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ABSTRACT:

As the expansion of cities and urban areas results in the construction of more impermeable road surfaces, a well designed urban
drainage system becomes of greater importance. However, the accurate and up-to-date mapping of storm drains necessary to create
accurate drainage models is often lacking. In recent years, mapping of the road infrastructure is increasingly carried out by highly
efficient mobile mapping systems but which lack automatic interpretation of the massive amount data. In this paper we present a
fully automatic storm drain detection method to extract and locate storm drain inlets in mobile mapping lidar data. The point cloud
is first segmented by a pre-trained RandLa-Net model, which although untrained to segment storm drains, is able the segment storm
drain clusters in the hardscape class. The results from this class are further processed by enforcing different requirements to only
extract and locate storm drain clusters. Our approach is evaluated on a large testing dataset with 171 storm drains and achieves
81.9%, 95.2% and 88.1% for recall, precision and F1-score respectively. The majority of the false positive and false negative
detections are due to incorrect point cloud segmentation of the RandLa-Net. In terms of localisation, our approach achieves an
RMSE of 5.5 cm on the centre location while the dimensions of the bounding box are on average 23% off compared to the ground
truth.

1. INTRODUCTION

As cities and communities continue to grow, rural areas are
increasingly being urbanized. As a result, natural permeable
soil is replaced by impermeable city roads and other urban in-
frastructures leading to an increased risk of flooding. A well-
designed urban drainage system is of great importance in order
to drain excess rainwater and prevent large urban floods. In or-
der to asses the current performance of a drainage system, an
up-to-date and accurate drainage network containing the loca-
tions and dimensions of storm drain inlets and manhole covers
are essential. However, such data is often lacking, incomplete
or outdated (Bertsch et al., 2017, Wang et al., 2021).

In order to map the current drainage infrastructure, traditional
surveying methods such as total station or GPS measurements
are carried out. Although very accurate, these methods are time
consuming and labour intensive compared to newer more auto-
mated remote sensing applications (Jalayer et al., 2014). Com-
pared to UAV imagery or mobile mapping data (image and/or
lidar), large neighbourhoods can be captured with similar accur-
acy in only a fraction of the time needed for traditional survey-
ing methods. However, in terms of time, the data capture is less
important than the data interpretation and mapping on mobile
mapping data. Therefore, automating this task is of great im-
portance to make these remote applications viable for capturing
the road infrastructure. As reported in (Alshaiba et al., 2020),
this could reduce the overall cost by 22% and result in a time
saving up to 91% compared to the traditional manual surveying
methods.
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Recent research has mainly focussed on automatic detection of
different objects of the road infrastructure such as buildings,
poles, traffic signs or the general road structure (road delin-
eations, road markings, etc.) (Guan et al., 2016). However, de-
tection of drainage infrastructure is generally overlooked and
research on automatic storm drain detection is limited. This
is partially due to the small dimensions of a storm drain com-
pared to buildings, cars or poles making it more difficult to ex-
tract them from these massive datasets. Although some work
has been successful in finding storm drains on lidar intensity
ground images using deep learning (Yu et al., 2014, Yu et al.,
2015, Yu et al., 2020), storm drain detection on raw lidar data
is limited (Alshaiba et al., 2020).

In this paper, we propose a fully automatic storm drain detec-
tion method to extract and locate storm drain inlets in mobile
mapping lidar data. First a pre-trained state-of-the art deep
learning architecture semantically segments the massive mobile
mapping lidar point cloud in different classes such as building,
road, vegetation and hardscape. The latter includes man-mad
road furniture objects such as poles, benches, traffic sings, etc.
Additionally, the pre-trained model is able to segment storm
drains within this class although it was never trained to do so.
The hardscape point clusters are further processed in order to
only extract and locate the storm drains in the dataset. Both
detection and localisation performance are evaluated on a large
testing dataset.

The remainder of this paper is organized as follows. Section 2
provides the related work on storm drain detection on remote
sensing data. Section 3 presents our methodology. In Section 4
the experimental results are presented. Finally, the conclusions
are presented in Section 5.
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Figure 1. Schematic overview of the proposed workflow. The mobile mapping point cloud is segmented into different classes of which
the hardscape class is used to extract storm drain clusters. In each cluster, the storm drain location and size are determined by finding

the minimal bounding rectangle of the cluster points.

2. RELATED WORKS

In the last decade, most research focusses on general object de-
tection such as buildings, road structure (road delineation and
markings for example), cars, poles, etc. (Guan et al., 2016). To
achieve this, various approaches were investigated ranging from
using basic manually designed low-level features to more com-
plex machine learning and deep learning methods able to learn
complex high-level features. In terms of drainage infrastruc-
ture detection, some work is mainly done on the detection of
manhole covers on both lidar and image data while research on
storm drain detection is more limited. While a similar approach
could be implemented for manhole cover and storm drain de-
tection, storm drains are significant smaller making object de-
tection more difficult.

In (de Vitry et al., 2018), manhole covers and storm drain are
detected on UAV imagery. To improve detection results, only
the areas around the road edges are processed. Drainage cov-
ers are detected using a sliding window approach and a trained
Viola-Jones classifier. For each detection cluster, seven prop-
erties are computed and used as input for a second classifier to
filter out false positive detection. Different classifiers such as
a Linear SVM, Logistic Regression and Artificial Neural Net-
work were tested. Their approach achieves an average preci-
sion score (AP-score) of 65% and 73% for their single-view
and multi-view implementation respectively. A more complex
image based deep learning approach is investigated in (Boller
et al., 2019) using 1000 high resolution Google Street View im-
ages. A Faster R-CNN using ResNet-101 as backbone archi-
tecture was trained on 4000 panoramic images and achieved an
average precision of 72.3% and 74.5% for manhole covers and
storm drains respectively while the smaller water supply net-
work valves only achieved 49.5% precision. Similar drainage
covers are detected using RetinaNet with ResNet as backbone
architecture in (Santos et al., 2020). Although tested on a small
testing dataset, the trained RetinaNet network shows promising
results by outperforming the Faster-RCNN model. As expec-
ted, average precision for storm drain inlets were on average
between 5% and 23% lower compared to manhole cover aver-
age precision.

Detection of drainage systems on lidar data is rarely performed
on the raw point cloud. In (Alshaiba et al., 2020), manhole
covers are detected by filtering the point cloud with a pre-
defined intensity interval and fitting a minimal bounding rect-
angle around each cluster. False positives are discarded by ap-
plying different filters that remove bounding boxes which are
too small or too big. Although this simple method achieves us-
able results, it is not robust as the approach can not distinguish
the difference between a manhole cover and a dark square patch
of asphalt in the road. Instead of using the raw mobile lidar data,
the point cloud is generally converted into a ground intensity
image in order to use state-of-the-art image detection methods.

Yu Yongtao published several papers (Yu et al., 2014, Yu et
al., 2015, Yu et al., 2020) on this topic investigating different
detection approaches. In (Yu et al., 2014), circular manholes
and rectangle storm drains are detected using a marked point
model on the intensity ground image. Later, Yu published (Yu
et al., 2015) in which a deep learning approach was proposed
which used a Deep Boltzmann Machine to generate high-level
features in combination with a random forest model to clas-
sify the sliding window patches. In their most recent work (Yu
et al., 2020), the Boltzmann/random forest combination was
replaced by a deep learning classifier and a super-pixel seg-
mentation strategy. Additionally, the marked point approach
from (Yu et al., 2014) is used to accurately determine the fi-
nal location and dimensions of the manhole covers. A sim-
ilar approach on intensity ground images was proposed in our
previous work (Mattheuwsen and Vergauwen, 2020), where we
transfer learned several different backbone architectures on a re-
latively small training dataset to detect manhole covers. Our ap-
proach achieves 97.3% recall and 97.3% precision on the road
surface and is able to locate the storm drains with a 2D con-
fidence interval of 16.5 cm. In (Wei et al., 2019), manholes
are detected on both high detail lidar ground images and colour
RGB images using a combination of manually designed low-
level features as input for a SVM classifier and a sliding win-
dow approach. The combination of both the lidar images and
RGB images achieves high accuracy results, although this was
achieved by a modified mobile mapping system with captured
data at a very high point density and image resolution unachiev-
able by commercial systems.

As this literature study clearly shows, detection of storm drains
or manhole covers on lidar data is reduced from a point cloud
detection task to an image detection task. This opens the door
to well established image processing techniques which are gen-
erally more suited for detecting these smaller objects. However,
with the 2D projection of the point cloud, the vertical inform-
ation of the data is lost. In our previous work (Mattheuwsen
and Vergauwen, 2020), we investigated an approach which cap-
tured the vertical information within a channel of the intensity
ground image, but were unsuccessful in improving the results.
With this paper, we aim to investigate a different route and aim
to detect storm drains using deep learning point cloud segment-
ation networks instead of reverting to an image-based detection
approach. Additionally, the use of a pre-trained deep learning
model is explored so no training dataset must be created or new
deep learning model must be trained.

3. METHODOLOGY

In this section, a detailed overview is presented of our pro-
posed storm drain detection workflow which can be split up
in three parts. Firstly, the mobile mapping point cloud is se-
mantically segmented using a pre-trained deep learning model
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Figure 2. Semantic segmentation results from the pre-trained RandLa-Net model on section of the testing dataset.

called RandLa-Net, into different general classes such as build-
ing, road, vegetation and hardscape objects. Secondly, the
hardscape points are clustered together and the storm drain
clusters are extracted that comply with the enforced require-
ments. Lastly, a minimal bounding rectangle is fitted around
the surface points of the storm drain clusters in order to find
the location and dimensions of each storm drain. The complete
workflow is shown in Figure 1.

Semantic segmentation of hardscape objects: In recent
years, point cloud deep learning has made tremendous ad-
vancements in the performance of semantic segmentation. The
RandLA-Net model (Hu et al., 2020) recently achieved prom-
ising results. RandLa-Net is a very efficient and lightweight
3D semantic segmentation network that can process large scale
point clouds. Differently from other approaches, it uses ran-
dom sampling and a novel local feature aggregation module to
outperform the state-of-the art in a fraction of the processing
time as shown in Figure 2. In our approach, we use a pre-
trained RandLA-Net model to semantically segment the mo-
bile mapping point cloud. While different segmentation classes
typically include objects such as buildings, roadways, vegeta-
tion, poles, etc., storm drains are rarely part of the segmenta-
tion task. In order to expand the segmentation task to include a
new object, new training data including the new object is typic-
ally required. However, storm drains are relatively small com-
pared to these other objects, resulting in a large class imbal-
ance which leads to poor segmentation performance rendering
this option ineffective (Phan and Yamamoto, 2020). A pos-
sible solution for class imbalance is to combine several smaller
objects into one general class resulting in a better class rep-
resentation. However, this approach requires additional post-
processing steps to extract and distinguish the different objects
from each other within the combined class. A similar approach
was applied in the large-scale terrestrial laser scanning (TLS)
benchmark dataset semantic3D (Hackel et al., 2017). Aside
from the typical classes such as building, vegetation and road,
the dataset also contains a combined class which consists of
man-made objects such as light poles, traffic signs, benches,
fences, etc. Although storm drains are not specifically included
in this class, a trained RandLa-Net model on the Semantic3D
dataset is able to distinguish storm drains from the road surface
and segment them within this class. This is possible because of
the difference in representation of a storm drain in the mobile
mapping point cloud compared to the terrestrial laser scanning
point cloud of the training dataset. As shown in Figure 3, a

Figure 3. Difference between storm drains points in red cap-
tured with MMS (left) or TLS (right). The corresponding 3D
bounding box is shown in green.

significant cluster of points are captured below the road surface
in the mobile mapping point cloud while this is not the case
when captured by a TLS. This is due to the difference in ac-
quisition height and method which is higher and dynamic for
the MMS instead of static and generally lower to the ground for
TLS. It is assumed that this subtle difference in the MMS point
cloud causes the RandLa-Net model to segment this cluster as
hardscape. As deep learning models are perceived as black box
models, we are unable to pinpoint the decisive factor causing
this. In our approach, we use the online available pre-trained
RandLa-Net model trained on the Semantic3D dataset to se-
mantically segment the mobile mapping point cloud. An ex-
ample of the segmentation performance is shown in Figure 2.
As presented in (Hu et al., 2020), the model achieves state-of-
the-art segmentation results outperforming all existing methods
especially on the hardscape class by 10%.

Extraction of storm drains clusters from segmented point
cloud: Using the segmentation results from the pre-trained
RandLa-Net model, the points from the hardscape class are fur-
ther processed in order to distinguish storm drain clusters from
other objects in the hardscape class such as light poles, traffic
signs, benches, etc. We define several requirements which each
cluster has to comply to in order to be considered as storm
drain. First, a maximum intensity threshold Ith is enforced on
the hardscape points as storm drains are generally made out of
cast iron or another metal resulting in a relatively low intensity
value. Second, the remaining points are clustered into smaller
segments separated by a minimum distance threshold DCC us-
ing the Connected Components tool from CloudCompare (GPL
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Figure 4. Example of the clustering results of the hardscape
class. Green clusters contain a storm drain while other hard
scape objects are shown by the red bounding boxes.

Software, 2022). Figure 4 shows the clustering results where
the hardscape points are coloured in purple with their corres-
ponding bounding box in green or red depending if it contains
a storm drain or not. As can be seen in Figure 4, the majority
of other hard scape object clusters are well above the ground
surface while the storm drain clusters are mainly bellow. The
main requirement is therefore defined as follows:

• Requirement 1: the cluster centre must be at least at a dis-
tance of Dth below the ground surface

For each cluster the vertical distance between its centre and the
ground surface mesh is computed and clusters not fulfilling this
requirement are filtered out. The mesh is created using a com-
bination of CloudCompare’s Cloth Simulation Filter plug-in to
extract the ground points and the Poisson Surface Reconstruc-
tion plug-in to generate the mesh on the ground points. While
this single requirement removes the majority of false positive
clusters, two additional requirements are defined to further im-
prove the results:

• Requirement 2: Cluster must contain at least Smin number
of points and not exceed Smax

• Requirement 3: X and Y dimension of the cluster bound-
ing box must not be smaller than Bmin and greater than
Bmax

All remaining clusters that comply to these three initial require-
ments are considered to contain a storm drain cover. Our values
for the different parameters are summarized in Table 1 and de-
termined based on visual analysis of some example storm drain
clusters in the dataset.

Localization of the storm drain: For each remaining cluster,
the storm drain centre and size (width and height) are determ-
ined by finding the minimal bounding rectangle around the
cluster. However, not all cluster points are taken into account as
only the points close to the surface should be used to find the the
boundary. Only cluster points within the height range defined
by Hsur ± Htol are considered as storm drain cover points.
Hsur is the surface height as computed in Requirement 1 while
Htol is the user-defined height tolerance. Figure 5(a) shows
how only the surface points Psur of the storm drain cluster fall
within the selection area. Using these points, the 2D minimal
bounding rectangle with the smallest area is computed using
a traditional convex hull approach. This approach makes use
of the fact that the minimum bounding rectangle of a point set
is the same as the minimum bounding rectangle of its convex

Figure 5. Shows the selection area in red of the surface points
Psur of the storm drain cluster used to compute its bound-
ing rectangle. The points are coloured based on their intensity
value.

hull which simplifies and speeds up the computation (Toussaint,
1983). Additionally, a side of the minimum bounding rectangle
must be collinear with a side of the convex hull. Using this
information, the minimum bounding rectangle is computed as
follows. First, the convex hull and its corresponding corners
are determined using the surface points Psur. Second, going
over each edge of the convex hull, the corresponding minimum
bounding rectangle and area are computed. The minimum
bounding rectangle of the storm drain cluster is the minimum
bounding rectangle of the convex hull edge with the smallest
area. Additionally, the cluster points will contain some noise
points outside of the boundary of the storm drain causing an
overestimation of the dimension and location. Therefore, the
optimal minimum bounding rectangle is found using RANSAC
where for each iteration only a randomized subset of Psur is
used to compute the convex hull and corresponding minimum
bounding rectangle around the subset. The smallest area of the
bounding rectangle is considered to be the most accurate fit of
the storm drain boundary. The points within this bounding rect-
angle are deemed to be insiders. Figure 6 shows an example
of the different bounding rectangles of the surface points us-
ing RANSAC. The magenta rectangle indicates the best fitting
boundary around the surface points while the blue rectangles
show the less optimal results from RANSAC. All points within
the magenta bounding rectangle are considered to be inliers.

While the majority of the false positive clusters are removed
during the cluster extraction step, two additional requirements
are defined using the localisation results in order to further im-
prove the results:

• Requirement 4: Psur must contain at least Pmin number
of points

• Requirement 5: Width/height ratio of the minimum
bounding rectangle must be between Rmin and Rmax.

The different values for all the parameters are shown in Table 1

4. RESULTS

4.1 Dataset

All data used for testing the proposed method was captured by
a modified Lynx mobile mapper SG from Optech. This sys-
tem is equipped with a dual lidar sensor setup from the Lynx
M1 Mobile Mapper and is able to capture highly accurate point
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Figure 6. Shows the minimum bounding rectangle in magenta
computed using RANSAC with the less optimal bounding rect-
angles in blue. Green point within the magenta rectangle are
inliers while red points are the outliers.

Table 1. Summary of the different parameters and their corres-
ponding values.

Parameter Value

Ith 70
DCC 0.01 m
Dth 0.05 m
Smin - Smax 60 - 1000 points
Bmin - Bmax 0.15 - 1.2 m
Pmin 25 points
Rmin - Rmax 1 - 3

clouds at 500 kHz. A more detailed summary and analysis of
this mobile mapping systems is presented in (Mattheuwsen et
al., 2019). The testing dataset is a 2.5 km residential area loc-
ated north of the city Ghent in Belgium. This neighbourhood of
400 m by 300 m was originally captured by 300 million points
but was subsampled to around 80 million points at 2.5 cm as
RandLa-Net does not make use of sub-centimetre resolution.
All storm drains in the dataset were manually labelled resulting
in 171 storm drain locations including their dimension (width
and height).

4.2 Storm drain detection results

The evaluation of the detection performance of our proposed
method is evaluated using recall, precision and F1-score. The
individual influence of the different requirements is discussed
and the final false positive and false negative detection are ana-
lysed.

The detection results of our proposed method on the testing
dataset are shown in Figure 7 while the performance paramet-
ers are shown in Table 2. Overall, our approach achieves decent
detection results and is able to find 140 of the 171 storm drains
successfully with only 7 false positive (FP) detections. Without
enforcing the five requirements for the hardscape clusters, de-
tection performance would be poor with almost 1173 FP de-
tections. By imposing requirement 1, more than 95% of the
false positive detections are removed. The four remaining re-
quirements seem to have less impact in removing FP detections
although they succeed in removing the more difficult cases and
fine tune the detection results. After applying all requirements,

our method is able to achieve 81.9% recall, 95.2% precision and
an F1-score of 88.1%.

Out of the 147 detections only 7 are false detections, mainly
caused by low vegetation as shown in Figure 8(a-b). Small
bushes low to the ground sometimes get falsely segmented as
hardscape by the RandLa-Net while the different requirements
were not able to filter out these false positive detections. In or-
der to remove these flaws, it is possible to set the requirements
parameters from Table 1 more strict, although setting them too
strict will results in a lower recall rate. For example, increasing
the distance threshold Dth to 10 cm would remove all but one
FP detection but also 13 TP detections. A different solution is
to look into additional requirements that only filter out the false
positive detections as investigated in (de Vitry et al., 2018). Ad-
ditionally, it turned out that during the manual labelling of the
ground truth data, a storm drain was missed, but fortunately it
was detected by our method. As Figure 8(c) shows, the storm
drain is located in a small ditch on the side of the road. This
shows the advantage of automatic detection over manual la-
belling as we assumed that storm drains are generally located
on the side of the road in the gutter instead of checking the
whole dataset.

With a recall of 81.9%, 31 storm drains are undetected in the
dataset. It is possible that due to too strict requirements, true
positive storm drain clusters were filtered out. However, the
results in Table 2 show that even without any requirements our
approach is only able to detect 142 of the 171 storm drains
(≈83% recall). This indicates that the main problem is with
the pre-trained RandLa-Net model not segmenting the storm
drains as hardscape but as road or grass as shown in Figure 9(a-
b). Additionally, the undetected storm drains in Figure 7 appear
to display a pattern in the dataset. The streets they are located
in, indicated by the blue rectangle in Figure 7, turn out to be
different from all the other streets as they are narrower one-
way streets with the storms drains and gutter in the centre of
the road instead of on the side of the road. Although initially
this may not seem like a problem, a closer look at one of the
storm drains in these streets reveals that they differ in appear-
ance. As Figure 9(c-d) shows, the noise/reflection points under
the storm drain in the centre of the road are less obvious com-
pared to a storm drain captured on the side of the road. Possibly
because of this difference, the RandLa-Net model segments the
storm drain as road or vegetation, rather than hardscape. As
the semantic3D dataset is not specifically trained to segment
storm drains, a possible solution is to train a dedicated model
to achieve this task. As previously mentioned, creating a data-
set with a separate class for storm drains would yield a massive
class imbalance. Therefore, a viable solution is to include storm
drains within another class such as the hardscape class of Se-
mantic3D. Additionally, some of these problem areas could be
predicted as the storm drain locations show a regular pattern
within a street. A similar approach was proposed in (Bertsch
et al., 2017) where it is assumed that storm drains are equally
distanced from each other. By checking several pattern rules,
the user could be notified of possible undetected storm drains
in a certain area or street so they can be manually mapped.

4.3 Storm drain localisation results

Finally, the localisation accuracy of our proposed method is
investigated by comparing the predicted location and dimen-
sions with the ground truth data. As mentioned in the method-
ology section, the surface points Psur may contain some out-
liers which influence the localisation method negatively. For
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Figure 7. Detection results on testing dataset: correctly detected storm drains (TP) are shown in green, wrongly detected storm drains
(FP) are represented by the yellow circles, undetected storm drains (FN) are indicated by the red circles and the blue rectangles display
the areas with poor detection performance.

Figure 8. Examples of the false positive detection results. (a) and (b) show false positive detection clusters in red due to low vegetation
which was incorrectly segmented as hardscape and complied with the defined requirements. (c) shows a ”false positive” detection in
green which was missed during the labelling of the ground truth data.

Figure 9. Example of undetected storm drain because of incorrect semantic segmentation of the RandLa-Net. (a) shows the point with
RGB colours and the ground truth bounding box of the storm drain in green. (b) shows the semantic segmentation results where the
storm drain section is segmented as grass instead of hardscape. (c) and (d) show the difference in cluster size under the road surface
between an undetected and detected storm drain respectively. Storm drain points are coloured based on intensity value.
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Table 2. Summary of storm drain detection results on the testing dataset with the individual influence of the different requirements on
the false positive filtering and detection results after applying all requirements.

Requirements # Detections TP FP FN

Without any requirements 1315 142 1173 29
Req. 1: Dth below surface 187 141 46 30
Req. 2: Minimal cluster size Smin 178 140 38 31
Req. 3: Within bounding box range Bmin - Bmax 162 140 22 31
Req. 4: Minimal surface points Pmin 151 140 11 31
Req. 5: Within width/height range Rmin - Rmax 147 140 7 31

# Detections Recall Precision F1-score

After applying all requirements 147 81.9% 95.2% 88.1%

Table 3. Localisation results (mean error, Root Mean Square
Error and 95% confidence interval) for varying subset %.

Subset % Mean error RMSE 95% conf. int.

100 % 0.053 m 0.069 m 0.161 m
90 % 0.046 m 0.062 m 0.163 m
80 % 0.046 m 0.061 m 0.155 m
70 % 0.045 m 0.058 m 0.138 m
60 % 0.045 m 0.058 m 0.134 m
50 % 0.043 m 0.055 m 0.136 m

that reason, RANSAC is utilised where only a randomized sub-
set of the surface points is taken into account to determine the
minimum bounding rectangle during each iteration. In order
to assess this approach, the localisation was performed several
times with a varying subset size between 50% and 100% of the
surface points. The 2D localisation results analysed in terms of
mean error, root mean square error (RMSE) and 95% confid-
ence interval (= 2 x RMSE) and are shown in Table 3. As these
results show, our approach is able to determine the centre loc-
ation of a storm drain with a RMSE of 5.5 cm. In general, the
localisation accuracy improves using a smaller subset of points
which confirms the surface points do contain some outliers. By
removing these outliers, the 95% confidence interval improves
significantly from 16.1 cm to 13.4 cm for 100% and 60% of the
surface points respectively. Additionally, the predicted width
and height of the localisation results with 50% subset are com-
pared with the ground truth dimensions. Our approach achieves
an absolute mean error of 11.3 cm and 7.0 cm for the width and
height respectively. Taking into account the average dimension
of a storm drain of 50 by 30 cm, our method makes a 23% error
in both width and height which is significant. Additionally, the
height of the bounding rectangle is equally estimated to be both
too big and too small while the width dimension is mainly over-
estimated. This could mean that the remaining surface points
Psur not always describe the true boundary of the storm drain.
In future work, a different localisation method could be invest-
igated such as the marked point approach proposed in (Yu et al.,
2014).

5. CONCLUSION

In this paper we presented a fully automatic storm drain detec-
tion method to extract and locate storm drain inlets in mobile
mapping lidar data. The point cloud is segmented by a RandLa-
Net segmentation model which was pre-trained on Semantic3D
dataset. This pre-trained model is able to segment the point

cloud in different classes of which hardscape is one which con-
tains general man-made objects. Although storm drains are not
specifically included within any class, the model segments them
as hardscape while it was never trained to do so. The hardscape
class is further processed to only extract and locate storm drains
in the dataset by enforcing different requirements which filter
out the false positive detections.

The detection and localisation performance are evaluated on a
large testing dataset containing 171 storm drains. Our approach
is able to achieve 81.9% recall and 95.2% precision. The ma-
jority of the false positive detection are due to incorrect seg-
mentation of the point cloud and could not be filtered out by the
requirements as this would reduce the recall rate significantly.
Additionally, the 31 undetected storm drains are mainly due to
incorrect segmentation of the RandLa-Net model which could
be solved by transfer learning a new RandLa-Net which is spe-
cifically trained to segment storm drains within the hardscape
class. Alternatively, several storm drain pattern rules could
warn the user of possible undetected storm drains. Additionally,
the proposed method is able to localise the storm drain centre
with a RMSE of 5.5 cm while the dimensions of the bounding
rectangle showed a 23% error compared to the ground truth di-
mension. It is mainly the dimension prediction of the bounding
rectangle that could benefit from an improved approach.
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