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ABSTRACT: 

 

The need for transportation infrastructure digitalization is becoming more important, and efficient data collection and processing 

workflows have to be established and pose a great research challenge. This paper presents a fully automated method for the geometric 

parametrization of the road alignment from 3D point clouds acquired with a low-cost mobile mapping system. It exploits the Point 

Transformer Deep Learning architecture in order to segment the 3D point cloud in four different classes, which include road markings. 

Those markings are then used as a reference to extract the alignment trajectory path, classify its geometries (straight lines, circular arcs, 

and clothoids) and then parametrize it, extracting data to easily generate alignment data that may follow the standard schema of the 

Industry Foundation Classes (IFC). Both the deep learning architecture and the geometry parametrization process show promising 

results to develop automatic workflows that extract precise as-built data of the infrastructure from 3D point clouds.  

 

 

1. INTRODUCTION 

Transportation infrastructure digitalization is a current challenge, 

as the technology development and society needs are evolving 

towards the necessity of delivering safer and more efficient 

solutions for road design and life management, as well as for a 

better user experience. A digital model of the infrastructure will 

have several benefits, not only reducing costs but also increasing 

safety and decreasing uncertainty (Azhar, 2011). Building 

Information Modelling (BIM) is a collaborative methodology to 

exchange and share information of a building project, in an 

interoperative manner, and during the whole life cycle of a 

project. While BIM is well established in the building 

construction industry, is it still being slowly introduced in civil 

engineering projects of transportation infrastructure (road, 

railway) (Costin et al., 2018). A great effort to move towards a 

standardization of information exchange formats is currently 

being done by organizations such as buildingSMART, by adding 

the transportation infrastructure domain to the Industry 

Foundation Classes (IFC) standard schema (BuildingSMART, 

2018). Although BIM-based projects are expected to become the 

norm for public administrations, the digitalization of built 

infrastructure poses another challenge as the existing data of the 

built infrastructure may have different levels of information and 

completeness. For that reason, the usage of remote sensing 

surveying technologies is key to collect as-built infrastructure 

data towards its digitalization.  

 

The main objective of this work is to develop a fully automated 

method to parametrize the horizontal alignment of a road using a 

3D point cloud acquired with a Mobile Mapping System (MMS). 

The relevance and wide range of applications of these systems 

have been largely discussed and reviewed in the literature 

(Gargoum and El-Basyouny, 2017; Guan et al., 2016; Ma et al., 

2018). To be able to parametrize the road alignment is also 

relevant, as the alignment is the basis for other infrastructure data 

models (road, railway, bridge) in the IFC schema (Amann and 
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Borrmann, 2015). Previous works have proposed methodologies 

for road alignment extraction: Holgado-Barco et al. (2015) 

propose a method similar to the one presented in this paper, 

where road markings and road axis are extracted in a first place, 

and then a parameterization of the alignment is done based on the 

axis curvature. However, the first step is a semiautomated 

method based on rather simple heuristics, and the case study 

validates only four geometries of a highway. Martín-Jiménez et 

al. (2018) improve the workflow for the classification of the 

horizontal alignment using RANSAC to detect circular arcs and 

straight lines and show a more complete case study. However, 

the weakness of using heuristic-based methods for road marking 

extraction still remains. 

 

Being able to detect road features in a 3D point cloud is essential 

to extract reliable information to create information models on an 

automated manner. In this regard semantic segmentation of 3D 

point clouds tackles this issue through the association of each 

point to a specific semantic class. It is largely studied in the 

literature with applications in autonomous driving, inventory 

processes and construction of digital models. 

 

To this end, regular machine learning methods with region 

growing or RANSAC proved to be an effective and 

computationally accessible solution (Vo et al., 2015). More 

complex workflows making use of voxelization methods are still 

in use to this day in semantic segmentation of roads and railways 

(Lamas et al., 2021). On the other side, bypassing the constraints 

of defining processes highly dependent on domain application, 

Deep Learning methods bloomed with the pioneering PointNet 

(Qi et al., 2016) by taking directly point clouds as input. The 

growing interest in deep learning and its potential in semantic 

point cloud segmentation is also shown through the increasing 

availability of larger and more diverse datasets. The scientific 

community released datasets featuring indoors areas (S3DIS, 

Armeni et al., 2016) as well as street environments (Semantic3D, 

Hackel et al., 2017) and roads (Paris-Lille, Roynard et al., 2018; 
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Toronto3D, Tan et al., 2020) as researchers focused on handling 

endlessly growing points clouds or on inference speed (RandLa-

Net, Hu et al., 2020). 

 

Road markings detection are discussed in the literature due to 

their importance in autonomous driving (Hata and Wolf, 2014) 

but their segmentation in 3d point clouds is less addressed. 

Previous works proposed approaches relying on the utilisation of 

images in addition to the point cloud data (Danescu and 

Nedevschi, 2010) or using heuristic-based methods (Kumar et al., 

2014). While multiple deep learning approaches exist for 

semantic segmentation of road environments, few were tested on 

their capacity to segment roads markings from intensity alone as 

Toronto3D is the only dataset featuring road markings as a 

distinct class. 

 

As 3D point cloud segmentation is still an active topic in the 

literature, the state of the art is constantly being challenged and 

pushed further. One of these recent architectures is 

PointTransformer by Zhao et al. (2021). By transposing the use 

of self-attention layers usually indicated in the extraction of 

information in Natural Language Processing to point cloud 

features extraction, it reaches results on par with the state of the 

art on the popular S3DIS dataset. With a novel approach based 

on transformers and distinct from its predecessors this work 

explores its versatility in MMS point cloud segmentation. 

 

With this context, the motivation of this work is to explore the 

capabilities of novel deep learning architectures for 3D point 

cloud segmentation and integrate them in an enhanced workflow 

where parametric information of the road horizontal alignment is 

obtained so it can be directly used to build information models. 

Thus, the contributions of this work are twofold: 

1. Exploitation of a version of a Deep Learning 

model architecture based on      Point Transformer for the 

semantic segmentation of 3D point clouds of road 

environments.  

2. Development of a robust algorithm to classify 

and parametrize the road horizontal alignment with straight 

lines, circular arcs, and clothoids. These parameters should 

be easily ingested by an information model schema such as 

IFC.  

 

The remaining work is organized as follows. Case study data is 

presented in Section 2. Section 3 describes the methodology, and 

its results are shown in Section 4. Finally, Section 5 wraps up the 

paper offering conclusions and future lines of work. 

 

2. CASE STUDY DATA 

This work employs data acquired with a custom Mobile Mapping 

System, based on a Phoenix Scout Ultra 32 laser scanner (Figure 

1a). It is a low-cost system equipped with a Velodyne VLP-32C 

laser scanner, with 32 laser beams, and horizontal and vertical 

field of view of 360º and 40º respectively. Although it is a low-

cost system, it has a scan rate of 600,000 measurements per 

second (PhoenixLidar, 2021), thus it is able to obtain dense 3D 

point clouds. It was mounted in a van, with an inclination of 45º. 

Data acquisition took place in Ávila (Spain) in July 2021, with a 

speed of approximately 80km/h, in a 6-km section of a 

conventional road (AV-110) (Figure 1b). 

 

Furthermore, the alignment of the scanned road was offered by 

the local administration as a text file, exported by the software 

ISTRAM. It will serve as a ground truth to validate the proposed 

methodology.  

 

As for the 3D points cloud, ground truth data was obtained 

through a manual labelling to test the deep learning architecture. 

The construction of a ground truth through manual labelling is a 

tedious process, so the training dataset is relatively small, 

featuring 3M points for training and 3.5M for the test set after 

subsampling, each of them being divided into 4 classes: asphalt, 

road markings, road signs, and ‘other’. 

It should be noted that the point cloud also contains outliers, 

although negligible in quantity, and artefacts resulting from the 

passing of cars, which were manually labelled as belonging to the 

class ‘other’. Consequently, the dataset is highly unbalanced 

towards the classes road and ‘other’. Note that RGB colors are 

not provided. 

 

  
Figure 1. (a) Mobile Mapping system. (b) Trajectory of the case 

study, a 6-km long road section near Ávila (Spain). 

 

3. METHODOLOGY 

This section is composed of two methodological blocks, 

addressing each paper contribution as outlined in Section 1. First, 

the Deep Learning architecture employed for point cloud 

segmentation is presented. Then, its results are employed to 

define a method for the parametrization of the road alignment. 
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3.1 Point cloud segmentation 

3.1.1 Data preparation: As the point cloud is acquired from 

a round-trip, the density on the sides of the road is uneven. To 

account for this characteristic, point clouds are merged in order 

to ensure a uniform density on both sides of the road. Moreover, 

to reduce computations and homogenize point cloud density, the 

merged point clouds are subsampled with a space criterion of 3 

cm between points. This results in a training set of approximately 

3M points and a distinct test set of 3,5M points (Figure 2). The 

training set is composed of a traffic roundabout featuring 

numerous instances of the following 4 classes: asphalt, road 

markings, road signs and ‘other’. The test set depicts a 250m long 

road segment with the same features. 

 

 

Figure 2. Point cloud labelling on training set (a) and test set 

(b): each point is labelled defining four classes: asphalt (blue), 

road markings (green), road signs (yellow), other (red). 

 

3.1.2 Deep learning architecture: Segmentation is a 

necessary step to extract elements of interest from complex 

environments such as roads. To this end, the Point Transformer 

network introduced by Zhao et al. (2021) is explored. Point 

Transformer is a network based on self-attention layers which use 

a concept analogous to queries, keys and values to enrich the 

input with contextual information. This architecture processes 

point clouds directly and shows state-of-the-art results for 

semantic segmentation on the S3DIS dataset. 

 

More specifically, this work operates on an adaptation of the 

original Point Trasformer code. The original model (POSTECH-

CVLab, 2021) was adapted to fit in the Pytorch Geometric library 

(Fey and Lenssen, 2019). The model follows the original 

architecture and features five encoders and five decoders, each 

one working on a cardinality reduced by a factor 4 at each 

encoder layer with the furthest sampling algorithm. 

 

3.1.3 Training parameters: To fit point clouds into memory, 

two points are defined randomly as cluster centres and the other 

points are assigned to the closest cluster. This operation is 

repeated recursively until the number of points in a cluster is 

below a fixed threshold of 1500 points. Clusters are then batched 

together and fed to the neural network. When used in a context 

of inference, the batch size is reduced to 1 with a unique cluster 

of 48k points. 

 

3.1.4 Model training: The model is trained from scratch with 

Adam for 80 epochs while the learning rate initially fixed to 

0.001 is decayed by a 0.1 factor every 20 epochs, with a batch 

size of 32. To account for the class imbalance, a weighted cross 

entropy loss is used with weights inversely proportional to the 

number of points from each class in the training set. Only the best 

performing model on the test set is kept.  

 

The intensity is used as an additional feature. To augment the 

data, a random rotation around the Z-axis is applied, as well as a 

flipping of the positions and slight rotations of 15 degrees around 

the X and Y axis for each batch. 

 

3.2 Road alignment parametrization 

There are many applications that can be considered using as input 

the results from the point cloud segmentation shown in Section 

3.1. This work will be focused on the parametrization of the road 

alignment as a set of straight lines, circular arcs, and transition 

curves or clothoids, following the specifications of IFC standard. 

According to national normative (Ministerio del Fomento, 2016), 

the alignment of a conventional road such as the one in the case 

study is given by the road marking that divides both traffic flow 

directions, not having into account any eventual, additional lane. 

The previous segmentation of the road platform and road 

markings is key for this section of the methodology, which is 

summarized in Figure 3.  

 

 

Figure 3. Road alignment parameterization workflow. 

 

3.2.1 Data pre-processing: The input to this part of the 

methodology is a segmented 3D point cloud, with an additional 

attribute that is added to each point, defining its class. The first 

step selects only those points corresponding to asphalt and road 

marking classes. Although the segmentation results are good, 

there are still false positive points that may jeopardize future 

steps if they are not filtered out. For that reason, the point cloud 

is rasterized (projected on a squared grid with a size of 20cm on 

the XY plane, obtaining an image with enough resolution to 

isolate false positives), and a binary image is computed such that 

pixels occupied by at least one point are set as True (Figure 4a). 

Then, pixels that correspond to pavement are selected with two 

steps: (1) Selecting the largest connected component, and (2) 

computing a closing operation with a structural element with 

diamond shape and 5 pixels of radius. (Figure 4b). Then, only 

those points segmented as road markings whose projection lies 

inside a pavement pixel are considered for further processing. 

Furthermore, as there may be false positives on points from 

overpasses or cars that are also over the pavement, a height filter 

is set such that road marking points whose height with respect to 

its closest pavement point in the XY projection is larger than 

20cm.  
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Figure 4. Data pre-processing. (a) Rasterization of pavement and 

road marking points. (b) Morphological operations 

are carried out to filter false positives. 

 

3.2.2 Road centreline detection: At this stage, points labelled 

as road markings offer a reliable description of the road lines and 

edges. To build the road alignment, the objective is to extract the 

road centreline, according to the national normative. In order to 

decrease the complexity on the point cloud processing side, the 

MMS vehicle drove along the closest road lane to the centreline 

during the whole dataset acquisition. This way, the vehicle 

trajectory is employed to extract an ordered set of points that 

belong to the road centreline. For each trajectory point, the 3D 

point cloud that contains road markings is transformed such that 

the y-axis corresponds to the vehicle heading and the x-axis 

points perpendicularly to the right in the direction of the 

movement. Then, points in the interval [-4, -1]m in x-axis 

direction and [0, 𝑦2] in the y-direction are selected, where 𝑦2 is 

the y-coordinate of the next trajectory point (Figure 5a). Finally, 

for each trajectory point, the closest point among those selected 

in the previous step is extracted, obtaining a set of ordered points 

that follow the road centreline (Figure 5b).  

 

 
Figure 5. Road centreline detection. (a) Schema of the road 

centreline extraction using the vehicle trajectory as a 

reference. Points inside the dashed rectangle are 

selected for further processing. (b) The closest road 

marking point to each trajectory point is extracted. 

 

3.2.3 Centreline curvature refinement: The road curvature 

is a parameter which defines the type of geometry of the road 

alignment at a given point. However, computing the curvature of 

the points extracted on the previous point would be too noisy to 

obtain reliable results. For that reason, the curvature of the 

centreline is refined in two steps. First, the 2D coordinates (XY) 

of the road centreline points are transformed to a Frenet 

coordinate system, as they provide a smooth and continuous 

trajectory where any point can be expressed as: 

 

[𝑥, 𝑦, 𝜃, 𝑘, 𝛿𝑘, 𝑠] (1) 

 

Where (𝑥, 𝑦) are the coordinates of the point, 𝜃 is the tangent of 

the curve with respect to the x-axis, (𝑘, 𝛿𝑘) are the curvature and 

its derivative, and 𝑠 is the distance along the curve from its origin.  

This approximation allows a uniform sampling of centreline 

coordinates as it transforms a discrete set of points into a 

continuous curve along the centreline (Figure 6a). Thus, a set of 

(𝑥, 𝑦) coordinates are computed by sampling points along the 

Frenet reference path from 𝑠 = 0 to 𝑠 = 𝐿, where L is the total 

length of the path, with a step of 10 centimeters.  

Finally, in order to obtain a robust and reliable definition of the 

curvature, the approach in Lin et al. (2010) is considered. There, 

line integrals are used to make the curvature estimation 

inherently robust to noise. Furthermore, the data window (radius) 

for the line integrals is adjusted via wild bootstrapping. This 

approach improves considerably the robustness of the curvature 

estimation (Figure 6b), enabling the next step of the process. 

 

 
Figure 6. Centreline curvature. (a) A discrete number of points 

from the centreline is transformed to a Frenet 

trajectory path and seen as a continuous curve. (b) 

The curvature of the alignment is computed and 

refined using the robust approximation from Lin et al. 

(2010). 

 

3.2.4 Alignment geometry classification: This step aims to 

classify the ordered, uniformly sampled (𝑥, 𝑦) points from the 

road centreline into the three geometry classes that define the 

road alignment: Straight lines, circular arcs, and clothoids. The 

curvature is used as the only feature to perform this classification 

as it univocally defines the geometry class: 

 

− Straight lines: Curvature is constant and equal to zero. 

− Circular arcs: Curvature is constant and not zero. 

− Clothoids: Curvature is not constant.  

 

However, the classification is not straightforward. Although the 

curvature estimation is robust, the input data comes from a 3D 

point cloud so there will always be a certain noise level. For that 

reason, a heuristic process is followed to classify the geometries. 

First, the curvature, expressed as a vector, is smoothed using a 

gaussian filter, with a window of 100 points (given the point 

sampling, this is equivalent to 10 meters) which was empirically 

defined (Figure 7a).  Then, maxima and minima of the curvature 

are computed, and they are assumed to be points that belong to a 

circular arc if their curvature value is larger, in absolute value, 

than a small threshold 𝜖 = 10−4. Subsequently, a region growing 

process is applied. In the first iteration, the point with a peak 

curvature and its two closest neighbours are selected. Then, a 

circular arc is fitted and the distance between the arc and each 

point is computed. If any distance is larger than a threshold that 
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indicates that the fitting has a relevant error (𝑑𝑡ℎ = 5𝑐𝑚), the 

region growing stops. This process is repeated until this condition 

is reached, and it is done separately in both directions (to the right 

and to the left of the peak point).  

The process for classifying straight lines is similar. First, points 

whose curvature is smaller than 𝜖 are clustered. Then, for each 

cluster, the same region growing strategy than for circular arcs is 

applied, adding more points to the initial cluster as long as the 

distance between the fitted straight line and any point is smaller 

than 𝑑𝑡ℎ.  

Finally, clothoids are straightforwardly classified as the 

remaining sets of consecutive points that are not classified either 

as straight line or as circular arc, so the road alignment is defined 

as a set of point clusters whose geometry is known (Figure 7b). 

In practice, this output is obtained as an array of geometric 

objects from the Clothoids Toolbox (Bertolazzi, 2021). This 

toolbox allows to define the alignment geometry with tangential 

continuity, ensuring a smooth transition between different 

geometries.  

 
Figure 7. Alignment geometry classification. (a) The curvature 

plot is smoothed to remove noise and simplify the 

geometry classification process. (b) The alignment 

points are grouped according to three possible 

geometries: straight lines (green), circular arcs (red) 

and clothoids (blue). 

      

3.2.5 Alignment geometry parametrization: The last step 

consists in extracting meaningful geometric parameters of each 

geometry. This is done considering the specifications of IFC 

standard so an ifcAlignment instance can be easily defined from 

the output of this method. The required parameters depend on the 

geometry, and can be summarized as:  

 

− Straight lines: First point of the segment (𝑥, 𝑦), 
direction of the segment, as an angle with respect to the 

x-axis (𝛼), and length of the segment.  

− Circular arcs: First point of the segment (𝑥, 𝑦), 
direction of the tangent on that point (𝛼), length of the 

segment (𝐿), radius (𝑅) and a Boolean indicating 

whether the segment is defined clockwise or 

counterclockwise (𝑖𝑠𝐶𝐶𝑊). 
− Clothoids: First point of the segment (𝑥, 𝑦), direction 

of the tangent on that point (𝛼), length of the segment 

(𝐿), radius at the beginning (𝑅0) and at the end (𝑅𝐿) of 

the segment, and two Booleans indicating whether the 

segment is defined clockwise or counter clockwise at 

the beginning (𝑖𝑠𝐶𝐶𝑊0) and at the end (𝑖𝑠𝐶𝐶𝑊𝐿) of 

the segment.  

 

This way, from a raw point cloud, this process outputs, in an 

automated manner, a set of parameters that allow the generation 

of the road alignment in IFC – but also can be used to express the 

alignment following a different schema.  

 

4. RESULTS  

4.1 Point cloud segmentation 

Following metrics which are common in the literature, we mainly 

use the mean Intersection over Union metric to choose the best 

performing model. We additionally compute the following 

metrics class-wise: precision, recall and f-score. They are 

resumed in Table 1. 

 

The two most represented classes, namely road and ‘other’ are 

the best segmented classes. Thanks to the use of intensity, road 

markings are mostly well segmented and road signs constitute the 

main difficulty of the dataset. 

 

Table 1. Class-wise and average metrics of point cloud 

segmentation. 

Metric/ 

class 

Asphalt Marking Sign Other Avg 

Precision 0.97 0.70 0.88 1.00 0.89 

Recall 0.96 0.95 0.74 0.97 0.91 

F-score 0.96 0.74 0.81 0.98 0.89 

IoU 0.93 0.67 0.67 0.93 0.81 

 

By taking a closer look at the confusion matrix represented in 

Table 2, the road signs are mostly misclassified as ‘other’, which 

in the test set can be explained by the model relying mostly on 

the intensity factor to classify them. Indeed, the signs whose 

reflective panel is captured by the sensor are correctly classified 

while the others are not, as illustrated in (Figure 8).  

 

As for the road markings, which also rely on intensity, they are 

most of the time mistaken for asphalt, which makes sense 

considering their proximity geometrically speaking.       

 

Table 2. Confusion matrix. 
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GT/ 

Prediction 
Asphalt Marking Sign Other 

Asphalt 1546113 61371 5 1547 

Markings 5557 146783 0 2534 

Signs 0 5 4069 1424 

Other 45258 2593 536 1679523 

 

 

 

 
Figure 8. Road sign confusion illustration in a complex part of 

the test set. The model relies highly on intensity to 

classify road signs. (a) Point cloud visualization 

based on intensity (b) Classification of the model, 

with signs in yellow and other class as red. 

 

Overall, the model reaches a mean IoU of 0.81 and allows to use 

the points classified as asphalt and road markings as a basis for 

the road alignment parametrization. 

 

4.2 Road alignment parameterization 

To validate the methodology from Section 3.2, the road 

alignment ground truth data introduced in Section 2 is employed. 

It is a text file, exported by the software ISTRAM, that represents 

the road horizontal alignment as a set of geometries (straight 

lines, circular arcs and clothoids). Each geometry has several 

properties (initial point, radius, azimuth…) that makes possible 

to reconstruct the horizontal alignment in the same format as the 

output of the proposed methodology, by using Bertolazzi (2021) 

Clothoids toolbox.  

 

This way, it is possible to quantify the precision of the results 

from the automated process, by comparing the distances between 

both alignments. For that purpose, the horizontal alignment 

resulting from the automated process is sampled, extracting a 

point each 10 centimetres. Then, the distance between each point 

and the ground truth alignment is computed. Figure 9 shows a      

histogram of the distances. The error metrics are shown in Table 

3.  

 

 
Figure 9. Histogram that represents the distances between the 

ground truth and the alignment obtained with the 

proposed method. 

 

 

Table 3. Average and median errors for the positioning of the 

horizontal alignment 

Average error (cm) Median error (cm) 

31.47 18.71 

 

There are different error sources that can be discussed. First, this 

process takes as reference to build the alignment points in the 

edge of the road centreline, while the actual alignment is 

theoretically defined its midpoint. Second, the heuristics 

presented in the geometry classification process define a set of 

geometries that fit the centreline points but may slightly differ 

from the actual geometries in the ground truth data, especially in 

its initial and final points. Third, largest errors in the dataset were 

found to be due to discrepancies between the designed and the 

actual alignments. Figure 10a shows both alignments as a set of 

sampled points over a satellite view, and Figure 10b zooms in to 

highlight this last error source.  

 

 
Figure 10. Visualization of the results in Google Earth. (a) 

Alignment computed by the proposed method (yellow) and 

ground truth data (red) are sampled over the satellite image. (b) 

A source of large errors are discrepancies between the ground 

truth data and the actual road centreline.   
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5. CONCLUSIONS 

This work presents a fully automated workflow for road 

alignment parametrization using 3D point clouds acquired by a 

low-cost mobile mapping system. First, a deep learning model 

based on a recent architecture (Point Transformer) is applied 

using a small sample from the case study, which is a conventional 

road section of 6 kilometres of length. That sample is manually 

labelled and employed to segment the complete dataset with good 

quantitative results, proving its capability and viability in 

segmenting road assets and, specially, road markings.  

 

The results from this automatic segmentation were exploited to 

develop a heuristic process in which the road centreline is 

extracted and regularly sampled. Then, its local curvature is 

computed and used to classify the road geometry in three 

geometric classes: straight lines, circular arcs and clothoids. 

Then, each curve is parametrized, extracting geometric 

information that can be used to easily generate the road alignment 

following standards such as IFC.  

 

This workflow (exploiting state-of-the-art deep learning 

architectures to simplify the modelling of road infrastructure) is 

especially interesting in a context where BIM methodologies and 

digitalization are becoming more common in the linear 

infrastructure. Future research should be able to effectively 

extract more information that is already available in this work, 

such as the road pavement or vertical traffic signs, in order to 

obtain richer digital models of the as-built infrastructure with 

minimum user interaction, from geomatic data acquired with 

mobile mapping systems.  
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