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ABSTRACT:

Point cloud registration algorithms have been studied for several decades. In the SLAM domain, dense local convergence based
methods are typically used to register consecutive scans. Since these procedures are not globally optimal, it happens that they
converge to a wrong local minimum. This can lead to gross errors during mapping and can make entire datasets unusable. We
introduce a new branch and bound based point cloud registration method that is globally optimal. The method is able to reliably
determine the global optimum within a given parameter search space. We show how this method can be used in a mapping system
as a fallback function to correct gross errors. Using various public datasets, we demonstrate the capabilities of the method.

1. INTRODUCTION

Point cloud registration is a problem that has been researched
for a long time. Various algorithms have been developed for a
wide range of applications.
In this paper we restrict to the field of mobile mapping and
SLAM (Simultaneous Localization and Mapping). We address
methods that use point clouds and scan matching to create maps
of the environment as SLAM systems.

1.1 Motivation

Current SLAM systems such as (Zhang and Singh, 2014),
(Behley and Stachniss, 2018) or (Koide et al., 2021) usually
work very reliably. Impressive accuracies are achieved in pub-
lic benchmark datasets like (Geiger et al., 2012).
While in most cases very good results can be achieved with such
methods, gross errors occur from time to time. Corresponding
errors can lead to strange behavior in the mobile robot domain
or make whole datasets unusable in the mapping domain. In
our opinion, there are two main reasons for gross errors:

1. The movement of the sensor is not observable from the
point clouds. This means that an objective functional
used in point cloud registration does not have a global ex-
tremum at the true correct pose.

2. The global extremum of an objective functional corres-
ponds to the true correct pose but could not be discovered
during the point cloud registration.

In this work, we present a solution to correct errors that occur
as a result of the second reason.

1.2 Related Work

Here we first give a brief overview of algorithms for point cloud
registration and then we go into more detail about globally op-
timal methods. Last we present previous works in the field of
robust mapping.
∗ Corresponding author

In the SLAM area, local methods are usually used for the re-
gistration of consecutive scans. Prominent dense local meth-
ods are ICP (Besl and McKay, 1992), NDT (Biber and Straßer,
2003), CPD (Myronenko and Song, 2010) and GICP (Segal et
al., 2009). We consider the latter to be a state of the art method
and use it in the following for comparisons as a representative
of convergence-based methods.
While dense methods use a continuous representation of the en-
vironment, feature-based methods only match features. An ex-
ample of a feature based local method is the one presented in
LOAM (Zhang and Singh, 2014).
All of the above methods have in common that they are local.
That means they work convergence-based or make assumptions
that nearby points or features in the separate point clouds cor-
respond and therefore determine a solution very quickly. The
disadvantage is that finding the global optimum is not guaran-
teed what can lead to gross errors from time to time.
In addition to the methods mentioned above, global methods for
point cloud registration also exist. Here, there are also methods
that rely on keypoints (see (Tombari et al., 2013) for a compar-
ison of different keypoints types) and feature correspondences
such as (Yang et al., 2020). Since we do not want to limit our
applications to the presence of special keypoints or edges, we
only consider dense methods. Known dense globally optimal
methods are the one used in Google Cartographer for closing
loops (Hess et al., 2016), the Go-ICP (Yang et al., 2015) and
GOGMA (Campbell and Petersson, 2016). All of these meth-
ods use a branch and bound based approach. Since (Hess et al.,
2016) was developed for two-dimensional grid maps, it is not
applicable to 3D point clouds. Due to the point-to-point met-
ric, the Go-ICP algorithm is not ideally suited for sparse point
clouds with highly varying point density, such as those gener-
ated by mobile laser scanners. The GOGMA method is partially
suitable, but has limited accuracy due to the approximation of
the point cloud by Gaussian distributions. In addition, the qual-
ity of the approximation of the point cloud by gaussian distri-
butions can be influenced by strongly varying point densities.
In this paper a globally optimal method for point cloud registra-
tion is presented. The method is inspired by the Go-ICP (Yang
et al., 2015) algorithm. In contrast to Go-ICP, the proposed
method runs in 6D while using unnested optimal search. By
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taking into account normal vectors (point-to-plane distance),
the new method is suitable for sparse point clouds, such as those
generated by mobile laser scanners. To minimize the influence
of outliers, a different metric is used than in the original Go-ICP.
The metric chosen is related to that of NDT (Biber and Straßer,
2003). Our approach specifically addresses the application with
point clouds from mobile laser scanners.
Robust LiDAR-based odometry or mapping systems are be-
coming increasingly important. In order to increase robust-
ness, approaches exist that apply several point cloud registra-
tion methods in parallel and use the most plausible result based
on a criterion (Reinke et al., 2021). Another approach combines
data from multi sensors and monitors the health (health monit-
oring) of the odometry result (Palieri et al., 2020).
We present a robust mapping system that can detect gross errors
in the results of local point cloud registration based on model
assumptions without additional sensor information. In case of
an error, the transform is corrected using the presented global
registration method.

2. GLOBALLY OPTIMAL POINT CLOUD
REGISTRATION

Globally optimal means that the global optimum of an object-
ive functional is determined. In our case, we are looking for a
set of parameters that describes a rigid transformation. The ri-
gid transformation represents how a point cloud must be shifted
and rotated in order to be correctly placed relative to a second
point cloud. The objective functional evaluates how accurately
the current set of parameters aligns the point clouds. To determ-
ine the global optimum, we use a branch and bound framework.
In the following chapters, our approach for global point cloud
registration is presented. We call it GO-P2Plane (Globally Op-
timal Point-2-Plane Registration).
First, the used data representation is described in detail. Sub-
sequently, the objective functional is explained. The choice of
the objective functional is elementary to enable a reliable point
cloud registration.

2.1 Data Representation

In the registration we distinguish between the base point cloud
and the point cloud that we want to register relative to the base
point cloud. While the latter is still represented as a point
cloud, the base point cloud is converted into a model consist-
ing of planes at the beginning of the registration. First, for each
point of the base point cloud, a local normal vector is estim-
ated based on its k nearest neighbor points. The base point
cloud is then spherically projected. Similar to the range im-
age representation of point clouds, the space is then divided
into discrete quadrangles. We refer to the quadrangles below
as patches. The center of each patch is defined by an elevation
angle and an azimuth. The width and height of a planar patch
is given by the desired angular resolution δ. For each quad-
rant, the point whose elevation angle and azimuth are closest to
the center is determined. The plane defined by the point and
its normal vector is then considered as a representation of the
space, which is valid within a planar patch. The entirety of
planes then serves as a continuous environment representation.
In Fig. 1 the planar patches representation is outlined. Each
planar patch contains a center point −→mr,c and a normal vector
−→
N r,c. r and c are the respective row and column indices that
represent the azimuth and elevation angle. The planar patches
are stored in a data structure similar to a range image repres-
entation to quickly determine projective correspondences. The

Figure 1. Planar patches representation.

division of the environment into discrete planar patches is ele-
mentary in the subsequent search for a global optimum. In Fig.
2 the planar patches representation is illustrated in 3D for an
exemplary indoor scene.

Z
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Z
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Figure 2. Transformation of a point cloud into planar patches.
Top: Raw point cloud. Down: Planes of each patch.

2.2 Objective Functional

The objective functional is the function whose global maximum
will be determined. The chosen objective functional consists of
a weighted sum of the distances to the respective planar patches,
normalized by the number of points (see equation (1)). The
probability density function of the normal distribution is applied
to weight the distances. The objective functional is related to
the score presented in NDT (Biber and Straßer, 2003) but differs
in that a constant value is assumed for the standard deviation
and the point-to-plane error is used. The resulting score is a
value in the range [0, 1]. Let P be a point cloud and np the
number of points. Let −→p i be a point from P and −→mc the center
point and

−→
N c the normal vector of the corresponding planar

patch for −→p i of the base point cloud. For a rigid transformation
defined by a translation

−→
t and a rotationR that is applied to P ,

the value of the objective functional score(t, R), which is the
mean of the probability density values of a normal distribution
for all point-to-plane errors, is obtained as follows:

score(
−→
t , R) =

1

np
·
np∑
i=1

exp(− e2i
2σ2

) (1)

ei represents the point-to-plane error:

ei = |((R · (−→p i +
−→
t ))−−→mc)

T ·
−→
N c| (2)

σ can be considered as a design parameter. The weight function
is displayed for an exemplary σ = 0.17 in Fig. 3. Points whose
distance to the neighboring point is small get a high weight and
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points far away have no influence on the objective functional.
The functional thus behaves similar as measuring points within
a consensus set, but is still derivable for local refinement. With
a suitable choice of σ, rough outliers have no direct influence on
the result. A great advantage of the selected objective function
is that no inlier ratio has to be selected in advance. During the
optimization, the transformation is to be determined for which
the score is maximum.
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Figure 3. Scores weight function for the point-to-plane error.

2.2.1 Point Correspondence Within the approach points
are projectively associated to a correspondent planar patch.
This means that for each point for which a corresponding planar
patch is required, the points angle of inclination and azimuth are
first calculated. For a point −→p = [x, y, z]T the angles can be
calculated as follows:

θ = atan2(z,
√
x2 + y2) (3)

ψ = atan2(y, x) (4)

The angles θ and ψ are then used to find the corresponding
planar patch. This is done by converting the θ and ψ into rows
and columns indices (r, c). With these indices the correspond-
ing element can be selected in the planar patches representation.
Figuratively, this type of correspondence means that it is de-
termined which planar patch intersects the straight line defined
by θ and ψ. The intersected planar patch is the correspondence
searched for. This kind of correspondence was introduced by
(Blais and Levine, 1995) and is also used in (Behley and Stach-
niss, 2018) to find corresponding surface elements during point
cloud registration.

2.3 Branch and Bound

Branch and Bound (BnB) is a algorithm paradigm that is used
for solving combinatorial optimization problems and mathem-
atical optimization problems. In the BnB method, the solution
space is searched successively by dividing it into subspaces.
The evaluated subspaces result in a graph in the form of a root
tree. For each subspace it is predicted which maximum value
(in case of a maximization problem) the objective functional
could have within the subspace. This predicted maximum value
is called upper bound. The most promising subspace is then
explored subsequently. In each exploration step the objective
functional is evaluated in at least one location. In comparison to
the predicted upper bound, this so called lower bound serves as
a guess of the value range in the subspace. The lower bounds of
the evaluated subspaces are used to determine the highest value
score identified so far. The core idea of BnB is now to use
the previous maximum of the lower bounds (score) to remove
explored subspaces whose upper bound is lower. This can be
done since we know that the predicted maximum of the respect-
ive subspaces is smaller than our previous identified maximum
value score. More information and various examples of BnB

can be found in (Clausen, 1999).
When designing a BnB based algorithm, a suitable approach
that predicts the maximum value that the objective functional
can assume within a subspace is required. This approach is
called bounding function.

2.3.1 Domain Parametrization The search space consists
of six dimensions. The first three dimensions correspond to the
translation in x, y and z direction. The fourth to sixth dimension
corresponds to the rotation. The rotation is parameterized by
the axis-angle representation. The axis angle representation is a
very compact way to describe a rotation. Rotations are therefore
represented by a three elements vector −→r = [r1, r2, r3]

T . The
angle of rotation is given by ||−→r || and the normalized axis of
a rotation by −→r /||−→r ||. Any rotation can be described with the
elements r1, r2, r3 ∈ [−π, π]. Rotations defined in the axis-
angle representation can be converted in a rotation matrix us-
ing Rodrigues’ rotation formula. A rotation matrix, which is
parameterized by an axis-angle representation vector −→r , we
write down with R(−→r ). In total, a vector with the follow-
ing elements results:

−→
V = [x, y, z, r1, r2, r3]

T . A subspace
is defined by its limits for each dimension. These are: x ∈
[xmin, xmax], y ∈ [ymin, ymax], z ∈ [zmin, zmax], r1 ∈
[r1,min, r1,max], r2 ∈ [r2,min, r2,max], r3 ∈
[r3,min, r3,max].
In our 6 dimensional case, the exploration of a subspace results
into 26 = 64 subspaces. The extent of the resulting subspaces
in each dimension is half of the original space. During recurs-
ive exploration, the search space is divided into subspaces in
which the rotation components and the translation components
respectively have identical edge lengths. Let at and ar denote
the translational and rotational edge lengths, we have the fol-
lowing definition:

at = xmax − xmin = ymax − ymin = zmax − zmin (5)

ar = r1,max−r1,min = r2,max−r2,min = r3,max−r3,min
(6)

If the rotation space and the translation space are considered
separately, cube-shaped search areas result in each case.
A subspace can thus be completely described by a 6 dimen-
sional position vector

−→
V pointing to the center of the subspace

and by two edge lengths at and ar .
To accelerate the search for a global optimum, the search space
can be limited by a maximum rotation angle αmax and a max-
imum distance dmax between the origins of the point clouds.
In this case, the search space is parametrized with x, y, z ∈
[−dmax, dmax] and r1, r2, r3 ∈ [−αmax, αmax].

2.3.2 Bounding Function Derivation In branch and
bound, an upper bound and a lower bound are used for
optimization. The lower bound is the function value of an
evaluation of the objective functional (usually in the middle
of the subspace). When a new subspace is explored, a lower
bound of it is calculated and the highest evaluated value score
of all subspaces is updated.
The upper bound function predicts the maximum value that
the objective functional can assume within a subspace. In the
following we call the upper bound B and the lower bound
B. As described before, a subspace is defined by a position
vector

−→
V to the center of the subspace and by the edge lengths

at and ar . Given a base point cloud in the planar patches
representation as a set of planes defined by

−→
N r,c,

−→mr,c and a
second point cloud P that is placed relative to it we calculate
the upper bound as follows: Our approach to determine the
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upper bound is done in two steps:
1. First, for each point in P all reachable corresponding planar
patches are determined. Reachable means that for each point,
the freedom of movement allowed by the extent of the subspace
at and ar is used to identify the set of planar patches that could
potentially become a correspondence.
2. In a second step, for each possible planar patches corres-
pondence, it is checked how small the point-to-plane error
can become considering the degrees of freedom of the search
space. For each point, the correspondence with the smallest
error is selected and the score (see formula (1)) is calculated.
This optimistic score represents the upper bound.

1. Identification of Correspondences
Let us first focus on the identification of possible planar
patch correspondences. The identification of the reachable
correspondences is performed sequentially for all points in P .
−→
S r is the set of valid axis-angle representations and

−→
S t the

set of valid translation vectors within our subspace defined by
−→
V , at and ar . We define the different sets as follows:

−→
S ar = {

r1r2
r3

 ∈ IR3 | r1, r2, r3 ∈ [−ar, ar]} (7)

−→
S r = {

−→
V (4 : 6) +

−→
S ar} (8)

−→
S at = {

xy
z

 ∈ IR3 | x, y, z ∈ [−at, at]} (9)

−→
S t = {

−→
V (1 : 3) +

−→
S at} (10)

Let −→p i ∈ P be a point of the movable point cloud. Its possible
movement resulting as a set of vectors −→p m can be described by
the following equation for a rigid transformation:

−→p m = R(
−→
S r) · (−→p i +

−→
S t) (11)

As (Yang et al., 2015) and (Campbell and Petersson, 2016) we
resort to the theorem that for any vector −→x and two arbitrary
axis angle respresentations −→r 1 and −→r 2 and their respective ro-
tation matrix representations Rr1 and Rr2 holds:

̸ (Rr1x,Rr2x) ≤ ||−→r 1 −−→r 2|| (12)

Where ̸ (−→a ,
−→
b ) represents the intersection angle of the two

vectors −→a and
−→
b . Next, we replace the rotation matrix with

two separate rotation matrices using theorem (12):

R(
−→
S r) = R(

−→
S ar) ·R(

−→
V (4 : 6)) (13)

And we replace also the translation vector with two separate
vectors: −→

S t =
−→
V (1 : 3) +

−→
S at (14)

If we substitute R(
−→
S r) and

−→
S t in equation (11) with (13) and

(14) we obtain:

−→p m = R(
−→
S ar) ·R(

−→
V (4 : 6)) ·(−→p i+

−→
V (1 : 3)+

−→
S at) (15)

HereR(
−→
V (4 : 6)) is a rotation matrix defined by the angle axis

representation in
−→
V at the center of the search space.

−→
V (1 : 3)

is the translation defined at the center point
−→
V of a subspace.

R(
−→
S ar) and

−→
S at describe the remaining rotational and trans-

lational movement uncertainty quantified by the edge lengths
ar and at.
A correspondence of a point −→p i to a planar patch exists if the
elevation angle and the azimuth of the point are within the range
of a planar patch. Thus, in order to determine the correspond-
ences, it is necessary to determine what ranges of values the
elevation angle and the azimuth of the point can assume con-
sidering the ability of movement enabled by the subspace.
For this, −→p i is first transformed using the center parameters

−→
V

of the search space:

−→p V = R(
−→
V (4 : 6)) · (−→p i +

−→
V (1 : 3)) (16)

If equation (15) is reshaped and (16) is inserted, the remaining
range of movement around −→p V can be described with:

−→p m = R(
−→
S ar) · (−→p V +R(

−→
V ) ·

−→
S at) (17)

Let θV and ψV be the elevation angle and the azimuth of −→p V .
As can be seen in equation (17), there are two dependencies
R(

−→
S ar) and

−→
S at that can influence θV and ψV .

To determine the possible range of values for θ and ψ of −→p m,
we first determine the maximum possible intersection angle
between −→p V and −→p m. The maximum distance by which −→p V
can be moved byR(

−→
V )·

−→
S at is limited by the maximum length

lt of
−→
S at. The term R(

−→
V ) has no influence on the length and

can therefore be neglected here.

lt = argmax(||
−→
S at|| = ||

xy
z

 || for x, y, z ∈ [−at
2
,
at
2
])

=
√
3
at
2

(18)

The maximum angular change between −→p V and −→p m using lt
can be approximated by considering lt as part of the circum-
ference of the circle with radius ||−→p v|| around the point clouds
origin. This gives a maximum angular change of:

∆ϕt = 2π · lt
2π · ||−→p v||

=
lt

||−→p v||
(19)

The relationship is outlined in Fig. 4. If (18) is substituted

Figure 4. Derivation of ∆ϕt from lt.

into (19), the relation is obtained which describes the angle by
which the direction of vector −→p V can be influenced depending
on the translation uncertainty at:

∆ϕt =

√
3at

2 · ||−→p v||
(20)
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In addition to the translation term, the direction of −→p V can also
be changed by a rotation R(

−→
S ar).

As described in (12), the rotation angle of a point in space is ≤
as the vector norm of the axis angle representation. In our case,
the maximum angle of rotation is:

∆ϕr = argmax(||

r1r2
r3

 || for r1, r2, r3 ∈ [−ar
2
,
ar
2
])

=
√
3
ar
2

(21)

The total possible rotation of a point −→p m relative to −→p V is
thus:

∆ϕ = ∆ϕt +∆ϕr (22)

To efficiently determine the possible range of values for θ and
ψ of a point −→p i within a subspace using the elevation angle
θV and the azimuth ψV of the center point as well as ∆ϕ, we
make the following approximation: Let −→p 1 and −→p 2 be two
arbitrary vectors defined by their elevation angles θ1, θ2 and
their azimuths ψ1, ψ2 with respective distances from the origin
greater than zero. Then it is assumed that the following holds:

̸ (−→p 1(θ1, ψ1),
−→p 2(θ2, ψ2)) ≈ ||

[
θ1
ψ1

]
−

[
θ2
ψ2

]
|| (23)

This simplification is approximately true as long as we are away
from the poles |θ1|, |θ2| << π/2. Thus we get the set Cθ,ψ of
all legal parameters for θ and ψ:

Cθ,ψ = {(θ, ψ) ∈ IR2 |
√

(θV − θ)2 + (ψV − ψ)2 ≤ ∆ϕ}
(24)

This set Cθ,ψ will now be converted to the corresponding row
and column indices (r, c) of our planar patches representation
using the angular resolution δ of the planar patches:

Cr,c = {(r, c) ∈ Z2 |
√

(θV − rδ)2 + (ψV − cδ)2 ≤ ∆ϕ}
(25)

Figure 5. Identification of corresponding planar patches using
∆ϕ. Grey cells mark corresponding planar patches.

2. Determination of the Minimum Error
The smallest possible error of a point taking into account the
degrees of freedom of the current subspace is determined by
checking all correspondences of a point step by step. When
checking correspondences, we now assume that the point was
rotated in the direction of the planar patch. We can do this be-
cause the correspondence is enabled through the rotation of a
point. To avoid the parametrization of a rotation matrix for the
point rotation, we use the distance of the point −→p V from the
origin and compare it with the distance of the planar patches

center point −→mr,c from the origin. Using a unit vector
−→mr,c

||−→mr,c||
in the direction of the planar patch we then calculate the point-
to-plane error of the point:

ϵr,c = | ( ( ||−→mr,c|| − ||−→p V ||)
−→mr,c

||−→mr,c||
)T ·

−→
N r,c | (26)

The error calculated in (26) is a prediction of the error defined
in equation (2) for one of the possible correspondence. A geo-
metrical derivation of ϵr,c is shown in Fig. 6. The error ϵr,c

Figure 6. Derivation of the predicted error ϵr,c for a
corresponding planar patch. The planar patch is defined by its

center point −→mr,c and its normal vector
−→
N r,c.

can be further reduced by a rotational component lδ compens-
ating the coarse angular resolution of the planar patches and by
the translational component lt (see equation (18)). The rotation
compensates for the circumstance that the rotation parameters
only allow discrete steps, namely the selection of the planar
patches. Angle changes within a planar patch would otherwise
have no effect. The maximum possible reduction of the error
ϵr,c within a planar patch is calculated by using the same rela-
tion as in (19):

lδ =
δ

2
||−→p V || (27)

The smallest possible error between a point −→p i and its current
correspondence is therefore:

ϵr,c,min = max(ϵr,c − lt − lδ, 0) (28)

The minimum error ϵi,min of a point −→p i results from the min-
imum of the values for epsilon ϵr,c,min of all its correspond-
ences Cr,c:

ϵmin(
−→p i) = argmin(ϵr,c,min for (r, c) ∈ Cr,c) (29)

Calculation of the Upper Bound
The upper bound is a prediction of the maximum possible value
of the score as it is defined in equation (1) within a subspace. To
calculate this prediction, we now determine the minimum error
based on the subspace defined by

−→
V , at, ar for each point −→p i

in the point cloud P . The minimum error is then used to calcu-
late the upper bound score. The procedure how to calculate the
upper bound is defined in detail in algorithm 1.
Calculation of the Lower Bound
The lower bound is calculated by evaluating the value of the
objective functional at the center point

−→
V of a subspace:

B = score(R(
−→
V (4 : 6)),

−→
V (1 : 3)) (30)

As mentioned before, this value serves as a measure of the range
of values within the subspace.
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Algorithm 1 Calculate Upper Bound

Input: Set of planar patches defined by −→mr,c and
−→
N r,c, point

cloud P , subspace defined by
−→
V , ar and at

Output: Upper bound B
1: B = 0
2: for all −→p i ∈ P do
3: −→p V = R(

−→
V (4 : 6)) · (−→p i +

−→
V (1 : 3))

4: Identify correspondences Cr,c based on −→p V , ar and at
5: ϵmin = ∞
6: for all (r, c) ∈ Cr,c do
7: Calculate ϵr,c,min as defined in equation (28)
8: ϵmin = min(ϵmin, ϵr,c,min)
9: end for

10: B = B + 1
np

· exp(− ϵ2min

2σ2 )

11: end for
12: return B

2.4 Local Alignment

When searching for a global maximum, a local alignment is per-
formed to speed up the procedure. Higher lower bound values
usually allow more areas to be removed during global optimiz-
ation by Branch and Bound. A local alignment within a sub-
space is performed when the lower bound B, i.e. the evaluation
of the score in the center of a subspace, exceeds a threshold
λlocal = 0.5·score. Where score is the highest identified score
so far. The local alignment follows a ICP (Besl and McKay,
1992) related scheme. Instead of minimizing the point-to-point
distance, the score is maximized based on the corresponding
planar patches in each step. The Newton method is used for this
purpose. To use the same metric as in our branch-and-bound
optimization, planar patches are projectively associated to each
point. This also speeds up the determination of the correspond-
ences.

2.5 Algorithm Overview

Next, we present a pseudo code describing the sequence of the
GO-P2Plane algorithm. As already mentioned, a subspace S is
defined by a vector to the center point

−→
V and the edge lengths

ar and at. B is the upper bound of a subspace and B the lower
bound. The list L is a data structure containing all subsequent
subspaces Si of our search space S0 with their respective upper
bounds Bi. R is a rotation matrix and

−→
t a translation vector

with three elements. The sequence of the algorithm is defined
in algorithm 2.

3. INTEGRATION INTO MAPPING

We used the presented GO-P2Plane algorithm to develop
a robust mapping system. Current mapping methods usu-
ally use convergence-based methods to register scans. If the
convergence-based registration converges to a wrong local min-
imum, gross errors occur. Our system is characterized by the
fact that errors can be detected and corrected. A globally op-
timal registration of all scans would be too time-consuming.
That’s why we combine local convergence-based registration
with global registration. Based on various criteria, we decide
scan by scan whether the result of the local registration is plaus-
ible.

3.1 Overview

In Fig. 7, our embedding of the globally optimal algorithm in a
mapping system is sketched. For each new point cloud Rt, the

Algorithm 2 GO-P2Plane

Input: planar patches −→mr,c,
−→
N r,c, moving point cloud P and

search space defined by
−→
V , ar and at

Output: Maximum score, rotation matrix R and translation t
1: Init open list L for subspaces and respective upper bounds
2: Add the search space defined by S0 = (

−→
V , ar, at) to L

3: while score < Bi do
4: Choose element imax with maximum upper bound in L
5: Divide subspace of list element imax into 64 subspaces

S1, ..., S64

6: for all Sj , j ∈ {1, ..., 64} do
7: Calculate Bj and Bj for Sj using algorithm 1 and

equation (30)
8: if Bj > score then
9: Add (Sj , Bj) to L

10: if Bj > λlocal then
11: [score,R,

−→
t ] = localAlignment()

12: if scorescore < 1 then [score,R,
−→
t ] 7→ [score,R, t]

13: end if
14: end if
15: end for
16: end while
17: return score,R and t

processing steps are executed consecutively. t is a time index
that is incremented by one for each new point cloud. A new
point cloud Rt is preprocessed first using a voxel grid filter for
downsampling. Then, the point cloud Pi is registered locally
relative to last keyframe Ki using the Generalized-ICP (Segal
et al., 2009). The result of the registration donated by trans-
formation Tt is then checked for plausibility by comparing it
with the results of the last time step. The plausibility check
used is described in section 3.2. If the results are plausible, a
keyframe update is performed with it. If they are not, a glob-
ally optimal registration is performed using GO-P2Plane. The
selector is a placeholder that symbolizes the passing of the re-
spective transformation parameters. If the distance to the last
keyframe exceeds a threshold the keyframe is updated. This
means the current point cloud Pt is saved and provided as Ki
for further processing. The index i indicates the keyframe num-
ber.

Figure 7. Overview of the mapping process. The numbers in the
diamond-shaped boxes represent the order.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-273-2022 | © Author(s) 2022. CC BY 4.0 License.

 
278



3.2 Plausibility Check

We use 3 criteria to check the plausibility of local registration
results. Let Tt be the transformation of the current scanner pose
relative to the map origin that we want to evaluate. It consists
of the translation vector

−→
t t and a rotation matrix Rt. Tt−t is

the corresponding transformation of the previous time step. ∆τ
is the time difference between the two points in time τt−1 and
τt of the transformations.
Our plausibility check is mainly based on model assumptions
for the movement of the LiDAR sensor during data recording.
For this we define a maximum velocity vmax of the sensor
during recording, a maximum acceleration amax and a max-
imum rotation rate ωmax. Our model assumption is that the
sensor moves continuously during recording and that these val-
ues are not exceeded. The sensor velocity is considered con-
stant between two scans and we calculate it as follows:

−→v t =
(
−→
t t −

−→
t t−1)

∆τ
(31)

The absolute rotation rate between two scans can be calculated
with:

|ωt| = arccos
tr(RTt−1Rt)− 1

2∆τ
(32)

The result of the registration is considered plausible if the fol-
lowing conditions are met:

||−→v t|| ≤ vmax ∧ ||
−→v t −−→v t−1

∆τ
|| ≤ amax ∧ |ωt| ≤ ωmax

→ plausible

(33)

3.3 Global Registration

For global registration we use our proposed GO-P2Plane ap-
proach. The procedure serves as a fallback function if the res-
ult determined with the use of local registration does not seem
plausible. In order to use the globally optimal method as effi-
ciently as possible, we limit the search range using the model
parameters. This can significantly reduce the computation time
of the method. For the translation range, the search distance is
limited to dmax = ∆τ vmax, where ∆τ is the time difference
between two consecutive LiDAR scans and vmax the maximum
assumed velocity. For the rotational search range a maximum
rotation of αmax = ∆τ ωmax is assumed between the point
clouds. Here, ωmax is the maximum assumed angular velocity
of the scanner.

3.4 Keyframe Update

To determine the global pose relative to the very first point
cloud, the point clouds are always registered relative to the last
so-called keyframe. The keyframes are a subset of the total set
of point clouds. If the distance to the last keyframe exceeds a
limit, a new keyframe is saved.

4. RESULTS

Since we are aiming at mapping in our application, we have
limited our choice of experiments to scans with partial overlap.
We implemented the GO-P2Plane algorithm in C++ and during
the tests the software runs on an Intel i7 4. generation.

Our results consists of two parts. First, we applied the presented
algorithm in isolation to point clouds of the public Stairs dataset
(Pomerleau et al., 2012) containing laser scans obtained with
custom rotating setup using a Hokuyo UTM-30LX laser range
finder. The contained scans are related to terrestrial laser scans
in terms of point density and field-of-view. Furthermore, we
tested the mapping system presented in chapter 3 using the first
sequence of the KITTI dataset (Geiger et al., 2012).

4.1 Stairs Dataset

The Stairs dataset (Pomerleau et al., 2012) consists of 31 laser
scans with a mean of 191,000 points per scan. The scans were
recorded indoors in a staircase and the recording points of the
sequence are approx. 0.4 m away from each other. The chal-
lenges of the dataset are large volume changes and large vari-
ations in the overlaps. Global positions with mm-range preci-
sion are available as ground truth for all scans. In this experi-
ment we registered all the individual scans one after the other
relative to each other using our method. The methods are eval-
uated by comparing the errors of the relative transformations
between each two consecutive point clouds with the ground
truth. The average error of the translation and the average ro-
tation error are used as error metrics. The mean overlap of
the consecutive point clouds is 91 % and the minimum overlap
62 %. The Go-ICP (Yang et al., 2015) and GOGMA (Campbell
and Petersson, 2016) registration results for this dataset were
taken from (Campbell and Petersson, 2016). For the Go-ICP
we display the results for N=500 points. For the GOGMA al-
gorithm there are also presented results with a subsequent re-
finement in (Campbell and Petersson, 2016), but we have not
included these in the table, since methods for refinement are not
the focus of this work. Our GO-P2Plane algorithm used also
N=500 points for its model point cloud. As search space of the
algorithm we allowed any kind of rotation in these experiments
αmax = 180 ° and set a maximum distance of dmax = 1m.
As a state-of-the-art representative of convergence-based regis-
tration algorithms, the Generalized-ICP (GICP) (Segal et al.,
2009) was tested. For this purpose, the publicly available imple-
mentation in the Point Cloud Library (Rusu and Cousins, 2011)
was used with the default settings. Using this example, it can

Table 1. Translation [m] and rotation error [°] results and mean
runtime [s] per scan for Stairs dataset

Method GO-P2Plane GOGMA Go-ICP GICP
Mean Tra. 0.06 0.26 1.17 0.03
Mean Rot. 2.02 1.25 19.4 0.67
Max. Tra. 0.15 - - 0.79
Max. Rot. 4.12 - - 15.97
Runtime 127.3 49.6 103.0 1.27

be shown that a conventional convergence-based registration al-
gorithm can fail from time to time. The low average angle and
translation error indicates that in most cases the correct trans-
formation could be determined. The maximum translation and
rotation error (marked in bold in the table) shows that at least in
one case the GICP has converged into a false local minimum.
This happened when processing the scans with IDs 24 and 25
in the dataset. The scene with the respective solutions of GICP
and our method are shown in Fig. 8.
The low maximum translation and rotation errors of our presen-
ted method show that the approach could register all point
clouds correctly. The results obtained are comparable to those
of the GOGMA algorithm.
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Figure 8. Scan 24 and scan 25 of the Stairs dataset. Left: GICP
registration result. Right: Result of our GO-P2Plane algorithm.

4.2 KITTI dataset

Here we want to present the results of how we tested our
mapping system using the KITTI dataset (Geiger et al., 2012).
First of all, it is important to clarify that our goal with this
system is not to achieve a particularly high accuracy. We
are also aware that the procedures of the authors leading the
ranking with their odometry results have run reliably within
the KITTI dataset and that there were most likely no gross
errors in the registration. Situations in which gross errors occur
during scan matching differ depending on the environment
setup, the methods and may also behave differently depending
on the parameter settings. Our goal with this experiment is to
demonstrate the functionality of a robust mapping system
In our experiments, we applied our system to the first sequence
of the KITTI dataset. To enforce difficult conditions, we
reduced the data set to one-third of the scans by using only
every 3rd scan. This reduces the overlap and increases the
distance between scans.

Validation of Plausibility Check
First, we tested our plausibility check conditions which are
described in chapter 3.2. For this purpose, we processed the
modified dataset as described without global registration with
our pipeline. Each time the result of the local registration
violated the plausibility conditions, we saved this information.
In Fig. 9 translation and rotation errors for each pose are
shown. We marked identified implausible poses red, while
plausible poses are green. With this experiment, we can show
that we can successfully identify poses with large translation
error using our plausibility check. On further analysis, we
found that in this dataset it was mainly the maximum assumed
acceleration (we use amax = 10ms2 ) that allowed the identific-
ation of the poses with faulty translations. In Fig. 11 we share
the resulting trajectory in den x-y plane with outlined locations
of implausible states.
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Figure 9. Translation error for each transform of the first
sequence of the KITTI dataset using only every 3rd scan without
global registration. Red points represent identified implausible

poses and green points plausible poses.

Application of our System
Here we present our mapping results applying our complete
mapping pipeline as introduced in chapter 3 to the modified
first sequence of the KITTI dataset (Geiger et al., 2012). For
the presented GO-P2Plane algorithm we used an angular resol-
ution of δ = 3 ° for the planar patches. We reduced the second
point cloud to 2,000 points by choosing random points. To fur-
ther reduce the computation time of our global optimal regis-
tration algorithm, we added an additional stop condition. After
N = 300, 000 iterations, the search for the global optimum
is terminated. In our configuration, this corresponds to 20 s of
computation time. It should be noted that the algorithm is no
longer globally optimal as a result. Nevertheless, the number
of iterations was in our experiments sufficient to find suitable
transformations.
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Figure 10. GICP mapping results plotted in the horizontal plane
of the modified first sequence of the KITTI dataset without
global registration. Red circles mark locations, where the

registration result was classified as implausible.
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Figure 11. Mapping results plotted in the horizontal plane of the
modified first sequence of the KITTI dataset with our complete

mapping pipeline. Red circles mark locations, where the
GO-P2Plane was used for global registration.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-273-2022 | © Author(s) 2022. CC BY 4.0 License.

 
280



5. CONCLUSION

We have presented a new globally optimal point cloud regis-
tration algorithm (chapter 2). Like some other registration
algorithms, it works according to the branch and bound
paradigm. However, it is the first branch and bound that
optimizes according to the point-to-plane metric. Like the
point-to-plane metric, the newly developed upper bound
function is particularly well suited for sparse point clouds from
mobile laser scanners. Using the Stairs dataset, we were able
to show that our method achieves similar results to related
methods.
Furthermore, we have developed a mapping system for point
clouds that can detect gross errors and also correct them with
the help of the presented global registration algorithm (chapter
3). We were able to test the system successfully using a public
data set.

Limitations
As long as the correct pose has a global maximum in our
objective functional at registration, it can be identified with our
algorithm. However, if the movement of the sensor in the point
clouds is not observable, because the sensor is moving on a
free surface or in a tunnel with the same shape, the presented
algorithm cannot find a reliable solution. Another problem that
can occur with a small overlap of two point clouds is that points
that do not actually belong together can be staged by a wrong
pose in such a way that a maximum in the objective functional
is generated. Such a maximum can be obtained, for example,
by superimposing two observations of the ground that do not
actually represent the same location.
Another challenge is the computing time of the presented
method. By reducing the parameter search space on the basis
of assumptions about motion limitations, it can be reduced,
but the method is still far away from real-time. The results
presented were not calculated in real time. One possibility
would be to integrate the procedure into a real-time mapping
system and, if necessary, to calculate error corrections parallely
in a separate thread.

Future Work
In order to enable a broader applicability of the method, a
drastic reduction of the computational costs is necessary. This
can be achieved, for example, by more compact representations
of the environment than point clouds or planar patches. Another
way to reduce the computational costs is a more exact upper
bound function for maximum value predictions. Integration
into real-time mapping systems is also being considered.
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