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ABSTRACT: 

 

With the development and widespread application of aerial LiDAR, point cloud data can easily be acquired and used in many fields. 

The accurate detection of buildings from an aerial LiDAR point cloud has attracted much attention owing to its wide range of 

applications, such as updating building maps and constructing 3D city models. However, such applications remain challenging in the 

fields of photogrammetry, remote sensing, and computer vision. In this paper, we discuss the features that contribute to building 

detection accuracy from an aerial LiDAR point cloud using a deep-learning-based method (KPConv). We evaluated the influence of 

neighborhood size, intensity, RGB, and normal vectors on building detection. The study area was approximately 6 km2, consisting of 

133 million points and 8,099 buildings. The density of the point cloud data was eight points/m2. We compared search radii of 4, 10, 

25, and 50 m for finding neighboring points. The results suggest that an optimal neighborhood size improves the accuracy of building 

detection. For searching neighboring points, a radius of 25 m is optimal when the building area is less than 1000 m2, whereas a radius 

of 50 m is optimal when the building area is larger than 1000 m2. We also compared different features as inputs to KPConv for training 

and testing, such as i) 3D coordinates only, ii) 3D coordinates and intensity, iii) 3D coordinates and RGB, iv) 3D coordinates and 

normal vectors, and v) 3D coordinates, intensity, RGB, and normal vectors. The results suggest that neither intensity nor normal vectors 

contribute to the accuracy of building detection, while the features of RGB have a limited effect on the results. 

 

 

1. INTRODUCTION  

With the development and widespread application of laser 

measuring equipment, point cloud data can be easily acquired. 

Highly accurate point cloud data obtained through an aerial light 

detection and ranging (LiDAR) surveys are widely used to create 

digital elevation models of terrain and 3D city models, as well as 

for forest management, disaster prevention, and urban planning. 

Three-dimensional city models are typically constructed at 

different levels of detail (LOD), which makes it possible to 

abstract a geometrical object with appropriate detail for its 

purpose. For example, the CityGML 2.0 defines five LODs for 

building models. LOD0 is a representation of footprints, LOD1 

is a block model with a flat roof, LOD2 is a model with a roof 

shape, LOD3 is an architecturally detailed model with windows 

and doors, and LOD4 is LOD3 supplemented with indoor 

features (Biljecki, 2016). If the building is properly detected from 

the aerial point cloud, it will be possible to construct a building 

model from LOD0 to LOD2.  

 

Over the past few decades, researchers have developed automatic 

building-detection techniques. However, the accurate detection 

of buildings remains a challenging task, particularly in urban 

areas. Buildings in urban areas have complex shapes that are 

close to each other and are often obscured by nearby objects such 

as trees and shadows. Based on the input data, there are three 

types of techniques for building detection: i) image only, ii) 

LiDAR point data only, and iii) fusion of LiDAR point data and 

other data, such as orthoimages and multispectral images (Huang 

et al., 2019). However, as the fusion method needs to register 

different data sources in the same spatial region, accurately 
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registering a point cloud with a wide array of data sources 

stemming from the same area remains a challenge. For 

constructing 3D city models, the data sources using LiDAR point 

clouds are still considered a mainstream approach for building 

detection. In this study, we focused on techniques that use only 

LiDAR point data.  

 

Deep learning methods outperform image processing, such as 

image classification, object detection, and instance detection. 

However, deep learning methods cannot be easily and directly 

applied to point clouds; as datasets, point clouds are irregularly 

sampled, unstructured, and unordered (Hu et al., 2020). PointNet 

is a novel deep learning architecture that directly uses point 

clouds as inputs and outputs (Qi et al., 2017). Recently, inspired 

by the idea of PointNet, many deep learning methods have been 

developed to directly use point clouds as inputs and outputs 

(Thomas et al., 2019; Boulch, 2020; Hu et al., 2020). KPConv is 

regarded as an effective network architecture, which also directly 

uses point clouds as inputs and outputs for point cloud semantic 

segmentation, and has achieved robust and accurate results on 

benchmark datasets, such as Semantic3D, Paris-Lille-3D, and 

DALES (Thomas et al., 2019). In this study, the KPConv was 

used for building detection.  

 

A point cloud is an unordered set of spatially localized data. Each 

point in the point cloud is represented by its 3D coordinates. The 

simplest and most frequently used spatial relationship between 

points is their neighborhood. When judging a point as either a 

building or a non-building point, it is difficult to judge it solely 

by this point itself. This designation depends strongly on the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-291-2022 | © Author(s) 2022. CC BY 4.0 License.

 
291



 

 

properties of the neighboring points. Therefore, the selection of 

the neighborhood and its size is crucial for the accuracy of 

building detection from point clouds. 

 

Some researchers have used additional features of point clouds to 

improve the accuracy of building detection. Lodha classified 

aerial LiDAR data into buildings, trees, roads, and grass using 

the machine learning algorithm, AdaBoost. Five features, height, 

height variation, normal variation, LiDAR return intensity, and 

image intensity were used for classification (Lodha et al., 2007). 

Maltezos used the raw LiDAR point cloud, as well as entropy, 

height variation, intensity, distribution of the normal vectors, 

number of returns, planarity, and standard deviation as inputs for 

the CNN model to classify the point cloud into buildings, 

vegetation, and the ground (Maltezos et al., 2019).  

 

Different materials often reflect electromagnetic radiation 

(specifically infrared in the case of LiDAR) at different 

intensities. For example, road markings often reflect infrared at 

higher intensities than nearby points due to most of them usually 

being white in color. When buildings are obscured by nearby 

objects such as trees, it is difficult to distinguish them only based 

on 3D coordinates. With additional information (e.g., color), we 

can easily distinguish the boundaries between trees and buildings. 

In such a case, the normal vectors would be used to infer the slope 

of the surface pointing out a perpendicular direction; for example, 

a flat-roofed building would have a normal vector pointing 

upwards, while normal vectors of the vegetation near it would 

point out in arbitrary and different directions (Maltezos et al., 

2019). Therefore, intensity, RGB, and normal vectors may be 

useful for building detection. However, only a few researchers 

have considered the impact of each feature (such as 

neighborhood size, intensity, RGB, and normal vectors) on the 

accuracy of building detection. In this study, we focused on 

features that contribute to building detection accuracy from an 

aerial LiDAR point cloud using a deep-learning-based method. 

We evaluated the effect of neighborhood size, intensity, RGB, 

and normal vectors on building detection.  

 

2. EXPERIMENTS 

2.1 Study area 

The building detection performance was evaluated using aerial 

laser point cloud data collected by the Leica TerrainMapper 

aerial LiDAR sensor. The data were acquired over the area of 

Mashiki Town, Kumamoto Prefecture, Japan. The density of the 

point cloud data was eight points per square meter. The point 

cloud data contain 3D coordinates, intensity, and RGB 

information. A subarea of approximately 6 km2 was selected as 

the study area, as shown in Figure 1 (red frame).  

 

 

Figure 1. Aerial imagery of the study area. 

 

We divided the point cloud data of the study area into 24 tiles. 

Each tile was 500 m × 500 m in size. The 16 tiles used for training 

(blue meshes) and 8 tiles used for testing (red meshes) are shown 

in Figure 1. The training dataset area was approximately 4 km2 

in size and consisted of 4,736 buildings. The test dataset area was 

approximately 2 km2 in size and consisted of 3,363 buildings. 

Both training and test data contained urban, suburban, and rural 

scenes. Buildings in urban scenes have typical urban features 

such as being relatively close to each other and having complex 

shapes. To qualitatively evaluate the results of building detection, 

two areas, marked in yellow in Figure 1, were selected. 

Additional details on the qualitative evaluation are provided in 

Section 3.2. 

 

A histogram of the building area for the training and test data is 

shown in Figure 2. Buildings were divided into eight areal 

ranges: 0–50 m2 (0 < building area <= 50, the same method 

applies below), 50–100 m2, 100–150 m2, 150–200 m2, 200–300 

m2, 300–500 m2, 500–1000 m2, and larger than 1000 m2. 

Buildings less than or equal to 50 m2 in the area are mostly 

warehouses, accounting for almost 32% of all buildings. 

Buildings with areas larger than 300 m2 accounted for less than 

3% of the total number of buildings. 

 

 
Figure 2. Building area histogram for the training and test data. 

 

Each point in the training area was manually classified as either 

a building or non-building. To evaluate the automatic building 

detection results, we also manually labeled the point cloud of the 

test area. Table 1 lists the number of points per class for the 

training and test data. The training dataset consisted of 

approximately 88 million points, of which, 10 million were 

building points and 78 million were non-building points. The 

total test dataset consisted of approximately 45 million points, 6 

million of which were building points, and 39 million were non-

building points. The training and test datasets had a similar 

distribution, that is, the non-building class accounted for over 

87% of all points, and the building class accounted for less than 

13% of the total number of points. 

 

 Building Non-Building Total 

Training data 
10,007,984 

(11%) 

77,943,901 

(89%) 

87,951,885 

Test data 
5,891,997 

 (13%) 

38,840,115 

(87%) 

44,732,112 

Table 1. The number of points in the training and the test datasets. 

 

2.2 Performance measures 

In this study, we evaluated performance based on three widely 

used measures: recall, precision, and F1-score for the point-base 

(number of points), which is given by Equation 1.  
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (1) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

where TP is the number of points correctly detected as building 

points by KPConv and FN is the number of misdetections, that is, 

points that KPConv failed to detect as building points. FP is the 

number of over-detections; that is, points were incorrectly 

detected as building points by KPConv. A high recall value 

indicates a low misdetection rate, whereas a high precision 

indicates a low over-detection rate. The F1-score is the harmonic 

mean of recall and precision. A high F-score indicates both low 

misdetection and low over-detection rates. 

 

2.3 Comparative experiments 

To verify the effectiveness of the neighborhood size and the 

features of the points, such as intensity, RGB, and normal vectors, 

we designed two comparative experiments. One compared 

different search radii of neighborhoods, and the other compared 

different features as inputs to KPConv for training and testing.  

 

2.3.1 Experiment 1 — different neighborhood radii 

 

There are three types of neighborhood definitions in most 

common applications: i) spherical neighborhoods, ii) K-nearest 

neighborhoods, and iii) cylindrical neighborhoods (Weinmann, 

2015). KPConv uses a spherical neighborhood because this 

method improves the robustness of the features and the spatial 

consistency of the neighborhood (Thomas, 2019). In this study, 

we also use spherical neighborhoods. We designed 

neighborhoods with different radii to evaluate the results of 

building detection, as shown in Table 2. The R4, R10, Baseline, 

and R50 patterns used neighborhood radii of 4, 10, 25, and 50 m, 

respectively. For these four patterns, only 3D coordinates were 

used as inputs to KPConv for training and testing. The intensity, 

RGB, and normal vector information were not used in this 

experiment. 

 

Pattern 
Radius 

(m) 

3D 

Coordinates 
Intensity RGB 

Normal 

Vectors 

R4 4 ○    

R10 10 ○    

Baseline 25 ○    

R50 50 ○    

Table 2. Comparison of different neighborhood radii. 

 

2.3.2 Experiment 2 — different features 

 

In this experiment, we compared the effectiveness of different 

features listed in Table 3. The baseline pattern in this experiment 

(highlighted in green in Table 3) was the same as the baseline 

pattern in Experiment 1 (highlighted in green in Table 2). The 

baseline-pattern inputs consisted of 3D coordinates only. In the 

CI pattern, the input consisted of the 3D coordinates and intensity. 

In the CC pattern, the inputs consisted of 3D coordinates and 

RGB. In the CN pattern, the inputs consist of 3D coordinates and 

normal vectors. In the CICN pattern, the inputs consisted of 3D 

coordinates, intensity, RGB, and normal vectors. Normal vectors 

were computed using free and open-source software 

CloudCompare. In this experiment, the same neighborhood size 

(radius of 25 m) was used for all five patterns. 

 

Pattern 
Radius 

(m) 

3D 

Coordinates 
Intensity RGB 

Normal 

Vectors 

Baseline 25 ○    

CI 25 ○ ○   

CC 25 ○  ○  

CN 25 ○   ○ 

CICN 25 ○ ○ ○ ○ 

Table 3. Different features for comparison. 

 

All the patterns in Experiments 1 and 2 were determined using 

the same training data and test data, as mentioned in Section 2.1. 

KPConv was trained using 200 epochs for each pattern. All the 

patterns were trained and tested on a machine equipped with two 

NVIDIA Quadro RTX 8000 (48 GB) GPUs.  

 

3. RESULTS AND DISCUSSIONS 

3.1 Quantitative results 

3.1.1 Experiment 1 — different neighborhood radii 

 

Figure 3 shows the results of point-based evaluation comparison 

for Experiment 1. The minimum and maximum values of 

precision were 97.7% and 98.0%, respectively. Only a slight 

difference was observed in the precision values of the four 

patterns. The R50 pattern achieved the highest recall and F1-

score than the other patterns, followed by the baseline pattern, the 

R10 pattern, and the R4 pattern. Specifically, the R10 pattern 

yielded a 4.4% recall and had an F1-score greater than the R4 

pattern by 2.5%. Furthermore, the baseline pattern achieved a 

3.1% recall and an F1-score 1.5% greater than the R10 pattern. 

This indicates that neighborhood size has a significant impact on 

the results of building detection. A larger radius of the 

neighborhood results in improved performance, characterized by 

a lower misdetection rate and a lower over-detection rate. 

 

Compared to the baseline pattern, the R50 pattern was only 

slightly better, with a 0.2% recall and 0.1% F1-score 

improvement over the baseline pattern. However, the time 

required for the training process was approximately 13 h for the 

R50 pattern, but only 4.5 h for the baseline pattern. The training 

duration of the R50 pattern was approximately three times longer 

than that of the baseline pattern. This implies that a search 

neighborhood with a radius of 25 m is optimal for building 

detection, displaying an optimal balance of lower training 

processing time and higher accuracy. 

 

 

Figure 3. Effect of different neighborhood radii. 

To further analyze the impact of neighborhood size, we plotted 

the different building area ranges of recall, precision, and F1-

score, as shown in Figures 4, 5, and 6, respectively. For all four 

patterns, with the building area in the range of 50–150 m2, there 

was only a minor difference the in recall, precision, and F1-score. 

In the case of a building area greater than 150 m2, the recall and 
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F1-score of the R4 pattern were obviously worse than those of 

the other patterns, and the R4 pattern also yielded the lowest 

precision in a building area smaller than 50 m2. The recall and 

F1-score of the R10 pattern were also significantly worse than 

those of the baseline and R50 patterns when the area of the 

building was greater than 500 m2. Compared to the baseline 

pattern, the recall and F1-score of the R50 pattern were slightly 

better when the area of the building was greater than 1000 m2 and 

slightly worse when the area of the building was less than 50 m2. 

This implies that a radius of 25 m is optimal for building areas 

less than 1000 m2, while a radius of 50 m is optimal for building 

areas larger than 1000 m2.  

 

 

Figure 4. Effect of building area on recall. 

 

Figure 5. Effect of building area on precision. 

 

Figure 6. Effect of building area on F1-score.  

3.1.2 Experiment 2 — different features 

 

In Experiment 2, we compared the effectiveness of the different 

features as inputs of KPConv. For all the patterns, the time 

required for each training process was approximately 4.5 h. The 

point-based evaluation comparison results for Experiment 2 are 

shown in Figure 7. Compared to the baseline pattern, the CC 

pattern yielded only slightly better results for recall and F1-score, 

while the CI, CN, and CICN patterns performed slightly worse. 

These results confirm that neither the intensity nor normal 

vectors account for the accuracy of the building detection task. 

The features of RGB contribute little to the results. 

 

 
Figure 7. The effect on different features on building detection. 

 

 
Figure 8. Effect of building area on recall. 

 

 
Figure 9. Effect of building area on precision. 
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Figure 10. F1-score of different building area ranges. 

 

Similar to Experiment 1, we also plotted the different building 

area ranges of recall, precision, and F1-score, as shown in Figures 

8, 9, and 10, respectively. For building areas in the range of 50–

1000 m2, there was not much difference in the recall, precision, 

and F1-score among all the patterns regarding building detection. 

When the building area was less than 50 m2 or larger than 1000 

m2, the CC pattern yielded the highest recall and F1-score. 

 

3.2 Qualitative results 

Two examples of building detection for R4, R10, Baseline, R50, 

CI, CC, CN, and CICN patterns are plotted in Figures 11 and 12. 

The area in Figure 11 is marked with the left yellow frame in 

Figure 1, which denotes the urban scene. The area in Figure 12 is 

marked with the right yellow frame in Figure 1, which denotes a 

large building scene. The size of the areas shown in Figures 11 

and 12 was 200 m × 200 m. The TP, FN (misdetections), and FP 

(over-detections) are marked in green, red, and blue, respectively. 

Figure 11 shows that the differences among the eight results (R4, 

R10, Baseline, R50, CI, CC, CN, and CICN) were not significant. 

Although there were some misdetections and over-detections, all 

eight patterns yielded results that were almost consistent with the 

actual classification of the areas. However, in the case of large-

building detection (Figure 12), the results of the baseline pattern 

clearly outperformed the R10 and R4 patterns. Compared to the 

baseline pattern, the CC pattern yielded only slightly better 

results, whereas the CI, CN, and CICN patterns performed 

slightly worse. This confirms that neither the intensity nor normal 

vectors account for the accuracy of building detection. 

Comparing the intensity, RGB, and normal vectors, the results 

suggest that an optimal neighborhood size will improve the 

accuracy of building detection. 

 

4. CONCLUSIONS 

In this study, we focused on the features contributing to building 

detection accuracy from an aerial LiDAR point cloud using 

KPConv. We evaluated the effect of neighborhood size, intensity, 

RGB, and normal vectors on building detection using two 

experiments. We not only obtained the results of building 

detection but also analyzed the effect of different building area 

sizes. Our results demonstrate that an optimal neighborhood size 

improves the accuracy of building detection from the point cloud. 

For searching neighboring points, a radius of 25 m is optimal 

when the building area is less than 1000 m2, whereas a radius of 

50 m is optimal when the building area is larger than 1000 m2. 

Our results also suggest that neither the intensity nor normal 

vectors contribute to the accuracy of building detection. The 

RGB feature contributes slightly to detection precision when the 

building area is less than or equal to 50 m2 or when the building 

area is greater than 1000 m2. All the tested patterns obtained a 

lower recall, precision, and F1-score for building areas less than 

50 m2, which means it remains difficult and challenging to 

improve the accuracy of detection of small buildings from point 

clouds. 
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(a) Aerial image                        (b) Ground Truth 

 

 
(c) R4                                       (d) R10  

 

 
(e) Baseline                                      (f) R50 

 

 
(g) CI                                        (h) CC 

 

 
(i) CN                                    (g) CICN 

 

Figure 11. Examples of building detection. 

TP,  TP;  FN,  FN (misdetections);  FP,  FP (over-detections) 

 
(a) Aerial image                         (b) Ground Truth 

 

 
(c) R4                                       (d) R10  

 

 
(e) Baseline                                     (f) R50 

 

 
(g) CI                                      (h) CC 

 

 
(i) CN                                     (g) CICN 

 

Figure 12. Examples of large building detection. 

TP,  TP;  FN,  FN (misdetections);  FP,  FP (over-detections) 

3105 m2 

6191 m2 

215 m2 
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