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ABSTRACT: 

 

The world’s first photon-counting laser altimetry satellite, the Ice, Cloud and land Elevation Satellite-2 (ICESat-2), which was launched 

in 2018, has proven to have a certain bathymetric capability, which provides a new means for the surveying of island and reef  zones. 

However, how to accurately extract and separate land surface signal photons, sea surface signal photons, and seafloor signal photons 

in these areas has not yet been resolved. In this paper, we propose a validated auto-adaptive multi-level classification algorithm 

(AMSRLC), which can realize automatic recognition and classification of seafloor, sea surface, and land surface photons in island and 

reef  zones. A overlapping histogram, a slope-adaptive search ellipse, and a water depth adaptive local signal-to-noise ratio are 

respectively used to extract flat sea surface signals, island and reef  surface signals with slope changes, and seafloor signals that weaken 

with water depth. The overall classification indicators OA, AA, and Kappa reached 0.993, 0.973, and 0.987 respectively. The algorithm 

can effectively detect various signals with high detection accuracy. 

 

 

1. INTRODUCTION 

In September 2018, NASA launched the second-generation laser 

altimetry satellite, Ice, Cloud and land Elevation Satellite-2 

(ICESat-2). Its Advanced Topographic Laser Altimeter System 

(ATLAS) is the first multi-beam laser altimetry system with 

single-photon sensitive detectors (Markus et al. 2017) in the 

world. Because a green laser (532 nm) is used, ICESat-2 has a 

certain bathymetric ability. According to the published data, 

ICESat-2 can measure ~30 m seafloor (Lee et al. 2021), and can 

thus undertake shallow water surveys in island and reef zones, 

which cannot be achieved by ship-based acoustic systems. 

Many scholars have conducted in depth research on the 

validation of ICESat-2 ATLAS bathymetry and analysis of 

ATLAS’s bathymetric mapping performance. The bathymetric 

accuracy of ICESat-2 was then validated and the method of 

refraction correction was described in detail by Parrish et 

al.(2019), who reported that the accuracy of the bathymetry 

reached a root-mean-square error (RMSE) of 0.43–0.6 m over a 

1-m grid resolution.  

With the above research foundation, some scholars have 

attempted to integrate ICESat-2 and optical remote sensing 

images, such as Sentinel-2, for large-scale bathymetry inversion. 

These studies used various models (linear band model, band ratio 

model, support vector regression model) to collocate the 

measurement of both the depth (H) and radiometric properties 

captured by ICESat-2 and multiband image sensors, and 

expanded the bathymetry to the entire region covered by the 

multiband image sensor acquisition. However, most of the 

methods selected seafloor photons manually (Armon et al. 2020; 

Parrish et al. 2019; Thomas et al. 2021) or extracted them 

together with the water surface photons (Ma et al. 2019; Ma et al. 

2020) in the ICESat-2 data processing. Actually, ICESat-2 data 

from island and reef zones have distinct characteristics. However, 
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accurate extraction and separation of land surface signal photons, 

sea surface signal photons, and seafloor signal photons are still a 

question to resolve. In this study, an auto-adaptive multi-level 

seafloor recognition and land sea classification (AMSRLC) was 

proposed to precise identification and separation of different 

types of photons.  

 

2. MATHEMATIC 

The ICESat-2 data from island and reef zones present distinct 

characteristics, with a multi-layer vertical structure and a signal 

strength that decreases with increasing water depth. One part of 

the energy of the laser pulse penetrates the sea surface to the 

seafloor, while the other part of the energy is reflected by the sea 

surface, which results in the multi-layer vertical structure. Due to 

the attenuation effect of water on the laser signal, as the water 

depth increases, a smaller number of photons can reach the 

satellite detectors from the seafloor, which results in the weaker 

signal strength with deeper seafloor. 

 

Figure 1. Flowchart for the AMSRLC algorithm. 
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2.1 Sea Surface Signal Photon Detection 

The sea surface is typically smoother than the seafloor and the 

island and reef surface. For a general case, the sea surface signal 

has the characteristics of a high peak, small spread, and obvious 

characteristics in the histogram of photons, i.e., above and below 

the sea surface peak are the reef/island photon peak and the 

seafloor photon peak. Affected by the reflectivity and terrain 

slope, their peak height is much lower than the sea surface peak, 

and the signal peak is wider (See Figure 2.). 

 

Figure 2. A typical histogram of photons for an island/reef zone 

 

2.1.1 Pre-denoising of Photons 

In order to balance the unevenness of the photon density between 

the along-track distance and the vertical elevation of ICESat-2, 

the elevation coordinate of the photons be multiplied by the 

coefficient a (Eq. (1)), and the OPTICS clustering algorithm is 

used to retain the signal photons of the first 10% with a higher 

density. 

 [
𝑥′

𝑦′
] = [

1 0
0 𝑎

] ∙ [
𝑥
𝑦] (1) 

where 𝑥  represents the photon distance along the track; 𝑦 

represents the elevation coordinate of the point cloud; and 𝑎 

represents the conversion factor for the elevation direction. For 

the extraction of sea level signals, the empirical value of 𝑎  is 

approximately [80,120]; 𝑥′ is the distance along the track after 

transformation; and 𝑦′ is the elevation after transformation. 

 

2.1.2 Linear Regression Model with Segmented Statistical 

Values to Accurately Fit the Sea Surface 

According to the segment range in the ATL03 data, the maximum 

elevation statistic for each segment is obtained, and these 

statistics are then used as input to fit the sea surface. 

 𝑋 = [
1 1 ⋯ 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑘 ⋯ 𝑥𝑛

]𝑇 (2) 

 𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑘 ,⋯ 𝑦𝑛]
𝑇 (3) 

where 𝑥𝑘 represents the center of the distance along the track 

of the k-th segment, and 𝑦𝑘 represents the maximum elevation of 

the signal photons in the k-th segment. We use Eqs. (4)–(5) to 

solve the fitting coefficient 𝑏. 

𝑌 = 𝑋𝑏 (4) 

𝑏 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (5) 

The initial fitting often includes some island/reef photons and 

seafloor photons. Therefore, iterative steps are needed to 

eliminate the non-sea-surface photons, to achieve a better fitting 

effect. The following three steps are performed. 

Step1: Calculate the fitting residual between the photons and 

the fitting line, as shown in Eq. (6). 

 ∆𝑦𝑘 = 𝑦𝑘 − 𝑦𝑘
′  (6) 

where 𝑦𝑘  represents the maximum elevation of the k-th 

segment, 𝑦𝑘
′  represents the fitting elevation of the k-th segment, 

and ∆𝑦𝑘 represents the fitting residual of each segment. 

Step2: Eliminate the photons for which the residual error 

exceeds three times the standard deviation. In addition, in order 

to more efficiently eliminate signal points from above the sea 

surface, the points 1m above the fitted sea surface are also 

eliminated. 

Step3: Re-fit the retained photons to obtain a new fitting line. 

These steps are perform two to three times to obtain a stable 

fitting line. The fitted line then needs to be moved down a 

distance 𝑎 2⁄ , to correct the sea surface elevation (Eq. (7)). 

 ℎ′ = ℎ − 𝑎 2⁄  (7) 

where ℎ  represents the fitted sea surface elevation, 𝑎 

represents the average range of the sea surface signal in elevation, 

and ℎ′  represents the fitted sea surface after correction. 

According to the flatness of the sea surface, 𝑎 varies between 

0.2 m and 2 m. 
 

2.1.3  Identification of the Sea Surface Photons 

A more accurate sea surface position can be obtained by the 

linear regression model, and the sea surface photons can be 

accurately searched around its position. We split the photons into 

small segments in the along-track direction, establish the 

histogram with 50% overlap in the elevation of each segment, 

and use the density information to discriminate the range of the 

sea surface in elevation. The signal photons of each segment are 

then selected. 

Step1: Establishment of the Histogram and Calculation of the 

Photon Density. 

A histogram with 50% overlap can better describe the local 

distribution characteristics of photons, and can more accurately 

reflect the changes in photon density in the elevation direction. 

The number of photons in the bins of the histogram are counted, 

and the photon density is calculated. For each bin of the 

histogram, the photon density is determined by the ratio of the 

number of photons and the area of the bins (Eq. (8)). 

 𝜌𝑝ℎ𝑜𝑡𝑜𝑛 = 𝑛𝑡𝑜𝑡𝑎𝑙 (𝑥𝑤𝑖𝑑𝑡ℎ ∙ ℎ𝑟𝑎𝑛𝑔𝑒)⁄  (8) 

where 𝑥𝑤𝑖𝑑𝑡ℎ  represents the length of the bins, ℎ𝑟𝑎𝑛𝑔𝑒 

represents the height of the bins, and 𝑛𝑡𝑜𝑡𝑎𝑙 represents the total 

number of photons in the range. The selection of ℎ𝑟𝑎𝑛𝑔𝑒  is 

closely related to the distribution of the photons. For sea surface 

photons, ℎ𝑟𝑎𝑛𝑔𝑒 should not exceed 0.2 m, due to the small spread. 

In general, 0.1 m is appropriate. 

 

Figure 3. Schematic diagram of the overlapping moving 

window strategy and the establishment of the histograms. The 

gray windows participate in the calculation of the histogram, 

and only the signal photons in the red windows are recorded for 

the overlapping moving window strategy. 

Step2: Overlapping Window Strategy Split Along Track. 

The along-track direction is split into segments, for which the 

size of the segments is set to 100 m for the AMSRLC algorithm. 

In order to ensure that the sea surface signal peak in the histogram 

of the current segment is more significant, the size of the moving 

window is set to three times that of the segment, and the 

movement step is set to the size of the segment (Figure 3). When 

identification of the sea surface photons is achieved, only the 

signal photons contained in the filter window should be selected. 

The search for sea surface photons continues until the entire study 

area is traversed. 
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Step3: Identification of the Sea Surface Photons. 

The algorithm first finds the sea surface signal peak in the 

histogram. The algorithm determines whether this is the sea 

surface signal peak with the fitting line. If the height difference 

is within 1 m, it is judged that it is the sea surface signal peak. 

When there are multiple signal peaks, the AMSRLC algorithm 

considers the height difference between each peak and the fitted 

sea surface, and the signal peak closest to the fitted sea surface 

line is regarded as the sea surface peak. 

Next, the algorithm determines the boundary of the signal peak 

to extract the sea surface photons in this segment. According to a 

previous study (Degnan et al. 2001), the number of photons in 

the bins will conform to a Poisson distribution. Therefore, with 

the fitted sea surface elevation as the center, a buffer zone with a 

radius of 0.5 m is established, and the mean value 𝜌𝑠𝑒𝑎  and 

standard deviation 𝜎𝑠𝑒𝑎 of the density in the area are calculated. 

The signal range is then determined, based on these parameters. 

The selected range can be expressed by Eq. (9): 

 ℎ ∈ [𝐻𝑠𝑖𝑔𝑛𝑎𝑙 − 0.5, 𝐻𝑠𝑖𝑔𝑛𝑎𝑙 + 0.5] (9) 

where 𝐻𝑠𝑖𝑔𝑛𝑎𝑙 represents the position of the determined signal 

peak. 

The density threshold can be calculated by Eq. (10): 

 𝜌𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜌𝑠𝑒𝑎 − 0.5𝜎𝑠𝑒𝑎 (10) 

Starting from the peak of the histogram, the AMSRLC 

algorithm searches upwards and downwards. When the photon 

density is lower than 𝜌𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the search ends, to determine the 

upper boundary 𝐻𝑢𝑝𝑝𝑒𝑟  and the lower boundary 𝐻𝑙𝑜𝑤𝑒𝑟  of the 

signal peak.  

For all the segments, the sea surface photons in each segment 

are extracted in this way, to complete the extraction of all the sea 

surface photons. After the sea surface signal extraction is 

completed, the signal photons above the sea surface are 

determined as island and reef photons, and the underwater part is 

determined as underwater photons. The subsequent signal 

extraction is then performed. 

 

2.2 Seafloor Signal Photon Detection 

The detection of seafloor signals is more complicated, for the 

following reasons: 1) the photon background noise rate and the 

SNR of the photon signal gradually decrease with the increase of 

the water depth; and 2) the topography of the seafloor can change 

greatly, which increases the complexity of the signal extraction. 

In order to adapt to these characteristics mentioned above, we 

use the local SNR to detect the seafloor photons. 

 

2.2.1 Detecting Seafloor Photons Using the Local SNR 

For each photon 𝑝, the sum of the k-nearest neighbors (KNN) 

distance is calculated, which is the sum of the distances of the k-

nearest photons. The calculation formula for the KNN distance is 

shown in Eq. (11) (Xu 2017). Before the calculation, the 

elevation direction is scaled using Eq. (1) to balance the 

imbalance of the photon density between the distance along the 

track and the vertical distance. 

 𝑑ist𝑝 =∑ √(𝑥𝑝
′ − 𝑥𝑞

′ )2 + (𝑦𝑝
′ − 𝑦𝑞

′)2
𝑘

𝑞=1
 (11) 

The noise rate of photons is not homogeneous, but decreases 

with the increase of the water depth. In order to solve this 

problem, we use the local SNR to select the signal photons. 

 
Figure 4. Schematic diagram of underwater photon distribution. 

The gray bins represent the noise bins, where the greater the 

noise rate, the darker the color of the grid. The black bins 

represent the signal bins. As the depth increases, the 

background noise rate becomes smaller and smaller. 

2.2.1.1 Neighborhood Range and Noise Area 

Firstly, the underwater photons are divided into small bins, for 

which the length and height are denoted by 𝑏 and 𝑐, respectively, 

and the number of photons falling in each bin is counted. For each 

photon, the eight grid areas around the bin where it falls are the 

neighborhood range of the photon (Figure 4). 

In the neighborhood bins, the AMSRLC algorithm selects 

the three bins with the smallest number of photons as noise bins, 

and determines them as noise areas. 

 

Figure 5. The strategy used by the algorithm for selecting noise 

areas. The top figure shows the photon distribution, and the 

bottom picture shows the grid division. According to the 

number of photons in each bin, the shadow bins are selected 

as the noise bins. 

2.2.1.2 Calculation of the Local SNR 

The photons falling in a noise area are selected as the noise 

photons in the neighborhood of the center grid, and the average 

value of their sum of the KNN distance is counted as the feature 

value of the local noise photons in the area. 

 𝑑ist𝑛𝑜𝑖𝑠𝑒_𝐷1 =
∑ 𝑑ist𝐷2𝑝∈𝐷2

𝑛
 (12) 

where 𝐷1  represents the central bin area, 𝐷2  represents the 

noise bin area, and 𝑛 represents the number of photons falling in 

𝐷2. 

The calculation of the signal threshold is closely related to the 

feature value of the local noise photons 𝑑ist𝐷1. Now we consider 

two central photons A and B, for which the distribution of their 

photons is similar, the distance between the photons around B is 

two times than that of A. The area occupied by neighbors of 

photon B is four times than that of photon A.  

Therefore, we consider that, when the ratio of the sum of the 

KNN distances of the two photons is 𝑔, then the density of the 

two points is 𝑔2. Based on this, the local signal threshold in the 

center bin can be expressed by Eq. (13). 

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑐𝑎𝑙 = √𝑚 ∙ 𝑑ist𝑛𝑜𝑖𝑠𝑒_𝐷1 (13) 

Bins of Noise Bins Contain Signal Photons

W
ater D

ep
th

Distance of Along Track

Photons

Current Photon

Center Bin

Noise Bin

Neighborhood Bin

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-309-2022 | © Author(s) 2022. CC BY 4.0 License.

 
311



 

where 𝑚 represents the set SNR within the water depth range. 

2.2.1.3 SNR Threshold Setting According to the Water Depth 

Affected by the attenuation effect of water on the laser signal, as 

the water depth increases, a weaker photon signal is returned 

seafloor, and the SNR is also weaker. In order to adapt to this 

feature, for different water depth regions, different SNRs are set 

to achieve the best extraction effect. 

The water depth range is divided into three areas, namely, 

water depth Zone-I, water depth Zone-II, and water depth Zone-

III (see Fig. 10). The water depth range of water depth Zone-I is 

usually < 5 m, and the SNR setting is usually 𝑚 > 10. The water 

depth of water depth Zone-II is roughly within 5–15 m, and the 

SNR is usually set to 3 ≤ 𝑚 ≤ 10. Water depth Zone-III refers 

to the area with a water depth of > 15 m, for which the SNR is 

set to 𝑚 < 3 . The division of the water depth area and the 

selection of the SNR can be adjusted according to the actual 

situation. 

 
Figure 6. Diagram of the water depth zone division. As the 

water depth increases, the photon SNR becomes lower. 

 

2.2.2 Piecewise Linear Fitting Method to Eliminate 

Outliers 

After the seafloor photon extraction through the above steps, 

there will still be some photons remaining, and although they 

have a strong SNR, this part of the signal belongs to the 

misidentify photons and needs to be eliminated. 

The method of local fitting is used to eliminate the misidentify 

photons. In the range where the distance along the track is ∆𝑑𝑖𝑠𝑡, 
all the signal photon coordinates (𝑥, 𝑦)  of the photons in the 

range are fitted, and the photons that deviate more than 3 m from 

the fitted straight line are eliminated until the fitted line stabilizes. 

The fitting area is shifted by ∆𝑑𝑖𝑠𝑡/2 until the entire area is 

traversed (Neumann et al. 2018). The remaining photons are the 

final seafloor photons. 

 

2.3 Island and Reef Photon Detection 

The island and reef  area is the upper part of the sea surface 

signal, and the photon detection needs to select the island and reef 

signals within the area photons. Island and reef signal photon 

detection is similar to that in land areas, and there are many 

mature algorithms(Brunt et al. 2014; Herzfeld et al. 2017; Jiang 

et al. 2015). Here, a novel two-step method using adaptive local 

density is adopted (Xie et al. 2022).  

Firstly, an adaptive search ellipse is used to calculate the 

photon density feature. When the signal photons present a certain 

slope, the algorithm searches for the slope within the ellipse 

around the signal, and calculates the characteristic value of the 

photon density at the optimum slope, according to the optimum 

slope searched.  

Secondly, based on the calculated density characteristic value 

of each photon, we use Otsu’s thresholding method to obtain the 

threshold value of the photons for segmentation, and we initially 

select the noise photons as those photons with a value less than 

the segmentation threshold value. Then, according to the 

statistical characteristics of the noise photons, the signal 

threshold is determined, and the photons larger than the signal 

threshold are selected as the island and reef signal photons. 

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇𝑛𝑜𝑖𝑠𝑒 + 3 ∙ 𝜎𝑛𝑜𝑖𝑠𝑒 (14) 

where 𝜇𝑛𝑜𝑖𝑠𝑒  represents the mean value of the feature value of 

the noise photons, and 𝜎𝑛𝑜𝑖𝑠𝑒  represents the variance of the 

feature value of the noise photons. 

For a photon whose density characteristic value is greater than 

the threshold value, it is judged to be an island signal photon. 

 

2.4 Performance Assessment 

In this paper, the overall accuracy (OA), average accuracy (AA), 

and Cohen’s kappa coefficient (kappa) are used. The calculation 

formulas for these indicators are as follows: 

 
𝑂𝐴 =

∑ 𝑀𝑖𝑖
𝐶
𝑖=1

𝑁
 (15) 

 

𝐴𝐴 =

∑
𝑀𝑖𝑖

∑ 𝑀𝑖𝑗
𝐶
𝑗=1

𝐶
𝑖=1

𝐶
 

(16) 

 𝐾𝑎𝑝𝑝𝑎

=
𝑁(∑ 𝑀𝑖𝑖

𝐶
𝑖=1 ) − ∑ (∑ 𝑀𝑖𝑗 ∑ 𝑀𝑗𝑖

𝐶
𝑗=1

𝐶
𝑗=1 )𝐶

𝑖=1

𝑁2 − ∑ (∑ 𝑀𝑖𝑗 ∑ 𝑀𝑗𝑖
𝐶
𝑗=1

𝐶
𝑗=1 )𝐶

𝑖=1

 
(17) 

where 𝐶  represents the number of categories, 𝑀𝑖𝑗  indicates 

that category 𝑖 is recognized as category 𝑗, and 𝑁 represents the 

number of photons. 

For the single-category indicators, the precision (P), recall (R), 

and F-measure (F) are adopted. These indicators are calculated as 

follows: 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (18) 

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19) 

 𝐹 =
2 ∙ 𝑃 ∙ 𝑅

𝑃 + 𝑅
 (20) 

where TP represents the true signal photons that are correctly 

detected, FP represents the noise photons that are misclassified 

as signal photons, and FN represents the true signal photons that 

are not correctly detected. 

 

3. RESULTS  

In order to verify the effectiveness of the algorithm, a dataset 

(filename: ATL03_20190822155703_08490401_002_01.h5) 

was selected.  

A

A

B

B

 
Figure 7. Schematic diagram of the research area. The figure on 

the left is the data profile of ICESat-2. The figure on the right is 

a plan view of the study area. 

 

From the Table II and Table III, we know that the AMSRLC 

reached a good classification result. The three overall 

classification indicators OA, AA, and Kappa reached 0.993, 

0.973, and 0.987 respectively. From the perspective of a single 
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category indicators, Sea surface category and Island and Reef 

category all reached 0.99 in P, R, F, which means that it performs 

great in these two categories. The signal detection of Under 

Water category is more complicated, the DMDCM performs 

0.987,0.957, and 0.972 in P, R, F, with only 33 commission 

photons and 109 omission photons. 
 

TABLE I 
DATA DESCRIPTION 

Related Attribute Content 

Data Name ATL03_20190822155703_08490401_002_01.h5 

Data Beam 3L 

Data time range 51725033.9s——51725035.6s 

 
TABLE II 

UNITS FOR MAGNETIC PROPERTIES 

 Actual Class 

1 2 3 4 

Predicted Class 

1 1942 70 109 25 

2 1 19481 0 0 

3 25 8 2452 0 

4 6 1 0 8846 

* Class 1 represents Background Photons, Class 2 represents Sea 
Surface Photons, and Class 3 represents Underwater Photons. Class 4 

represents Island and reef Photons 

 

 
TABLE III 

INDICATORS OF DATASET1 

Category Name OA AA Kappa P R F 

Overall 0.993 0.973 0.987 - - - 

Sea Surface - - - 0.999 0.996 0.998 

Under Water - - - 0.987 0.957 0.972 

Island and Reef    0.999 0.997 0.998 

 

The reference data and the result of the AMSRLC algorithm 

for Dataset are shown in Figure 8. The difficulty of the data 

classification lies in processing the photons at the intersection of 

land and sea, so the data for area 1 and area 2 of Figure 8 A, are 

enlarged and shown in Figure 8 B–C. When comparing according 

to Figure 8 B-C, it can be seen that the reference data and the 

results of the AMSRLC algorithm are similar, indicating that the 

AMSRLC algorithm can handle the photons at the intersection of 

land and sea. 

 

Figure 8. Denoising and classification results for Dataset. A 

compares the AMSRLC results and the reference data. B and 

C represent partial enlarged views of areas 1 and 2 of A, 

respectively. 
 

 

4. CONCLUSION 

In this article, we have proposed the auto-adaptive multi-level 

seafloor recognition and land sea classification (AMSRLC) 

algorithm, to solve the problem of denoising classification of 

single-photon data in island and reef zones. The algorithm is 

divided into three main steps. Firstly, the photon data are pre-

denoised, and then the linear regression model is used to fit the 

sea surface accurately. Subsequently, the photon data are 

processed in segments along the orbital direction, and the sea 

surface signal is detected by the use of the histogram with the 

fitted line of the sea surface. Secondly, the seafloor photons are 

identified below the sea surface, for which the local SNR is 

proposed to detect the seafloor photons. Thirdly, a slope-adaptive 

method is used to calculate the photon density of each photon, to 

detect the island and reef photons.  

The verification results showed that the kappa coefficient can 

reach more than 0.95 in all three types of data, indicating that the 

proposed AMSRLC algorithm can handle single-photon data of 

different types well. In terms of the single-class accuracy, the 

detection of sea surface photons or island/reef photons is easier 

than that of seafloor photons, and the F-measure can reach more 

than 0.99. For seafloor photons, the processing accuracy is 

slightly reduced, but the F-measure can still reach 0.97. Judging 

from the processing results, the algorithm can effectively detect 

various signals with a high degree of detection accuracy. 
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