system, WHU-Helmet. 
 
The WHU-Helmet is composed of four types of sensors: GNSS 
receiver, MEMS-based IMU, global shutter camera, and solid-
state LiDAR. Each sensor is integrated in the HLS as illustrated 
in Figure 1. The GNSS receiver is used to obtain absolute geo-
locations and reference time for the whole system. A micro-
electro-mechanical system (MEMS)-based inertial measurement 
unit (IMU) is used to propagate the system initial position and 
orientation continuously. A solid-state LiDAR and a global 
shutter camera are integrated to collect geometry and optical 
information from the underground environment. Besides, visual 
and laser features are extracted to constraint the positioning drift 
of the IMU using SLAM. All the sensors are time-synchronized 
electronically referencing to the GNSS time according to our 
previous solution (Li et al., 2019). The total weight of the HLS is 
about 1.5 kg, which is compact and easy to operate. 
 
2.2 3D mapping system definitions 

The 3D coordinate systems involved in the HLS include mapping 
frame, body frame, and LiDAR frame, which are illustrated in 
Figure 2. As for a LiDAR observation  in the LiDAR frame, 
the corresponding point in the mapping frame could be obtained 
by: 
 ( ) ( ) ( )m m b l m b m

p b l p b l br R t R r R t r r t= + +  (1) 

where,  and  are the system orientation and position 
at time obtained by the SLAM algorithm.  and are the 
calibration parameters between IMU and the solid-state LiDAR, 
which are pre-calibrated using similar strategy proposed in our 
previous work (Li et al., 2020). 
 

 
Figure 2. 3D mapping frame involved in the helmet-based laser 

scanning system. 
 

3. MULTI-SCAL NDT BASED LIDAR-IMU SLAM 

The workflow of the proposed multi-scale NDT based LiDAR-
IMU SLAM is illustrated in Figure 3. After receiving time-
synchronized IMU and LiDAR observations, three steps are 
involved: (1) IMU pre-integration and correction of motion 
distortion, (2) Multi-scale NDT based matching and (3) LiDAR 
and IMU fused optimization, which are detailed as follow: 
 

 
Figure 3 Workflow of multi-scale NDT based LIDAR-IMU 

SLAM 
 

3.1 IMU pre-integration and correction of motion distortion  

As the motion distortion caused by the continuous observation 
mode of the laser scanner, the IMU measurements collected 
within the thk laser frame are used to correct the LiDAR motion 
distortion. The IMU pre-integration model (Qin et al., 2018) is 
used to calculate the relative motion as follow: 
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where, ˆ( )a t and ˆ ( )tω are the accelerator and gyroscope raw 

measurements, respectively. mg is the gravity vector in the 
mapping frame. 1

k

kα +
, 1

k

kβ +
and 1

k

kλ +
are the pre-integration parts, 

which reflect the relative motion of the short time period during 
the thk laser frame. 
 
3.2 Multi-scale NDT based matching 

NDT is a well-known LiDAR SLAM technology (Magnusson et 
al., 2007), which transform the point cloud registration problem 
to optimization the  probability density function ( )f p  as follow: 
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where, µ is the mean value, Σ is the covariance matrix. As for 
the solid-state laser scanner equipped in the helmet-based laser 
scanning system, there are great differences in the point density 
of the one laser. The point density near the scanning center is 
large, on the contrary, the point density far away from the 
scanning center is small. It is hard to decide the voxel size used 
for NDT. In order to ensure that there are enough points in the 
distant voxels to accurately calculate the covariance, the voxel 
size needs to be set large, resulting in the low resolution of the 
near grid and the loss of the details. Therefore, it is difficult to 
select the appropriate voxel size to balance the details of near and 
far voxels. 
 
In this paper, multi-scale normal distribution transformation is 
adopted to overcome the above problem, as follows: (1) the voxel 
size is set to voxelS ( 0.5 m used in the experiment), then calculate 
the mean value, covariance matrix, point size, eigen vector, and 
the geometric attributes (linear or planar or irregular)(Magnusson, 
2009); (2) Carry out iterative merging of voxels according to the 
merging conditions listed in Table 1; (3) all parameters in the 
merged voxels are updated. 
 
Table 1. Voxel merging conditions. 

Voxel size after merging is less than maxS (2 m used in the 
experiment); and 
Two voxels are linear before merging, they are still linear 
after merging; or 
Two voxels are planar before merging, they are still planar 
after merging; or 
Two voxels are irregular before merging; or 
One voxel is linear, another one is irregular, they are linear 
after merging; or 
One voxel is planar, another one is planar, they are planar 
after merging; or 

 
3.3 State estimation 

In this paper, two kinds of data are used to estimate the state 
parameters of helmet-based laser scanning system in real time, 

namely, IMU pre-integration constraint , 1
Preint
k

e
ke + and NDT 

constraint , 1k k
LiDARe + . NDT constraint , 1k k

LiDARe +  is similar with existing 
works (Magnusson et al., 2007).  
 
As for the IMU pre-integration constraints, which are derived 
according to Eq. (2-4) as follow: 
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Considering the real-time 3D mapping requirements of the HLS 
system, sliding window (Huang et al., 2011) is used. The 
historical laser frame and IMU information are marginalized and 
transformed into a priori constraints Margine . These Three kinds of 
constraints constitute the energy function E , as follow:  
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Specifically, to solve E , the general least square equation is as 
follow: 
 H bxδ =  (8) 
where, H is the Hessian matrix, xδ is correction value for 
system states, b is the error terms. xδ is consisted of two parts:  

,[ ]remmarg ainx x xδ δ δ=    , margxδ is the historical state 

parameters to be deleted, remainxδ is the current state parameters 
to be estimated. Then we could rewrite Eq. (8): 
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According to Schul complementation, Eq. (9) is rewritten as: 
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Without solving margxδ , remainxδ is solved with considering 

historical constraints. The marginalization term Margine is 
obtained as follow: 
 arg

1
remain reMargin corr mamain corr mrge H b H Hx bδ −= + −   (11) 

 
4. EXPERIMENTS 

4.1 Study area and data collection 

The study area as shown in Figure 4 is located in Computer Town 
Metro Station (30.53 N, 114.36 E), Wuhan City, Hubei Province, 
China. The operator carried the HLS, and walked at the speed of 
1.3 m/s to scan the environment from aboveground to the 
underground using about 20 minutes. The real-time 3D mapping 
results are illustrated in Figure 5, Figure 6, Figure 7, and Figure 
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8, which are rendered according to intensity in the RVIZ 2. First 
the operator walked along the roadside to the metro station 
entrance 1. Then the operator walked into the metro station 
through the elevator. It took about 10 minutes to collect 

underground data in the metro station. At last, the operator 
walked outside the metro station through the metro station 
entrance 2. 
 

 

 
Figure 4. Study area in Wuhan. (a) Location of Computer Town metro station in satellite image; (b) Snapshot of the metro station 
aboveground; (c) Snapshot of the metro station underground; 
 

 
Figure 5 Overview of the aboveground and underground point clouds collected by the helmet-based laser scanning system. 

 

 
2 http://wiki.ros.org/rviz 
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Figure 6 Walking into the metro station. (a) above ground building; (b) the entrance elevator of the metro station. 

 
 

 

 
Figure 7 Walking in the metro station. (a) overview of the 

whole metro station. (b) point clouds inside the metro station 
 

4.2 Accuracy evaluation 

To validate the geometry accuracy of the HLS in aboveground 
and underground 3D mapping, point clouds were collected using 
terrestrial laser scanning (TLS) too. The registered multiple scans 
from TLS are served as references. 30 evenly distributed 
corresponding corner points are selected from both TLS point 
clouds and HLS point clouds. The error distributions of the 30 
corresponding corner points are plotted in Figure 9 and listed in 
Table 2. The average and RMSE of the corresponding point 
errors are 0.44 meters and 0.23 meters, which has shown a good 
potential of the HLS for the accurate digitalization of the urban 
underground space. 
 
 
 

 
Figure 8. Walking out of the metro station. 

 
5. CONCLUSIONS 

Due to denied GNSS signal, traditional mobile mapping systems 
have difficulty collecting accurate 3D point clouds in urban 
underground space. In this work, a compact helmet-based laser 
scanning system, named WHU-Helmet, is integrated and 
evaluated for the urban aboveground and underground 3D 
mapping in a metro station. The experiments show that the 
average and RMSE of HLS point errors are 0.44 meters and 0.23 
meters, respectively. 3D modelling of the urban underground 
space using HLS data will be explored in the near future. 
 
Table 2. The error distribution of the HLS point cloud 

Study area Error distribution 
MIN MAX AVERAGE RMSE 

Metro station 0.19 0.81 0.44 0.23 
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Figure 9 Point clouds accuracy evaluated by terrestrial laser 
scanning. 
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