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ABSTRACT:

To address the problems of lack of training data and inaccurate classification of existing 3D point cloud data segmentation and
classification methods, this paper proposes a high-precision classification algorithm for indoor point clouds by fusing LSTM neural
network and super voxels. The algorithm first performs super voxel segmentation on the original point cloud and uses it as the basic
unit for machine learning classification, and then introduces LSTM (Long Short-Term Memory) neural network to model the super
voxel domain relationship and optimize the classification results. Finally, the accuracy of the proposed method is evaluated based on
open dataset, and the experimental results show that 83.2% classification accuracy can be achieved in the open dataset.

1. INTRODUCTION

With the increasing number of indoor spatial applications,
semantic segmentation of indoor 3D data has become a hot
topicof research for many researchers and scholars (Kang et
al.,2020) It is the key to support various intelligent
applications,such as indoor navigation (Choi et al., 2014) indoor
navigation, indoor robotics (Taira et al., 2018) and augmented
reality, among others. It is key to supporting various intelligent
applications such as indoor navigation, indoor robotics and
augmented reality. Semantic information extraction from point
cloud data is the process of identifying and extracting elements
from a cluttered and unorganised point cloud. The core of the
process is to use segmentation algorithms to divide the
disorganised point cloud data across the scene into a series of
point cloud collections, so that each collection contains data
with the same semantic and perceptual information, and each
collection corresponds to a certain type of entity within the
scene, making the point cloud have objectified semantic
information (Hu et al., 2020). The point clouds have objectified
semantic information. A lot of work has been done to improve
the segmentation accuracy and processing speed of indoor point
cloud data, but there are still two important challenges. Firstly,
the raw point cloud data is heterogeneous. First, the original
point cloud data is cluttered, sparse and unstructured, and there
are problems such as incomplete data collection, uneven density
and noise (Tran et al., 2019).This makes it difficult to generalise
point cloud data segmentation algorithms to different
scenarios.This makes it difficult to generalise point cloud data
segmentation algorithms to different scenarios. Secondly, the
current point cloud segmentation algorithms mainly classify
point cloud data based on colour and geometric features, which
rely on a large amount of training data for model learning, while
the complex and diverse structure of objects in indoor space
makes the current algorithms prone to low applicability and
poor stability (Qi et al., 2017a). These algorithms rely on a large
amount of training data for model learning.The current research
on semantic segmentation of indoor 3D point clouds consists of
three main types: multi-view based point cloud classification,
voxel grid based point cloud classification and classification
algorithms based on the original 3D point cloud. The multi-

view based point cloud classification algorithm is to project the
3D point cloud data into 2D images from different angles
according to the 3D imaging principle, and then perform the
semantic segmentation of the scene based on the mature 2D
image segmentation algorithm (Su et al., 2015). This type of
algorithm can be used to initialise the multi-view model
parameters using a mature, highly accurate pre-trained 2D
convolutional neural network. The difficulty of neural network
training is significantly reduced, while the effects of 3D
geometric problems such as hollow objects and non-fluid
geometry in 3D space can be avoided.

GVCNN is a deep neural network for multi-view 3D
object recognition, which uses a convolutional neural network
with shared view information to extract individual 2D image
features for each view, and finally fuses the extracted multi-
view feature information into a global 3D object feature
information based on the maximum pooling layer of multiple
views to achieve global 3D object feature classification.The
GVCNN (Feng et al., 2018) and Dominant (Wang et al., 2019)
frameworks improve on the MVCNN by using a grouping
approach to fuse multi-view features to further exploit the
similarity between views to improve recognition accuracy.
However, these methods require powerful GPUs for data
training and cannot take into account all features in 3D space.
Some researchers have therefore investigated the use of 3D
point cloud voxel representations to learn features from the
scene in 3D space. Unlike point clouds and polygon slices, each
voxel has a regular index in the stereo grid. The method extends
the 2D convolutional neural network to a 3D convolutional
neural network and can be directly applied to 3D voxel
convolution. The Rotation Net method (Kanezaki et al., 2018)
combines two objective functions, object recognition and view
estimation, to build a semantic recognition neural network, and
adds the information of each view as an implicit variable in the
training of the neural network. 3D-ShapeNet (Wu et al., 2015),
the first neural network model to adopt this idea is the 3D-
ShapeNet, which expresses a 3D shape in terms of the spatial
distribution of binary variables (the presence or absence of
objects in voxels) on a grid of stereoscopic voxels. voxNet
(Maturana and Scherer, 2015) uses a shallow 3D convolutional
neural network to process voxelised 3D point cloud data.The
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ORION method (Sedaghat et al., 2016) is an addition to VoxNet
that adds a subobjective for estimating the rotational orientation
of the object, and the addition of this sub-objective improves the
accuracy of semantic recognition. However, the processing time
and storage footprint of voxels grows in cubic powers
depending on their resolution, and most of the early methods
studied were only able to learn with low resolution and shallow
neural networks.

Therefore, the OctNet approach (Riegler et al., 2017) In
the OctNet method, an unbalanced octree is proposed to divide
the 3D stereo grid to solve the sparse problem of effective
voxels in the 3D stereo grid,and the algorithm can be used for
higher resolution and deeper neural network training. The above
methods still suffer from feature loss in the feature computation
process, and in recent years, a large number of researchers have
investigated how to learn features from raw point clouds for
semantic classification.Pointnet (Qi et al., 2017a) is the first
neural network model based on 3D point clouds, which first
learns the features of each point using a multilayer perceptron
(MLP) and then uses a symmetric function to obtain a global
object descriptor. pointNet++ (Qi et al., 2017b) adds a
hierarchical feature extraction structure to PointNet. It proposes
to partition the entire point cloud into several locally grouped
ensemble abstraction layers, which act similarly to the
convolutional layers in a convolutional neural network, and
finally output the perceptual field of features by fusing several
ensemble abstraction layers. In contrast to the idea of
PointNet++, KCNet (Shen et al., 2018) proposes to use graph
pooling layers and kernel correlation to mine the local feature
information in the point cloud.

Similar to the aim of KCNet, kd-Net (Klokov and
Lempitsky, 2017) is based on the input point cloud and then
extracts the feature information hierarchically from the leaf
nodes to the root node in a bottom-up manner. However, due to
the high complexity of the indoor structure, the data itself is
prone to data occlusion, and the training dataset is difficult to
obtain, resulting in the current indoor 3D point cloud semantic
segmentation methods taking a long time to train and still
struggling to achieve the desired classification accuracy.

To address the problem of internal inconsistency of
classification targets in existing 3D point cloud data
segmentation and classification methods, we propose a high-
precision classification algorithm for indoor point clouds jointly
optimized by super voxel random forest (Ramiya et al., 2016,
Oshiro et al., 2012) and Long Short-Term Memory (LSTM)
neural network(Sherstinsky, 2020) . The algorithm is based on
the feature that super voxels have internal feature consistency,
divides the original point cloud into super voxels, and uses
super voxels as the basic unit for multivariate feature
calculation, builds the indoor point cloud super voxel random
forest classification model, and realizes the coarse classification
of point cloud data. On this basis, LSTM is introduced to train
and predict the neural network model for the hyper voxel
neighborhood connectivity of coarse classification to achieve
the optimization of hyper voxel coarse classification results.
Finally, the validity and accuracy of the proposed classification
method are verified based on the open dataset, and the results
show that the classification method of this paper can achieve
83.2% classification accuracy in the public dataset.

2. COARSE CLASSIFICATION OF INDOOR POINT
CLOUDS IN SUPER VOXEL RANDOM FORESTS

As shown in Figure 1, the process of indoor point cloud
segmentation method is optimized jointly by super voxel
random forest and LSTM network. In the coarse classification
stage, the original point cloud is clustered by super voxels to

obtain the super voxel centroids, and the multi-dimensional
features of super voxels are calculated and used for the training
of the random forest model, which mainly consists of
randomization, decision tree generation and voting
classification steps. The process of coarse classification mainly
consists of randomization, decision
tree generation, and voting classification. The hyper voxel
features involved in this paper contain four main types, which
are local density features, Point Feature Histogram (PFH)
features (Rusu et al., 2009), normal vector features, color
information, relative elevation features, and shape features.
After the supervoxel RF classification, the keras deep learning
framework is used as the basis for the construction of super
voxel LSTM neural network, which is used for the optimization
for point cloud classification.

1) After indoor scene hyper voxels are clustered, the scene
is partitioned into several blocks and the hyper voxels are linked
to each other.

2) Iterative search is performed on the neighborhood
information of each super voxel divided in the scene, and the
surrounding voxels of the current super voxel are searched by
KDtree, combined with their feature information, and combined
into a spatial sequence set by distance size.

3) For the super voxel LSTM network training, a model
with three LSTM layers plus one fully connected layer is
designed, and the LSTM layers all use The LSTM layer is used
as the activation function, and finally enters the fully connected
layer, and uses The LSTM layer is used as the activation
function and finally enters the fully connected layer, and the
multi-objective classification of the scene is achieved using the
activation function, in which the parameters of the neural
network are initialized in a random way and rmsprop is used as
the optimizer.

In the training process, the model training batch size is set
to 128 and the number of iterations epoch is 80. Considering the
problem of unevenness of different types of super voxels in the
training data, the category weights are calculated and added to
the training process according to the number of categories in the
training set.

Figure 1 The framework of the proposed method

2.1 Super voxel characterisation

There are four main types of hyper voxel features
involved in this paper, namely local density features, Point
Feature Histogram (PFH) features, normal vector features,
colour information, relative elevation features and shape
features. The method proposed in this paper uses the super
voxels as the basic classification unit for classification,
therefore the features extracted below are the feature
information of the centroid of each super voxel.
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Local density feature: The local density feature is the
average distance from a point to the k nearest neighbour points.
Therefore, for each centroid in the super voxel, fast retrieval of
neighbourhood points is achieved by constructing a KdTree and
fast library for approximate nearest neighbors (FLANN)
algorithm, which in turn obtains the local density feature of a
point by calculating the average Euclidean distance between
two pairs of neighbouring points.

PFH feature: The PFH feature is a description of the
geometric properties of a point's k-neighbourhood by
parameterising the spatial differences between the query point
and its neighbourhood points and forming a multi-dimensional
histogram. Specifically it is based on the relationship between
points and their k-neighbourhoods and their normal vectors to
describe the geometric features of the sample. In this paper, the
PFH features of each centroid are obtained by creating a kdtree
of the original point cloud, which is computed by k-
neighbourhood search.

Normal vector features: The normal vector of each point
in the point cloud represents the direction of the surface on
which the point is located, and can accurately describe both
planar and surface information. In this paper, we calculate the
normal vector information of the super voxels by plane fitting
and calculate their feet to the vertical direction as random forest
features.

Colour features: Most of the classification targets in
indoor environments have colour consistency, and therefore
RGB colour plays an important role in the indoor point cloud
segmentation process. Considering the super voxels as the basic
classification unit in this paper, the colour information of each
super voxel is determined by the average RGB value of the
points within the super voxel.

Relative elevation features: The relative elevation
features of the super voxels are obtained from the difference
between the height of the centre point of the super voxels and
the elevation of the ground plane.

Shape features: The shape feature parameters are mainly
calculated by the Eigen feature values obtained from the local
PCA decomposition of the point cloud and combined to obtain
them. The traditional Eigen eigenvalue is calculated based on
the local point cloud obtained by K-neighborhood search. In
order to obtain a more accurate domain point cloud, this paper
takes the super voxel itself as the domain information of the
current super voxel centroid and uses the point cloud inside the
super voxel for the calculation of the Eigen eigenvalue,after the
feature decomposition, three eigenvalues are obtained, which
areλ1、 λ2、λ3 , where the three eigenvalues are listed in order
from largest to smallest, i.e. ( λ1 ≥ λ2 ≥ λ3 ≥ 0 ). Based on
this, the curvature, linearity, planarity, scattering and anisotropy
of the super voxels are calculated according to the shape feature
calculation method. The calculations are shown in the

Table 1 Calculation methods for shape features
Shape features Calculation method
Curvature
(Curvature) Ce =

λ3

λ1 + λ2 + λ3

Linearity (Linearity) Le =
λ1 − λ2

λ1

Flatness (Planarity) Pe =
λ2 − λ3

λ1
Dispersion
(Scattering) Se =

λ1

λ3
Anisotropy
(Anisotropy) Ae =

λ3 − λ1

λ3

2.2 Super voxel random forest model construction

The random forest model construction in this paper uses
super voxels as the basic unit for training and prediction, similar
to the traditional random forest construction method, the super
voxel random forest consists of N decision trees {h X, θn , n =
1,2,3, ···, N} as the initial classifier, and the final combined
classifier is obtained by integrated learning. The random forest
counts the results of each decision tree classification and votes
on the output classification. Of these {θn, n = 1,2,3, ···, N} are
sequences of random variables, determined by the Bagging
strategy and the feature subspace strategy in the random forest.
Specifically: 1) The Bagging strategy is to randomly sample N
training samples of the same size as the original dataset from
the original dataset {Tn, n = 1,2,3, ···, N} (about 63% of the
samples are sampled each time), and a decision tree is trained
for each training sample set.Tn 2) The feature subspace strategy
is to split and refine each node in the decision tree by selecting a
subset of features from the data features and choosing the best
feature segmentation node.

Finally, Random Forest is a combined classifier that
integrates multiple decision tree classifiers and ultimately
decides the classification result by classifier voting. The basic
process of classification is as follows:

1) A bootstrap sampling method was used to randomly
select K training sample sets from the original sample set.

2) A decision tree model is constructed for each of the K
training sample sets to obtain K classification results.
Specifically, each decision tree will select N features from the
M features of the input variables. Generally the value of N is
taken according to the formula N = M The value of N is
determined according to the formula. In turn, information
entropy (entropy) and Gini index (Gini) are used as node
splitting criteria, as shown in Eqs. 1 and 2, wheren denotes the
number of categories contained in the training data set D, and pi
denotes the probability of the training data belonging to a
certain category.

entropy D = −
i=1

n

pi log2 pi� (1)

Gini D = 1 −
i=1

n

pi
2� (2)

(3) The final classification is determined by voting based
on the K classifications.

2.3 LSTM neural network optimization for fine
classification of indoor point clouds

Unlike the original point cloud data, the point cloud can
obtain the connection relationship between super voxels and
super voxels after super voxel clustering, and the connection
relationship contains the association characteristics between
different types of elements, for example, the super voxels of the
desktop have a certain correlation with the desktop clutter super
voxels, and the judgment of the correlation can avoid the clutter
from being incorrectly segmented into objects such as chairs.

Therefore, this paper proposes a Long short-term memory
(LSTM) neural network optimisation method for modelling
hyper voxel association sequences based on the results of
random forest coarse classification of hyper voxels, and
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optimises the classification results of indoor 3D point clouds.
The core reason for modelling the spatial connectivity of super
voxels based on LSTM networks is that the LSTM models the
sequence data in such a way that the horizontal neurons in its
internal structure run through the series of data, and the state
information of the neurons can be transmitted sequentially
throughout the chain with only linear interactions, so that the
information on the neurons in the chain can remain
approximately constant, thus preserving long-term information.
This gives it a significant advantage in the extraction of long
and short term information, which is why LSTM has been used
in the past for data with a clear sequence and correlation, such
as long text classification and time series data prediction, where
it is often possible to obtain better results than traditional time
series prediction methods.

This paper uses the keras deep learning framework as the
basis for the construction of the super voxel LSTM neural
network.

1 ） After clustering of indoor scene hyper voxels, the
scene is partitioned into blocks and the hyper voxels are linked
to each other.

2）The neighbourhood information of each super voxel
divided in the scene is searched iteratively, and the surrounding
voxels of the current super voxel are searched through the
KDtree, combined with their feature information, and combined
into a spatial sequence set by distance size.

3 ） A model with three LSTM layers plus one fully
connected layer was designed for training the super voxel
LSTM network, with the LSTM layers all using The LSTM
layer is used as the activation function, and finally enters the
fully connected layer, and uses The LSTM layer is used as the
activation function and finally enters the fully-connected layer,
and the multi-objective classification of scenes is achieved
using the activation function, where the neural network
parameters are initialized in a random way and rmsprop is used
as the optimizer. In the training process, the model training
batch_size was set to 128 and the number of iterations epoch
was 80. Considering the problem of unevenness of different
types of super voxels in the training data, category weights were
calculated and added to the training process based on the
number of categories in the training set.

3. EXPERIMENTS

3.1 Datasets

The point cloud dataset used in this experiment is a
publicly available dataset from Stanford University, referred to
Figure Figure 1. The S3DIS dataset is a semantic dataset with
pixel-level semantic annotations developed by Stanford
University, and is divided into 6 regions containing 272 scenes,
which can be classified into 11 categories of scenes, door, wall,
floor, beam, window, chair, cluster, column, etc. In this paper,
regions 1-5 are selected as training data and region 6 is used as
test region for accuracy evaluation.

Figure 2 S3DIS datasets

3.2 Experimental results and analysis

Analysis of super voxel segmentation results: reasonable
super voxel parameter settings can avoid the occurrence of
incorrect segmentation. As shown in Figure 3The overall
segmentation accuracy of super voxels is about 94.5%, and the
segmentation accuracy of chair, floor, bookcase and sofa can
reach over 97%, shown in Figure 4. This is closely related to the
distribution of indoor point clouds. For the point cloud data
close to walls, ceilings and tables, there are sparse quantities
and incomplete structures, while the super voxel segmentation
algorithm only considers their vector, colour and shape
information. It is difficult to avoid mis-segmentation of point
clouds by considering only vector, colour and shape information.
Based on the segmentation results of the super voxels, a high-
precision indoor point cloud classification method based on the
joint optimization of super voxel random forest and LSTM
network is proposed in this paper to perform semantic
classification experiments on the modified point clouds.

Figure 3 Super voxel segmentation accuracy
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Figure 4 Chart of the percentage of mis-
segmentation in each category of super voxels

LSTM neural network training: In order to obtain an
optimal training result, the convergence of the model under
different epoch values was investigated, and iterative tests
showed that the epoch parameter of the LSTM network
proposed in this paper was set at around 80, which can
effectively avoid the problem of model overfitting.

Figure 5 Loss vs epoch relationship

Analysis of point cloud classification results: The
average intersection and concurrence ratio mIoU and mAcc are
used to evaluate the accuracy of point cloud classification.
mIoU represents the ratio of the intersection and concurrence of
the two sets of true and predicted values of data classification,
and mAcc represents the ratio of the intersection and true values
of the true and predicted values of classification. The specific
calculation method is shown in Equation (1). Suppose there
are k + 1 There are two categories (including the background
category), denote pij is the ratio of the i is the number of
predicted categories asj the number of points in the class, andpii
denotes the true value ofi and the predicted value isi the number
of points for which the predicted value ispji denotes the number
of points for which the true value isj and the predicted value isi
the number of points with a true value of , and the number of
points with a predicted value of .

mIoU =
1

� + 1 �=0

� ���

�=0
� ��� + �=0

� ��� − �����
� (3)

mAcc =
1

� + 1 �=0

� ���

�=0
� ��� + �=0

� �����
� (4)

In this paper, four commonly used point cloud
classification frameworks, including RF classification based on
the original point cloud, PointCNN, PVCNN++ and PointNet++,
are selected and their classification results are compared and
analysed. The classification accuracies of different classification
methods are listed in Table 2.
Table 2 Comparison of the classification accuracy of
different methods

Methods mIoU mAcc
Super voxel
random forest

coarse
classification

39.20% 72.40%

Super voxel
LSTM

optimization
46.30% 83.20%

RF classification
based on raw point

cloud
8.70% 24.30%

PointCNN 65.40% 75.60%

PVCNN++ 59.00% 87.10%

PointNet++ 54.50% -----

BRISK has the best performance of recall within the 0.25
meters and 2 degrees threshold, comparing with ORB and SIFT.
And the average time cost of one image is 1.46 second, so we
use BRISK in most visual localization experiment we carry out.
Image retrieval based on multi-features provides more reliable
results, so there would be more inliers of 2D-3D
correspondences, which improve the localization performance.
However, the time cost of this method is rather high, because
image retrieval of different features is carried out instead of the
classic single one. Though it reaches high precision, which
feature strategy to choose is still based on the requirement of
scene and experiment.

It can be seen that the original point cloud-based
spontaneous classification method has the lowest accuracy, with
its mIoU reaching only 8.7% accuracy and its mAcc only 24.3%
accuracy, the lowest accuracy among all classification
algorithms. In contrast, the original super voxel random forest
coarse classification method can achieve 72.4% accuracy of
mAcc, which indicates that the pre-processing of super voxels
can effectively improve the classification accuracy of point
cloud data. On the basis of coarse classification, the LSTM
optimized mIoU can reach 46% and the mAcc is 83.2%, which
is similar to the accuracy obtained by the deep learning
frameworks PointCnn and PVCNN++. It is worth mentioning
that the training data of the LSTM optimised network proposed
in this paper only used the label information of region 1 for
model training, while other deep learning frameworks used
regions 1-5 for model training, therefore, from the perspective
of training data requirements, the point cloud data classification
framework proposed in this paper can achieve a relatively better
prediction result with a small training data set.
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4. CONCLUSION

In this paper, we propose a high-precision indoor point
cloud classification method jointly optimised by super voxel
random forest and LSTM network, which makes full use of the
internal feature consistency of super voxels, divides the original
point cloud into super voxels, calculates the geometric, colour
and shape features of super voxels as the basic unit, and builds a
super voxel random forest classification model for indoor point
clouds to achieve coarse The classification is based on the idea
of coarse to fine classification. Based on the idea of coarse to
fine classification, this paper introduces LSTM to train and
predict the coarse classification of super voxel neighbourhood
connections, taking into account the correlation characteristics
between different types of elements contained in the connection
relations between super voxels, and achieves the optimization of
the coarse classification results of super voxels. Finally, the
validity and accuracy of the proposed classification method
were verified based on open datasets, and the results showed
that the classification method in this paper could achieve 83.2%
classification accuracy in open datasets.

In future work, current LSTM network structures are more
biased towards sequential inputs with logical order, whereas
there is a two-by-two connection between spatial sequence data
extracted by super voxels. How to design a sequential neural
network structure with non-sequential super voxel arrangement
will be an important research direction.
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