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ABSTRACT: 
 
3D point clouds from terrestrial laser scanners (TLS) are used in a variety of fields and applications. To acquire high-quality point 
clouds that have enough point density, small scanning errors, and no lack of points in important regions, appropriate scan planning, 
including determination of scanner positions and scan conditions, is required. Currently, planning is supported by knowledge and 
experience of skilled workers, and it is difficult to ensure the quality of acquired point clouds. In this study, we propose a system for 
visualization of point clouds to support the acquisition of high-quality point clouds using TLS. The system allows the user to see and 
check the quality of scanned TLS point clouds and unscanned regions intuitively by superimposing the point clouds onto the real 
world using a mixed reality (MR) device. In addition, the system supports finding the next best scanner position for additional laser 
scans based on predicted scan quality visualization to acquire higher-quality points or fill the unscanned regions.  
 
 

1. INTRODUCTION 

1.1 Background and Objective 

3D point clouds acquired by terrestrial laser scanners (TLS) are 
used in a variety of fields and applications. In many applications, 
accurate 3D models from scanned point clouds are often 
required, and high-quality point clouds that have enough point 
density and small scanning errors without a lack of points in 
important regions are essential for reconstruction of accurate 3D 
models. To acquire high-quality point clouds, appropriate scan 
planning, including determination of scanner positions and scan 
conditions, is required. Currently, planning is supported by the 
knowledge and experience of skilled workers, and some studies 
on supporting scan planning have been conducted. However, it 
is difficult to guarantee the quality of acquired point clouds.  

 
In this study, we propose a system of mixed reality (MR) 
visualization of point clouds to acquire high-quality point 
clouds using TLS. Figure 1 shows a scenario of the use of our 
system in laser scanning using TLS. First, point clouds of the 
environment or objects are acquired by laser scanning using 
TLS (Step 1). Then, the user checks the point clouds and 
unscanned regions while seeing the superimposed quality of 
point clouds using the MR device (Step 2). If low-quality points 
or a critical lack of points in an important region exist, the user 
finds the next best scanner position according to the MR 
visualization of predicted scan quality of points (Step 3) and 
marks the position using a virtual TLS (Step 4). Finally, 
additional laser scanning is performed by the TLS set at the 
marked position (Step 5). 
 

Step 2. Checking point clouds
(to check the quality and the 
lack of points (on site))

Step 4. Additional scan 
planning 2 (to mark the 
NBT in real space)

Step 3. Additional scan 
planning 1 (to find next 
best TLS position (NBT))

TLS

MR device

TLS

Step 5. Additional scan
(to set TLS at the NBT 
and perform scanning)

Step1. Laser scanning using TLS

Mixed reality visualization in each step

Figure 1.  Mixed reality visualization for supporting scan data check and additional scan

Step 2. Step 4. Step 3. 
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In this study, we introduce the system overview and some 
technologies for achieving MR visualization of point clouds in 
support of laser scanning. A new automatic global localization 
method based on point cloud registration, current and predicted 
scan quality estimation methods of point clouds for 
visualization, and a method to realize efficient and real-time 
visualization of point clouds are proposed. The system is 
evaluated for two different environments: a plant and laboratory. 
 
1.2 Related Works 

Research on scan planning support by automatically 
determining scanner positions has been conducted to efficiently 
acquire TLS point clouds (Soudarissanane and Lindenbergh, 
2011, Kitada et al., 2015, Wakisaka et al., 2019). These 
methods can estimate the best scanner positions for acquiring 
TLS point clouds efficiently. However, to estimate the positions, 
pre-created 2D maps or 3D models of the environment are often 
required. Furthermore, it is not possible to guarantee the quality 
of acquired point clouds (e.g., a lack of points caused by surface 
reflectance property often exist). Our system’s objective is to 
efficiently guarantee the quality of point clouds, and these 
existing methods can be used for obtaining initial TLS point 
clouds (Step 1 in Figure 1).  
 
The system we developed is based on a recent MR device, 
localization, point cloud quality estimation, and efficient point 
cloud management technology. The studies that are related to 
each technology are described below. 
 
MR device: We use the Microsoft HoloLens2 (Microsoft, 2022) 
as the MR device. The HoloLens has many effective functions 
for mixed reality visualization (i.e., optical see-through display, 
laser-scanning by time-of-flight sensors for environment 
mapping and users’ hand scanning, head tracking using inertial 
measurement units and images, eye-tracking, and wireless 
communication). Recently, MR visualization technology and 
devices are widely used in the fields of industrial engineering, 
medical and healthcare, architecture, and civil engineering (Park 
et al., 2021, Yamanaka et al., 2019). The device is also used in 
3D scene reconstructions (Hübner et al., 2020, Weinmann et al., 
2021), and its performance is evaluated. Superimposing various 
types of virtual objects onto the real world is used in many 
applications. However, superimposing TLS point clouds using 
an MR device for supporting laser scanning operations has not 
been developed to the best of our knowledge. One related 

technology is the augmented reality system for superimposing 
point clouds onto digital images (Ohno et al., 2021). This study 
describes an application method of MR visualization of point 
clouds and proposes a set of related technologies using 
HoloLens2.  
 
 Localization: In our MR visualization, point clouds are 
superimposed onto real environments using an optical see-
through display. Therefore, accurate and efficient localization 
and tracking of the MR device position and orientation are 
required. The MR device we used has a function for short-range 
(~3.5m) 3D scanning, so we can use point clouds acquired by 
the device for the global localization in TLS point clouds. Many 
global localization methods have been developed based on 
graph structures, Monte-Carlo simulation (particle filters), and 
machine learning (neural network) (Park et al., 2009, Yongjin et 
al., 2013, Zang et al., 2021). Markers in the environment can 
also be used (Hübner et al., 2018). Depending on the scale or 
size of the environment, these methods often require lengthy 
computation times, pre-computation, and preparations. In our 
situation, global localization should be performed quickly after 
laser scanning by TLS on site. Therefore, pre-computation 
should be avoided as much as possible, and short computation 
time should be desirable. To meet these demands, in our system, 
a global localization method using simple and efficient rough 
registration for TLS point clouds (Sumi et al., 2018) has been 
developed and evaluated in a real-world scene.  
 
Point cloud quality estimation: The quality of laser-scanned 
point clouds is important for the stable and accurate application 
of the point clouds. The quality includes the point density, the 
lack of points caused by the occlusions, and measurement errors. 
These depend on the scan conditions (i.e., the setting positions 
of the TLS in the environment) and the scan setting (e.g., 
scanning pitch). The density can be easily estimated using the 
nearest neighbor search and adopted in our system. A lack of 
points can be identified using a superimposed visualization of 
point clouds. Research on measurement of random and 
systematic errors of TLS point clouds has been investigated. 
The random errors mainly depend on the scan range, angle of 
incidence of the laser, and surface reflectance properties 
(Soudarissanane et al., 2011, Ozendi et al., 2017). In our system, 
scan distance and laser incident angles are used as the scan 
quality related to measurement errors, and we do not consider 
systematic errors. 
 

TLS point clouds

A. Head tracking
(after global 
localization)

C. MR visualization
- point quality
- predicted quality
- position marking

B. Quality estimation
- density, distance, incident 

angle computation

Server
MRD point clouds

A. Global localization
- point cloud registration

MR device (MRD)

B. Quality prediction
- real time predicted 

quality computation 

D. Visualization point generator
- space subdivision and sampling using 

an integrated occupancy grid

3D  
scanning

Figure 2.  Developed mixed reality visualization system

Real world

Point clouds for 
visualization (PCV)
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Point cloud management: Large-scale point clouds can have 
over hundreds of millions of points, and an efficient data 
management data structure should be implemented based on the 
hardware used. Space partitioning such as octree and voxels are 
simple but powerful structures to handle large-scale point 
clouds (Wand et al., 2007, Rusu, 2013). In our system, uniform 
space subdivision is used for efficient frustum culling 
implemented in the software we used. In TLS point clouds, 
overly dense points are often acquired near the scanner or in 
overlapped regions of several scans. The redundant points can 
be caused for low performance of point cloud applications, 
including rendering. The point clouds with appropriate density 
in the application can be obtained by down-sampling. In our 
study, a new method for real-time point insertions with voxel 
sampling into the point cloud for visualization has been 
developed. The method operates in real time on the MR device, 
and it is possible to use the points from each scan frame from 
the MR device in the visualization. 
 

2. DEVELOPED SYSTEM 

2.1 Overview of Our System 

Figure 2 shows the overview of our system. We use an MR 
device (Microsoft Hololens2), which is an optical see-through 
head-mounted display with 3D scanning and head tracking 
functions. Each function of our system is explained below.  
 
To realize MR visualization of point clouds, first the coordinate 
systems of the MR device and TLS point clouds should be 
aligned. We call this process global localization (Figure 2. A, 
Section 2.2). In our system, global localization is performed by 
the registration of TLS point clouds and MR device point 
clouds. After global localization, tracking of the device’s 
position and orientation is always required for superimposed 
visualization of point clouds. This tracking is performed by the 
device’s function. In our pre-experiments, position and 
orientation tracking errors for dozens of meters movements are 
few to ten centimeter in a laboratory and a corridor environment, 
and we consider that the tracking accuracy is enough in our 
applications.  
 
Point qualities and predicted qualities are estimated using point 
clouds from TLS and MR device (Figure 2. B, Section 2.3). 
Quality of TLS point clouds is calculated on the server (note PC 
or desktop PC), and the predicted quality is computed on the 
MR device in real-time using point clouds from TLS and the 
MR device. 
 
In the MR visualization of point clouds, the quality of points is 
represented by colors. The virtual TLS is used to mark the 
scanner position for the best additional scan found by predicted 
quality (Figure 2. C, Section 2.4). For the efficient visualization 
of point clouds, point clouds for visualization (PCV) are created 
from point clouds from TLS and MR device efficiently using a 
visualization point generator (Figure 2. D, Section 2.5). PCV is 
generated by space subdivision and down-sampling for given 
point clouds.  
  
2.2 Global Localization and Head Tracking 

2.2.1 Overview:  To achieve superimposed visualization of 
point clouds on the real world using an MR device, the device 
must first be global localized in the point cloud space. In our 
system, global localization is automatically performed by 

registration between each point cloud from TLS and point 
clouds from MR device. An efficient rough registration method 
(Sumi et al., 2018) followed by the iterative closest point (ICP) 
algorithm (Besl and McKay, 1992, Rusinkiewicz and Levoy, 
2001) is used in the process. To make the localization more 
robust, a new simple correctness measure of the registration 
results based on the point cloud overlap and inconsistency of 
the space has been developed. In this section, the rough 
registration method that we used and a measure of registration 
correctness are first described in Sections 2.2.2 and 2.2.3. Then, 
in Section 2.2.4, the global localization method is discussed in 
detail. 
 
2.2.2 Rough Registration Method: Many methods for 
rough and precise registration of point clouds have been 
proposed (Li et al., 2021), and we have options for choosing the 
method. In our system, a pair-wise registration method using 2D 
images of sliced points (Sumi et al., 2018) is implemented. The 
method first creates the point projection images using 
horizontally sliced points of point clouds, and feature points in 
the image are extracted by polygonization of the figures in the 
image (Figure 3). Extracted feature points in the images are 
efficiently and robustly matched using the hash tables of pairs 
of feature points and the RANSAC framework. The method 
requires a planar floor or ground plane to make horizontally 
sliced points. The used MR device can acquire the points of the 
floor or ground in natural situations. We consider that the 
method’s efficiency and robustness are sufficient in our 
application, so we implemented it in our system.  
 
2.2.3 Measure of Registration Correctness: To find the 
best registration result from the rough registration between 
multiple TLS and MR device point clouds, we use a registration 
correctness measure. Proper registration results of two-point 
clouds of static scenes have some properties related to points 
and space, as shown in Figure 4. First, the space that the laser 
passes in a scan does not include points from another point 
cloud. Second, the overlap of points becomes larger compared 
with incorrect registration results. Third, the space that the laser 

(b) Point projection 
image

(a) TLS and point
cloud

(c) Space occupancy 
image

FREE
OCCUPIED

UNKNOWNFeature points

Pixel including 
projected pointsSlice plane

Figure 3. Point projection image and space occupancy image

Scanner pos. A

Scanner pos. B

2. the overlap of 
points becomes 

larger.

3. the space that the laser 
passes in two scans has a 
certain amount of overlap.

1. the space that the laser 
passes in a scan does not 
include points from 
another point cloud.

Figure 4. Properties for evaluating correctness of point 
cloud registration results

Point cloud A
Point cloud B
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passes in two scans has a certain amount of overlap with each 
other. These properties can be evaluated using certain criteria. 
However, the computation cost will increase for large numbers 
of point clouds and large scenes. To evaluate these properties 
efficiently, in our study, space occupancy images were used to 
find the best registration results from multiple ones. The space 
occupancy image is generated by lay casting on the point 
projection image from the scanner position. The pixels that the 
lay passes in lay casting are classified as FREE, the cells 
including projected points are classified as OCCUPIED, and the 
others are classified as UNKNOWN, as shown in Figure 3(c). 
 
Correct registration results have less overlap between FREE and 
OCCUPIED pixels, enough overlap between FREE pixels, and 
a larger overlap between OCCUPIED pixels. From these 
properties, we define a measure for evaluating the registration 
results of a pair of point clouds, as expressed in Eq. (1). 
 
 ( )A B

AB free ocpy B AV q wq p p       (1) 

 
where  | |A A B

B ocpy freep P P   

 | |A B
free free freeq P P   

 | |A B
ocpy ocpy ocpyq P P   

 
X

ocpyP  and X
freeP  are the sets of pixels of OCCUPIED and FREE 

pixels of point cloud X, and w is a user-defined parameter 
( 2w   is used in our experiments). Figure 5 shows the 
examples of the measures applied to eleven TLS point clouds of 
a heat source plant and an MR device point cloud acquired at 
different initial device positions. In each graph, the vertical axis 
shows the measures of 

ABV , and the horizontal axis shows the 
number of scans of the MR device point cloud. From the 
experiments, it was observed that the higher values can be 
obtained from correct registration results (red lines in the figure). 
 
2.2.4 Global Localization Method: Point cloud registration 
is performed for each point cloud from TLS and point clouds 
from the MR device when the moving distance of the MR 
device, the changes of the device orientation and the number of 
points from the MR device exceed the given thresholds. The 
registration results are evaluated using a measure defined by Eq. 
(1). As shown in Figure 6, registration and evaluation are 
performed by using the point clouds from the MR device 
successively. If the TLS point cloud, which gives a measure 
over than a given threshold and continuously maximum in 
several times compared with the other point clouds, the 
registration result (a coordinate transformation) to the TLS is 
adopted as the transformation matrix for initial global 
localization. Thereafter, the ICP algorithm (Besl and McKay, 
1992, Rusinkiewicz and Levoy, 2001) is applied to the TLS 
point cloud and MR device point cloud to refine the device 
position and orientation.  
 
In our implementation, the point clouds from the MR device are 
transferred to the server using TCP/IP communication, and the 
registration is performed on the server. The resulting coordinate 
transformation matrix is transferred to the MR device and 
applied to the TLS point clouds in the MR device. 
 
Global localization is performed by registration between TLS 
point clouds and local point clouds near the user’s initial 
positions. Therefore, non-negligible superimposition errors 
often occur at a position far from the initial position. In our 

system, the user can modify the error when they recognize non-
negligible superimposition errors. This modification is 
performed by using the ICP algorithm between point clouds 
from TLS and the point cloud from the MR device near the 
current position. 
 
2.3 Point Quality Estimation and Prediction 

In Steps 2 and 3 in Figure 1, the scan quality of point clouds is 
superimposed and visualized using the MR device. In our 
system, scan distance, laser incident angle, and point density, 
which are related to the measurement errors (Soudarissanane et 
al., 2011, Ozendi et al., 2017) and the stability of data 
processing, are used as the scan quality of points. In Step 2, 
these quality values are computed for each point in the TLS 
point clouds. For Step 3, the predicted quality of the point cloud 
acquired by additional scanning using the TLS set at the current 
user (device) position is computed in real time on the MR 
device using the point clouds for visualization, which consists 
of points both from the TLS and the MR device. 
 
The quality for Step 2 can be pre-computed for the TLS point 
clouds. The scan distance dist

iq , laser incident angle angle
iq , and 

the approximated density density
iq  of a point i can be computed as 

follows: 
 
 || ||dist

i i Dq  p o     (2) 

 1cos (( ) / )angle dist
i D i i iq q  o p n   (3) 

 1

X
min || ||

i

density
i i j

j
q 


 p x      (4) 

 
where  D o a position of the TLS  
 i p  a position of point i 
 i n  an unit normal vector of point i 
 X i  a set of neighbors of point i 
 j x a position of neighbor j 

Position 1 Position 2

#scans
0 252015105

#scans
0 252015105

Figure 5. Registration correctness measures for 11 TLS 
point clouds of a heat source plant

ABV ABV

 

1
MRDP 2

MRDP

1
TLSP 2

TLSP TLS
NP

3
MRDP

TLS point clouds

MRD point clouds

Registration 
and 

correctness 
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Figure 6. Global localization method
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In our implementation, the four closest neighbors on the 
structured point clouds (Masuda and Tanaka, 2010) are used as 
Xi, and the normal of each point is estimated using principal 
component analysis of local points (Rusu, 2013).  
 
The predicted quality for Step 3 can also be computed by 
similar equations with small changes. In the predicted quality 
computation, Do  is the MR device position, and X i  is a set of 
virtual neighbors of point i. The positions of the virtual 
neighbors are defined using the local virtual plane at the point i 
and lays that is defined by a scan pitch in laser scanning, as 
shown in Figure 7. They can be calculated using Eq. (5). 

 

 ( )i i D
j D j

i j

 
 


n p o

x o d
n d

   (5) 

 
where j d the directional vector for virtual neighbor points 
 
The vector 

jd  is define by adding or subtracting the pitch angle 
for vertical and horizontal direction of i Dp o , as shown in 
Figure 7. 
 
2.4 MR Visualization 

In Steps 2 and 3 in Figure 1, the current quality of TLS point 
clouds and predicted quality are displayed by colored points. 
For efficiency, the point clouds for visualization (PCV) 
described in the next section is used in the rendering. In our 
implementation, points within 10 m of the device are used in 
rendering under the assumption that the user will not check far 
away point clouds. When the user finds the next best TLS 
position for additional scanning in Step 3, the position is 
marked in the 3D space using the virtual TLS, and used to set 
the TLS in additional scanning, as shown in Figure 8.  
 
2.5 Visualization Point Generator 

The PCV using mixed reality should be created according to the 
requirements of the system and device. We considered the 
following three requirements. First, the rendering framerate 
should be kept high enough in MR visualization. Second, point 
clouds from TLS and MR device can be individually visualized 
because only TLS point clouds are used for checking the scan 
data (Step 2 in Figure 1) and both point clouds from TLS and 
MR device are used for visualizing predicted quality (Step 3 in 
Figure 1). Third, point clouds from the MR device are 
successively added to PCV in real time on the MR device for 
visualizing the predicted quality. 
 
To keep the rendering framerate high enough in MR 
visualization, we use spatially subdivided down-sampled points 
as PCV. In our implementation, we use Unity (Unity 
Technologies, 2022) to create rendering objects of point clouds 
in MR visualization. Unity adopts the view frustum culling of 
rendering objects for efficient rendering. To make the 
effectiveness of the frustum culling higher, we use small-sized 
rendering objects consisting of a set of local points by 
uniformly subdividing the space of the point clouds. We call 
each subdivided cubic space as a subdivision cell. In addition, to 
keep the rendering framerate, point clouds are down-sampled 
using voxel sampling and stored as PCV. The PCV from TLS 
and MR device is individually stored in the corresponding 
rendering object to satisfy the second requirement described 
above. The cell sizes of subdivision cells and down-sampling 
voxels are determined to keep the allowable maximum number 
of points in a rendering object (1.04m and 13mm are used as 

sizes of the subdivision cell and down-sampling voxel 
respectively in our implementation). 
  
In our system, PCV is created using an integrated occupancy 
grid for efficiently creating PCV and to avoid overlaps of TLS 
and MR device points. The global size of the grid equals the one 
of the subdivision cells, and the size of the cell of the grid is 
same as the one of the voxel for down-sampling. Each cell has 
the indices of the occupied subdivision cells, and the indices are 
stored using a binary search tree for efficient addition of MR 
device points to PCV.  
 
Figure 9 shows the PCV generation using an integrated 
occupied grid. First, the initial PCV is created from TLS point 
clouds. In each subdivision cell, TLS points are sampled using a 

in jx

jd ip

 


Figure 7. Virtual neighbors xj for density estimation 
 

Figure 8. Virtual TLS at next best scanner position and  
TLS set at the position

(b) Addition of MR device points

Integrated 
occupancy grid

Point clouds for 
visualizationTLS point clouds

Integrated 
occupancy grid

MR device
point cloud

Point clouds for 
visualization

Figure 9. Visualization point generation

subdivision cell cell of voxel for down-sampling

(a) Addition of TLS points
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voxel. If the cell of the voxel includes the point, the index of the 
subdivision cell is stored in the corresponding cell in the 
integrated occupancy grid. This process is applied to all 
subdivision cells, and the integrated occupancy grid of TLS 
points is obtained, as shown in Figure 9(a). When we add the 
MR device point cloud to the PCV, first, a sampling of points is 
applied. Then, if the cell of the integrated occupancy grid 
corresponding to the sampled point i does not include the index 
of the subdivision cell of i, point i is added to the PCV, and the 
index of the subdivision cell is stored in the cell of the 
integrated occupancy grid. Otherwise, point i does not get added 
to the PCV. In this process, we have to efficiently find the index 
of subdivision cell, so a binary search tree is used in each cell of 
the integrated occupancy grid. Figure 9(b) shows the results of 
the addition of MR device point cloud to the PCV. Addition of 
the MR device point cloud is performed on the MR device in 
real time in the predicted quality visualization. 

3. EXPERIMENTAL RESULTS 

Our system was implemented using Microsoft Hololens2 and 
tested in a heat source plant using 11 TLS point clouds and a 
laboratory using 4 TLS point clouds. Photos and TLS point 

clouds of each environment are shown in Figure 10. The results 
of quality visualization of TLS point clouds and predicted 
quality visualization are shown in Figures 11 and 12. Figure 13 
shows a result of MR visualization before and after global 
localization. It was confirmed that all functions of our system 
worked appropriately. An example of supporting additional 
scanning is shown in Figure 14. Checking the quality of points 
and finding and marking the next scanner position was realized. 
Although small visualization gaps between the points and real 
objects were observed, the user could check the point clouds of 
the scene intuitively.  
 
The performance of the global localization was evaluated using 
12 and 5 different initial user positions in the plant and 
laboratory, respectively. As a result, global localization of 16 
initial positions were succeeded. Figure 15 shows a point cloud 
registration result in the global localization. In the plant, 
passages with similar structures between large tanks existed. 
Global localization in failure was resulted in the position in the 
next passage of the correct one. Global localization took about 
20~30 s in total (In an example, 7.6 s for data transmission, 10.4 
s for rough registration and 3.0 s for the ICP algorithm, CPU: 
Core-i7 7820HQ). The accuracy was evaluated using a marker 

Figure 10. Test sites and TLS point 
clouds used in experiments Figure 11. MR visualization of point quality (laser incident angle)

(a) Heat source plant (b) Laboratory

Laser incident angle

(b) Laboratory

(a) Heat source plant

 

(a) A tank (b) Pipes (b) After global localization

(a) Before global localization

Figure 12. MR visualization of point quality (top) and predicted quality 
(bottom)

Figure 13. MR visualization before and 
after global localization
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set a few meters away from the initial position. In our 
experiments, positional errors were ranging from few 
millimeters to about 200 mm, and angle errors were a few 
degrees in maximum. In our experiments, these errors are 
acceptable in the MR visualization of point clouds for checking 
the scanned regions and point quality.  
 
Figure 16 shows visualized points from TLS in the PCV (Figure 
16 (a)) and points from both TLS and MR device (Figure 16 
(b)) generated by the integrated occupancy grid. We observed 
that no redundant (overlap) sampled points can be appropriately 
created as the PCV using our method. Rendering framerates 
were kept at about 30 FPS. This is also enough in our 
applications. 
 
In the visualization of point cloud, hidden point removal is 
performed automatically on the MR device. The process uses 
the mesh created from the points acquired by the MR device’s 
scanner, and the mesh is updated about every 3 s. The scan 
range of the MR device scanner is 3.5 m (in specification). 
Therefore, it is not possible to remove the hidden points away 
from the device position. To improve the visibility in large-
scale scenes, accurate hidden point removal will be required, 
and this may be performed by using the mesh from TLS point 
clouds.  
 

4. CONCLUSIONS 

In this paper, a mixed reality visualization system for 
supporting laser scanning of environments using TLS is 
described. The system allows the user to check the scanned 
point cloud by superimposing the points colored by the quality 
onto the real environment using see-through head mount display. 
In addition, the predicted quality visualization mode of our 
system supports in finding the next scanner positions of 

additional scanning, and the position can be marked using a 
virtual object. To realize these functions, a new global 
localization method based on point cloud registration and 
registration correctness measure, a new method for creating 
uniformly subdivided down-sampled point clouds for 
visualization, and a new method for predicting point cloud 
quality were introduced.  
 
Our system was tested in two different environments. Using our 
system, the quality of point clouds was superimposed onto the 
real world, and it was possible to check the scan points, find the 

Figure 14. An example of finding next best scanner position using MR visualization of point clouds

(a) Quality check (b) Finding a region to be improved

(c) Finding a next best scanner position using predicted quality (d) Virtual TLS at the next best scanner position

Laser incident angle
largesmall

MR device point cloud

TLS point cloud

Figure 15. An example of registration results for global 
localization

 

Figure 16. Point clouds for visualization (PCV)

(a) PCV from TLS (b) PCV from TLS and MR device
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next scanner position to obtain high-quality points, and mark 
the position using a virtual object. The proposed global 
localization works well for two environments (with a success 
rate of 94% in our experiments), and enough rendering 
performance (about 30 FPS) was observed. The superimposing 
errors were about 200 mm at the maximum, and the error was 
acceptable in our applications. 
 
Future work includes more accurate hidden point removal to 
improve the visibility and application to outdoor scenes.  
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