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ABSTRACT:

State-of-the-art point cloud classification methods mostly process raw point clouds, using a single point as the basic unit and calcu-
lating point cloud features by searching local neighbors via the k-neighborhood method. Such methods tend to be computationally
inefficient and have difficulty obtaining accurate feature descriptions due to inappropriate neighborhood selection. In this paper, we
propose a robust and effective point cloud classification approach that integrates point cloud supervoxels and their locally convex
connected patches into a random forest classifier. We apply a centroid cloud extracted from supervoxels into the proposed classifier,
which effectively improves the point cloud feature calculation accuracy and reduces the computational cost. Considering the dif-
ferent types of point cloud feature descriptions, we divide features into three categories (point-based, eigen-based, and grid-based)
and accordingly design three distinct feature calculation strategies to improve feature reliability. The proposed method achieves
state-of-the-art performance, with average F1-scores of 89.16%, respectively. The successful classification of point clouds with
great variation in elevation also demonstrates the reliability of the proposed method in challenging scenes to some extents.

1. INTRODUCTION

With the development of photogrammetry and light detection
and ranging (LiDAR) technologies, urban three-dimensional (3D)
point clouds can be easily obtained. 3D point cloud data are
used in many applications, such as power line inspection (Chen
et al., 2017), and urban 3D modeling (Croce et al., 2021, Javer-
nick et al., 2014), unmanned vehicles (Yue et al., 2018). How-
ever, the most basic requirement for these applications is the
semantic classification of 3D point cloud data, which has been
a research focus among photogrammetry and remote sensing
communities.

Early classification efforts mainly focused on extracting low-
level geometric primitives, such as point features, line features,
and surface features, which were used for surface reconstruc-
tion or point cloud alignment. In recent years, researchers have
developed methods for extracting high-level semantic features
for structure model reconstruction from point cloud data through
machine learning-and deep learning-based methods (Lafarge and
Mallet, 2012, Xiong et al., 2015, Zhou and Neumann, 2010).The
core challenges of point cloud data classification are extract-
ing discriminative features from neighborhoods and construct-
ing point cloud classifiers (Hackel et al., 2016, Jie and Zu-
long, 2014). Accurate classification depends on a combination
of robust point cloud features and proper classifiers (Hackel
et al., 2016, Wang et al., 2018). Recent works have applied
deep learning networks to directly learn per-point features from
raw point clouds (Li et al., 2020, Qi et al., 2017a, Qi et al.,
2017b). Similar to traditional machine learning, these meth-
ods focus on the extraction of higher-order features from point
cloud data by building a new neural network. Although remark-
able performance has been achieved using these methods, large
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training sample sets are required to pre-train the classification
models. These semantic tags require manual labeling, which
is time-consuming and labor-intensive. Moreover, the training
models obtained by such methods are difficult to generalize to
other scenarios (Li et al., 2021).To solve the model general-
ization and incomplete label data problems, many researchers
prefer traditional machine learning methods, which require only
a small sample dataset to achieve fast and accurate semantic
point cloud data classification (Niemeyer et al., 2014, Niemeyer
et al., 2016, Zhu et al., 2017). However, original point cloud
features are often highly unstable due to the influence of point
cloud data accuracy and noise, especially data acquired by tilt
photogrammetry. Thus, more researchers are exploiting high-
order features and their contextual information for scene clas-
sification. As dimensional objects expanding upon the concept
of the “superpixel” (Achanta et al., 2012), “supervoxel”(Papon
et al., 2013), are generated by partitioning 3D space as point
clusters. Supervoxels have been increasingly applied to de-
scribe adjoining points related to the same objects (Wu et al.,
2016, Zhu et al., 2017). Transferring the original point cloud to
the “supervoxel cloud” propagates simple point-based classific-
ation to an object-based level. Some point cloud segmentation
methods, such as locally convex connected patches (LCCP), re-
cognize points through supervoxel-adjacent relationships. In
addition to features, classifiers that can effectively deal with
massive data must be considered. Machine learning methods
such as random forest (RF) that are capable of handling com-
plex data are gaining attention for this purpose (Breiman, 2001,
Ni et al., 2017).

However, most existing model-driven methods based on su-
pervoxel extraction are prone to include object boundaries in
the local neighborhood of voxels, which decreases the homo-
geneity of supervoxel adjacency and polygonal feature accur-
acy. Therefore, combining a precise object segmentation util-
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ity with previous model-driven methods will effectively solve
this problem. Object edges can be detected by particular net-
work structures or LCCP(Christoph Stein et al., 2014). Feng et
al. (2020) developed a local attention-edge convolutional net-
work that identifies objects by summarizing the features of all
neighbors as a weight value learned by the network (Feng et al.,
2020) . The LCCP examines the connection between two ad-
jacent supervoxels and determines whether they relate to one
object by calculating the included angle of two normal vec-
tors. The former method focuses on whole object segmentation,
whereas the latter recognizes as many connected edges as pos-
sible. To better exploit supervoxel features and their contextual
relationships for point cloud classification, we propose a robust
and effective classification approach that integrates point cloud
supervoxels and their LCCP relations into an RF classifier to
improve the accuracy of feature calculation and reduce compu-
tational costs. The proposed method involves three strategies to
effectively improve classification accuracy.
(1) Features are divided into three categories based on their de-
scription types (point-based, eigen-based, and grid-based), and
three unique feature calculation strategies are designed to im-
prove feature reliability.
(2) A centroid point is used to represent supervoxel geometries
and every point that belongs to the same cluster shares all prop-
erties.
(3) Supervoxel local neighborhoods are segmented by LCCP to
avoid the inclusion of object borders.

The rest of this paper is organized into four sections. In Section
2, we presents the framework of the proposed supervoxel-based
RF model, providing the feature descriptions and RF model
process and algorithm. The statistical and visual results of data
training and validation are shown in Section 3, and our research
conclusion and remarks are given in Section 4.

2. METHODOLOGY

2.1 Overview of the approach

The approach starts with a voxel-grid-based downsampling al-
gorithm (Rusu and Cousins, 2011) to prevent the point cloud
from becoming over-dense without impacting the original struc-
ture. Next, a noise-rejection statistical-outlier-removal filter is
used to remove dynamic objects and erroneous points from the
aerial laser point cloud. The threshold is calculated from the
average distance between a single point and its k-neighbors and
the same multiplied standard deviation.

The technical route for our approach after data pre-processing is
shown in Figure 1.The features are divided into three categor-
ies, point-based, eigen-based, and grid-based. First, the ori-
ginal 3D point cloud is transformed into a set of supervoxels
by the supervoxel calculation method, in which points located
in the same supervoxel generally have similar feature descrip-
tions. At the same time, The original point cloud is also di-
vided using a regular grid to facilitate the extraction of grid-
based elevation features in the later stage.Instead of semantic
labeling of the raw points, supervoxels are used as the basic
unit for semantic classification, and the centroids of the super-
voxels are generated from the supervoxel structure. Three kinds
of features are calculated: (1) The eigen-based features are first
calculated using a principal component analysis algorithm, and
the corresponding geometric shape features are generated by
deformation and combination with those eigenvalues. Specific-

ally, the adjacency relationship built by voxel cloud connectiv-
ity segmentation (VCCS) is used to determine the supervoxel
neighborhood ranges. (2) The point-based features, including
the local density, point feature histogram, point’s normal vec-
tors, and elevation values, are obtained via neighborhood cal-
culation or the point cloud’s raw attributes. (3) We introduce a
grid-based elevation feature to decrease the influence of uneven
topography during point cloud classification. Based on the reg-
ularized grid of the point cloud data, the relative elevation of
the horizontal location is used as the elevation feature of each
supervoxel centroid. Finally, all three feature types are used to
train the supervoxel-based RF model, which is used for point
cloud classification.

Figure 1. Supervoxel-based random forests framework for point
cloud classification

2.2 Two-level graphical model generation for feature ex-
traction

Supervoxels are defined as groups of points that contain sim-
ilar geometric features or attributes, such as location, color, and
normal direction. Additionally, adjacency relationships embed-
ded in supervoxels can provide more effective information for
neighborhood searching, improving the robustness and accur-
acy of feature calculation. For this classification method, we
use supervoxels, rather than single points, as the basic unit to
construct the RF model, and the domain information is con-
strained via LCCP segmentation. Therefore, a two-level graph-
ical model using supervoxel calculation and LCCP optimization
is generated from the raw point cloud. Figure 2 illustrates the
two-level graphical model generation process. First, we gener-
ate the supervoxel model in two steps, namely, randomly seed-
ing the point cloud and clustering by calculating the feature dis-
tances among neighboring points. The supervoxel clustering al-
gorithm estimates the point homogeneity via color, space, and
normal dimensions as in Equation 1, 2 and 3.

d = ispace × dspace + inormal × dnormal (1)

dspace =

√
△x2 +△y2 +△z2

rvoxel
(2)

dnormal =
v⃗1 · v⃗2

|v⃗1| · |v⃗2|
(3)
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Figure 2. Illustration of two-level graphical model generation

where d represents the summarized estimation of homogen-
eity across all dimensions,dspace and dnormal represent thte
Euclidean distances between seeds and surrounding points and
the normal vector directions of a plane approximated using the
least-squares method with neighbors within a certain number
(set to 15 in the paper balancing the effect and computational
costs). The importance weights ispace and inormal are set to
0.4 and 0.6 considering optimal homogeneity of a single voxel.
rvoxel is the size of each supervoxel (set to 1m in this paper
according to the point cloud scale), v1 and v2 and are normal
vectors of pairwise adjacent supervoxels. Then, the adjacency
relationship built by VCCS is used to determine the supervoxel
neighborhood ranges to calculate local eigen features. To en-
sure the neighborhood search for eigen feature calculation is
accurate, we generate the second-level graphical model using
an LCCP algorithm based on the first-level graphical model ob-
tained by supervoxel clustering. The core of the LCCP seg-
mentation is to accurately identify the edges of objects by the
angular relationship between supervoxels. Once the adjacency
between two supervoxels is confirmed, the relationship proper-
ties can be analyzed via normal vector calculation, as shown in
Equation 4 and 5.

d̂ =
x⃗1 − x⃗2

||x⃗1 − x⃗2||
(4)

△α = n⃗1 · d̂− n⃗2 · d̂ (5)

wherein x⃗1 and x⃗2 refer to the centroid positions of the two
observed supervoxels, and, n⃗1 and n⃗2represent their normal
vectors. The relationship is considered a convex connection if
△α > 0, which indicates that the normal vector of the cent-
ral supervoxel has a minor angle to the straight line defined by
x⃗1 − x⃗2 and a greater angle cosine value. Alternatively, the re-
lationship is considered a concave connection when △α < 0 in
a similar way.

2.3 Description for hybrid features

Three types of features are used in our proposed RF model,which
contains point-based features, Eigen-based features and grid-
based elevation features. The descriptions for them are as fol-
lowing.
Point-based features description: (1)Local density of points:
Measured as the average distance from one point to the nearest
k-neighbors. Each measurement constructs a temporary kdtree
structure using the fast library for approximate nearest neigh-
bors (FLANN) (Muja and Lowe, 2014) to search for the nearest

centroid points in the input point cloud. The Euclidean dis-
tances for pairwise vertices are then calculated, and their aver-
age values are used as a feature. (2) Point Feature Histogram
(PFH): A descriptor computed by the consistency of the nor-
mal vectors of adjacent points (Rusu et al., 2008a, Rusu et al.,
2008b). The PFH computation algorithm uses the kdtree to
search for available surrounding points and compare their co-
ordinates and normal vectors. An extracted centroid point uses
the normal vector of the related supervoxel as a property. (3)
The included angle to the horizontal plane of the normal vec-
tors of points: Measured from the coordinates of the 3D nor-
mal vectors of points. The formula for calculating the included
angle cosine is as follows.

c =
n1 · n2

|n1| · |n2|
=

z1√
x1

2 + y12 + z12
(6)

where C refers to the cosine value and n1 and n2 are the normal
vectors of the point and the horizontal plane (defined as (0,0,1)),
respectively. The cosine value is applied as a feature instead of
an actual degree for feature normalization. (4) Point elevation
value: Obtained and transferred from the definite coordinate
values of points in the z-axis. For urban scenes with uncertain
ground elevation, we propose a grid-based feature optimization
strategy to eliminate the effects of terrain undulations. (5) RGB
color: Color information can achieve effective judgment of fea-
ture types, and this paper uses color features as a basic feature
of supervoxels. Considering that this paper uses supervoxels as
the basic unit for feature classification experiments, their color
features are determined by the average value of points inside
the supervoxels.

Eigen-based features description: Different combinations of
eigenvalues demonstrate particular shape characteristics (Wang
et al., 2018). We apply five typical eigen geometric shape fea-
tures as inputs to include supervoxel adjacency results in the ap-
proach; the computing formulas are shown in Table 1. The ad-
jacency map and LCCP method are used to optimize the neigh-
borhood homogeneity, as described above. (1) Curvature: De-
scribes the extent of the curve for a point group. (2) Linearity:
Describes the extent of the line-like shape for a point group.
(3) Planarity: Describes the extent of the plane-like shape for a
point group. (4) Scattering: Describes the extent of the sphere-
like shape for a point group. (5) Anisotropy: Describes the dif-
ference between the extents of entropy in respective directions
of eigenvectors for a point group.

Feature definition Computing formula
Curvature Ce = λ3

λ1+λ2+λ3

Linearity Le = λ1−λ2
λ1

Planarity Pe = λ2−λ3
λ1

Scattering Se = λ1
λ3

Anisotropy Ae = λ1−λ3
λ1

Table 1. Computing method for eigen value-based shape
features. Feature definitions on the left refer to explanation

above. Three eigen value symbols are sorted in descending order
from 1 to 3 in the formulas

Grid-based elevation feature description: Different elements
in urban scenes are mostly vertically distributed; thus, adding
z-axis values of vertices as a feature type helps distinguish vari-
ous objects. However, due to the uncertain elevation of urban
terrestrial surfaces, a definite elevation value cannot raise the
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discriminability of objects because the homogeneous points are
distributed in an unclear range, causing false classification to
ground points. Likewise, using the difference between the over-
all minimum elevation and the value of certain points is not a
viable solution. To solve this problem, we apply a grid-based
elevation differences system to calculate the elevation feature.
As shown in Figure 3(a) and (b), the system projects the entire
point cloud onto the plane in two dimensions (x and y), then
segregates all points into a certain number of grid squares (a
100× 100 grid as the preset minimizing elevation fluctuation
in a single square and computational costs). The network range
is constrained by maximum and minimum values in the x and y
dimensions of all vertices obtained in advance to ensure every
point is located in a unique square. The minimum z-values com-
pared in each grid square are used to calculate the difference
values, as the fluctuation extent of ground elevation is predict-
able in minor areas with hardly any steep slopes.

Figure 3. Grid-based elevation computation and filtering. (a) the
illustrated point cloud data is on the left and the 2D-projected
data with grid meshes is on the right. (b) grid filter examining

anomaly of calculated elevation value in grids

2.4 Super-voxel based random forests classifier model

Supervoxel based RF classifier model The RF algorithm relies
on features extracted from the original point cloud to generate
decision trees from randomly selected point inputs for classific-
ation. All above-computed features are sent into the RF con-
struction system with a segmented training set of points. As
an algorithm with a random feature selection strategy, the sys-
tem arbitrarily draws a subset from the original training dataset
and grows a new decision tree from the extracted set, which
allows the RF method to efficiently handle large-scale data-
sets (Breiman, 2001). Two thresholds limit the growth of the
forest: the max depth and the total number of decision trees (set
to 25 and 10, respectively, in this paper, balancing efficiency
and result quality). The growth of trees ceases when the pre-
set thresholds are reached, and the output forest classifies the
validation set using corresponding features to verify accuracy.
The algorithm applies the mean-squared generalization error to
evaluate the classification correctness (Breiman, 2001), as fol-
lows.

EX,Y =
∑
θ

∑
X,Y

(Y − h(X, θ))2 (7)

where X refers to the random feature vector and Y refers to the
corresponding label. h means a single tree inside the forest,
appearing in tandem with one X.

3. EXPERIMENTAL RESULTS

Data preparation: The performance of the proposed method
is verified using ISPRS benchmark dataset. The ISPRS bench-
mark datasets collected in Toronto, Canada provided by ISPRS
benchmark (Rottensteiner et al., 2012) is used. We select three
indices considered effective in previous approaches, the over-
all accuracy (OA), the mean intersection over union (mIoU),
and the F1-score, the values of which are compared with other
methods using the same datasets from ISPRS benchmarks and
computed as follows. True Positive (TP), False Positive (FP),
True Negative (TN) and False Negative (FN) values are extrac-
ted from the confusion matrix of the classification result, p and
r are the precision and recall percentages, respectively.

OA =
TP

TP + TN + FP + FN
(8)

mIOU =
TP

TP + 2× (TN + FP + FN)
(9)

p =
TP

TP + FP
(10)

r =
TP

TP + FN
(11)

F1 =
2× p× r

p+ r
(12)

Experimental results of Toronto sites: The Toronto dataset
is divided into two regions including Area 1 and Area 2. The
classification results are visualized in Figure 4. because few in-
stances have been tested on the features of the Toronto sites,
comparisons with five similar approaches are given in Table
2. There are plentiful high buildings and vegetation in mini-
ature in the Toronto scenes, plus relatively sparse point cloud
data and uncompleted construction facades, which increase the
difficulty of distinguishing categories. Moreover, as a dataset
generated by an airborne laser scanner, it lacks the RGB band
information in the original point cloud data as properties, which
disables three effective features in the proposed classifier. Non-
etheless, the proposed method performs well in these situations
with the advantages of optimized elevation and precisely seg-
mented neighborhood eigen features, even without the integ-
ration of multispectral oblique images. As Figure 5 illustrates,
the grid-based elevation feature corrects parts of the false build-
ing point labels recognized as misclassification in previous ap-
proaches (Zhu et al., 2017).

Figure 4. Classification results of two areas in Toronto sites
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Area 1 Area 2
Methods OA (%) mIoU (%) F1-score (%) OA (%) mIoU (%) F1-score (%)
MAR 2

MSR
ITCM
ITCR
TUM

94.3
95.5
81.3
84.2
82.6

89.2
91.4
68.5
72.7
70.4

88.9
91.2
66.1
69.2
68.1

94.0
94.8
83.0
85.4
83.1

88.7
90.1
70.9
74.5
71.1

88.4
89.7
67.9
72.4
68.9

Ours 93.2 87.4 92.6 93.1 87.0 85.8

Table 2. Quantitative comparison of the proposed method and previous related methods testing on Toronto sites.

Figure 5. Corrections of grid-based elevation filter for
constructions lacking corresponding ground points

Figure 6. Misclassification cases which recognized roof as
ground points in Toronto sites

The F1 scores shown in Table 2 indicate the performance of the
proposed method overall six approaches. Even though com-
pared to three indices, our method is one of the best in both
Area 1 and 2. The majority of objects including constructions
and vegetation clusters in vast scale are distinguished correctly
viewed from Figure 4. However, similar shape features lead
to some confusion. The most obvious misclassification part is
a gym-like construction located at the right-bottom of Area 1,
with a maximum height lower than most the vegetations, which
pretends to be misclassified as ground. There are still parallel
examples illustrated in Figure 6, in which we believe that it con-
tains mainly roof points with few corresponding façade points
relating to the same buildings, hence this is fault brought up by
the dataset itself.

Experimental results of urban scenes in Shenzhen: The se-
lected dataset included four urban regions, one for the training
set and three for independent validation [marked as (a), (b), (c)].
The training area was 350 m × 200 m, and the validation areas
were approximately 400 m × 300 m. The entire dataset was

downsampled to a resolution of 0.3 m. The classification results
are illustrated in Figure 7. Most vegetation points and ground
points were accurately classified, and explicit outlines of build-
ings were visible in the resulting figure. In most scenes, ve-
getation was distinguished from adjacent buildings. Moreover,
the centroid-based classification method enabled low compu-
tation costs, even though each validation area contained more
than four million points after the downsampling process. This
demonstrates that the proposed classifier successfully handles
large datasets. The point-based classification method in CGAL
library (Fabri and Pion, 2009) was used for comparison pur-
pose. The quantitative performance evaluations of our proposed
method and the pointbased method are shown in Table 3. As
expected, the super voxel-based method proposed in this paper
achieved better classification accuracy in all three regions com-
pared to the traditional point cloud-based methods. Specific-
ally, the proposed method achieved 3.6, 5.8, and 4.4 percent,
respectively, in the OA, mIoU, and F1 score in Area (a). Sim-
ilar results were found in the other two regions.

The average performance of the proposed method was higher
for the Shenzhen dataset than the Vaihingen and Toronto data-
sets. The mostly rectangular rooftop shapes and integrated facade
structures prevented building points from being recognized as
vegetation, whereas the uncertainty of object consistency in the
Vaihingen set led to false classification. Compared with the
Toronto sites, which were comparably generated except without
color information, most elevated vegetation points and build-
ings with low height and more detailed facades were success-
fully distinguished using RGB color features in the Shenzhen
dataset. However, some exceptional situations in the dataset
affected the overall accuracy of the classification results. As
shown in Figure 8a, the neighborhood information of partial
rooftop points that were similar to roads, such as rises at the
edge or street light posts, reduced the contextual consistency
of the local region and affected the classification. Additionally,
due to the intricate and uncertain shape appearances in modern
urban scenes, a single training area provided limited polygonal
examples. Parts of buildings with minor scale or unusual con-
tours that were not provided in the training region were misclas-
sified as ground pieces in the validation sets [Figure 8b], which
reduced the overall classification accuracy.

Benefiting from supervoxel extraction processing, the point cloud
of Shenzhen University can be rapidly aggregated into super-
voxel structures, which effectively reduced the point cloud dens-
ity and complexity. In turn, with supervoxels as the basic unit,
the classification method proposed in this paper achieved point
cloud classification with high efficiency, and the overall compu-
tation costs were about 1.5 h. Moreover, the utilization of LCCP
object homogeneity segmentation in supervoxel-based neigh-
borhoods contributed to the considerable classification preci-
sion with complete object surfaces consisting of point arrays,
which advanced the object-based theory.
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Area (a) Area (b) Area (c)
OA (%) mIoU (%) F1-Score (%) OA (%) mIoU (%) F1-Score (%) OA (%) mIoU (%) F1-Score (%)

Our method 94.0 88.7 90.1 93.5 87.8 91.8 93.5 87.8 91.7
Point based 90.6 82.9 85.6 87.6 78.0 84.2 86.1 75.6 79.8

Table 3. Quantitative evaluation of the supervoxel-based results and point-based results of the proposed method on the Shenzhen
airborne LiDAR dataset.

Figure 7. Classification results of airborne LiDAR-generated
Shenzhen sites. Three selected sites have been marked as (a), (b)

and (c).

Figure 8. Misclassification cases in the Shenzhen dataset. (a)
Faults due to edge interruption. (b) Faults due to untrained

object shapes.

4. CONCLUSION

In this paper, we proposed a robust and effective airborne LiDAR
point cloud classification method that integrates hybrid features,
including point-based features, eigen-based features, and elevation-
based features, into a supervoxel RF model. Three main innov-
ations are applied to effectively improve the classification ac-
curacy of the proposed model. . (1) Rather than single points,
we use supervoxels as the basic entity to construct the RF model
and constrain the domain information via LCCP segmentation.
(2) A two-level graphical model involving supervoxel calcula-
tion and LCCP optimization is generated from the raw point
cloud, which significantly improves the reliability and accur-
acy of neighborhood searching. (3) The features are divided
into three categories based on feature descriptions (point-based,
eigen-based, and grid-based), and three unique feature calcula-
tion strategies are accordingly designed to improve feature reli-
ability. We conduct two experiments using ALS data collected
from Toronto site which has been provided by ISPRS bench-
mark and real scene data collected from Shenzhen, China, re-
spectively. We compare the quantitative analysis of ALS data-
sets with other existed methods maintaining high performance,
and the classification results demonstrate the robustness and ef-
fectiveness of the proposed method. However, the proposed
method still has some limitations on scene generalizability. The
algorithm may fail to recognize roof components when lacking
facade information, which is caused by a loss of the connection
relationship between supervoxels. In the future, we would like
to integrate external constraints into the classification process
to prevent the influence of over-segmentation.
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