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ABSTRACT:

Limited accessibility, occlusions, or sensor placement, can generate unevenly sampled laser scanning based point clouds. Such
uneven coverage and partial lack of detail can affect the computation of geometric features therein and generate a visually unpleasant
site description. The application of 3-D interpolation-driven solutions has been demonstrated to generate oversmoothed results as
such algorithms ignore local patterns and variations within the surface. In that respect, the introduction of deep neural networks
(DNN) has the potential to learn more complicated forms, typical of the rich morphological patterns that natural landforms and
entities therein tend to exhibit. While existing research has focused on the upsampling of man-made objects, little has been devoted
to natural scenes and the entities therein. To address that, we propose in this paper a DNN based approach that utilizes the self-
similarity of geometric details as a means to address this generally ill-posed problem. Specifically, we treat two key elements that
stand at the root of point-DNN-related design, the definition and selection of neighboring points, and the interpolation at a high
dimensional feature space. We show how the introduction of a graph convolutional network and an attention unit helps address
these matters and demonstrate how knowledge of densely sampled regions can be learned and transferred to sparsely sampled ones
through geometric learning methods.

1. INTRODUCTION

Because of topographic variations, occlusion, or use of wide
baselines, point cloud depiction of natural scenes is oftentimes
unevenly sampled. This may leave regions in the site partially
covered or even void of data. Such coverage-related prob-
lems are not only visually unpleasant but as the literature show
hamper the modeling and interpretation of the scene (Boulton
and Stokes, 2018; Wang et al., 2020; Metzer et al., 2021; Singh
et al., 2021; Yan, 2021). One solution that can avert artifacts
caused by partial coverage is to upsample the point cloud to
yield a more even distribution throughout the site. In natural
scenes, upsampling poses a unique challenge because of the
complex morphology and the varying scales. This suggests that
the generated points should describe the underlying geometry
of a latent target object at multiple scales while conforming to
both local and global trends. The common solution has been ap-
plying 3-D interpolation-based techniques (Lipman et al., 2007;
Huang et al., 2013), where new points were planted in void parts
as a natural extension of the observed surface. However, such
approaches are suited for structured shapes and tend to generate
an overly smoothed outcome (Wang et al., 2020).

To address these challenges, we propose in this paper a data-
driven deep neural network (DNN) upsampling framework.
Our aim is to utilize the self-similarity of geometric details in
the point cloud as a means to address this generally ill-posed
problem. Our assumption is that knowledge of densely sampled
regions can be learned and transferred to sparsely sampled
parts. While most approaches tackle this interpolation prob-
lem through a simple feature expansion or by progressive up-
sampling (Yu et al., 2018b; Yifan et al., 2019), we place great
focus on the local contextual information when planting new
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points. We also demonstrate how the introduction of an atten-
tion unit helps to decorrelate the enriched features, thereby al-
lowing an informative and unclustered upsampled outcome. Fi-
nally, we consider a better-suited cost function to avoid the need
to describe the correspondence between prediction and ground-
truth, thereby providing a simple and efficient evaluation pro-
cess. Our results demonstrate better performance in challenging
cases with lower error measures compared to the ground-truth
data on both object and complete-site levels.

2. RELATED WORK

Early upsampling-related research has focused on the devel-
opment of 3-D interpolation-driven methods. As an example,
Fleishman et al. (2003) upsampled a point set by interpolat-
ing points at vertices of a Voronoi diagram in the local tangent
space. Lipman et al. (2007) presented a locally optimal pro-
jection (LOP) operator for points resampling and surface re-
construction based on the L1 median. This operator performs
well even when the input point set contained noise and outliers.
Successively, Huang et al. (2009, 2013) proposed an improved
weighted LOP and its variant to edge-aware cases as a means
to address the point set density problem while preserving sharp
features. Although these models have yielded good results, they
made a strong assumption about the smoothness of the under-
lying surface, thus restricting their scope.

Deep learning methods now achieve state-of-the-art results in
point cloud upsampling. Rather than interpolating in a Euc-
lidean space, the network learns to plant new points using high-
dimensional features from the training data. Neural point pro-
cessing was pioneered by the PointNet and PointNet++ net-
works (Qi et al., 2017a,b), where the problems of irregularity
and the lack of structure were addressed by applying shared
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multilayer perceptrons (MLPs) for the feature transformation
of individual points, and a symmetric function, e.g., max pool-
ing, for global feature extraction. Yu et al. (2018b) introduced
the first point set upsampling network, PU-Net, where both the
input and the output were the 3-D coordinates of a point set.
PU-Net extracted multiscale features based on PointNet++ and
concatenated them to obtain aggregated multi-scale features for
each input point. These features were expanded by replication,
then transformed to a uniformly distributed upsampled pointset
of the underlying surface. Although multiscale features were
gathered, the correspondence between points and their feature
similarity was neglected. Therefore, the network suffered the
loss of local sharp features. In a later work, Yu et al. (2018a)
proposed the EC-Net, an edge-aware network for pointset con-
solidation. Because of the PU-Net tendency to penalize the
accumulation of points, sharp transitions were smoothed. To
encourage the preservation of edges, an edge-aware joint loss
was introduced. Nonetheless, the EC-Net is very complicated
in the data and training preparation phases. Yifan et al. (2019)
proposed the 3PU, a progressive network that learns different
levels of detail in multiple steps, where each step focuses on a
local patch from the output of the previous step. Due to its pro-
gressive nature, the 3PU network is computationally expensive
and requires more data to supervise the middle-stage outputs of
the network. Li et al. (2019) proposed the PU-GAN, a gener-
ative adversarial network (GAN) designed to learn upsampled
point distributions. Inspired by the advances in the attention
mechanism in recurrent neural networks, the PU-GAN adopts a
self-attention module to the upsampling by introducing the in-
teractions of low-level and high-level features. Recently, Qian
et al. (2021) proposed the PU-GCN, a graph convolutional net-
work (GCN), where multi-level features are aggregated by an
inception-like block. The advantage of the GCN is in the reduc-
tion of parameters to learn, making it also more computation
efficient compared to the PointNet++ architecture. The PU-
GCN approach performs well when handling samples gener-
ated from watertight meshes. Nonetheless, when handling com-
plex shapes with open boundaries or natural complex-shaped
objects, this network tends to fail (Zhou et al., 2021).

Most upsampling frameworks adopt the PointNet++ architec-
ture as the front-end to learn high-dimensional features. Non-
etheless, such a framework is limited in its representative power
due to the utilization of a static graph to exploit local geometric
structures. Generally, the upsampling is performed through a
simple feature expansion by replication (Yu et al., 2018b; Qian
et al., 2021) and tends to create a clustered outcome. In this pa-
per, we demonstrate how the alteration of this base PointNet++
related concept helps resolve this matter. We propose a neigh-
borhood definition that effectively encodes spatial information
and allows for effective feature extraction. We also demon-
strate how alteration of the feature interpolation concept allows
resolving the clustering of points and generating a truer to real-
ity upsampling outcome. Such a concept places great focus on
the surrounding entities when planting new points, thereby ad-
hering better to the underlying structure.

3. METHODOLOGY

Our network is based on the architecture proposed by Yu et
al. (2018b) that also sets the base for many upsampling ap-
plications (e.g., Yu et al., 2018a; Yifan et al., 2019; Li et al.,
2019, 2021). These neural upsampling applications consist of
a feature extraction component and a feature-space interpola-
tion (expansion) component. The first maps the points from a

Euclidean space to a high dimensional space as a means to cap-
ture intrinsic properties of the local geometric structure. The
second performs interpolation at this high-dimensional space
and then maps the interpolated features back to the Euclidean
space. Shared drawbacks of these applications are the over-
smoothness around edges and the tendency to generate clutter
around layered surfaces and complex structures (cf. Fig. 4).
The causes for such phenomena are rooted in the manner by
which features are extracted by their networks as well as in
the interpolation process. As Sec. (2) noted, the neighborhood
definition for exploiting local geometric structures is driven by
Euclidean distance measures. Therefore, it limits the effective
receptive field to a predefined value assigned to the network.
Secondly, a simple interpolation through aggregation or duplic-
ation of features does not necessarily enforce the interactions
of features and is limited in differentiating the contributions
of local surfaces and global trends when planting a new set of
points.

Our approach addresses these challenges by the following
modifications to the base architecture (Fig. 1). Firstly, we ex-
tend the receptive field to the entire point set by modifying the
common shard MLPs in the feature extraction component by
introducing a dynamic graph convolution unit. Secondly, we
weigh the contribution of local and global features when per-
forming interpolations, thereby allowing us to generate a local
structure-attentive outcome while being coherent to the global
trend. As noted, we also modify the cost function to avoid
the need to describe the correspondence between predicted and
ground-truth points, thereby making the evaluation more effi-
cient.

3.1 Feature extraction

The use of the PointNet++ for feature extraction produces a
static graph that is based on Euclidean distance measures as
a means to drive neighborhood relations. Such a local neigh-
borhood is not guaranteed to define the local surface structure,
as it does not necessarily imply geodesic proximity. As noted
by Wang et al. (2019), such a setting also has a limited recept-
ive field, bounded by the largest querying distance to organize
neighbors per point.

Instead, we consider a dynamic graph approach to query for
neighbors (Fig. 1). The proximity term is determined initially
in the first layer by Euclidean distance, while in the following
ones it is derived by the closeness of the learned features (close-
ness in the sense of intrinsic properties). This approach, known
as dynamic graph convolution (aka graph convolution network,
GCN, Wang et al., 2019), has a receptive field that covers an en-
tire graph. Given a point pi and its neighbor pj , the convolution
is defined by:

eijm = Relu(θm · (pj − pi) + φm · pi) (1)

where θm and φm are MLPs, and the final activation xim of pi
at the m-th layer is:

xim = max
j∈Ni

eijm (2)

where Ni is a set of neighboring points for the i-th point. Note
that the max function is permutation invariant. Therefore, it is
not related to the order of points. We denote this using as Per-
point GCN Feature Extraction Unit (Fig. 1).
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Figure 1. Overview of our point cloud upsampling framework.

3.2 Context-aware feature expansion

Earlier studies concatenated features extracted from each layer
along feature dimensions and the interpolation was performed
by a set of shared MLPs (Yu et al., 2018b; Yifan et al., 2019).
This strategy creates a highly correlated feature representation
that tends to cluster points in the final prediction. This correl-
ation was partially resolved by utilizing a non-linear activation
function after each MLP.

Here, given a high dimensional feature, F , we aim to expand
it r times. This expansion is being made by two components,
first, a GCN unit to expand the features to N × rC′, and second
a periodic shuffling unit to rearrange the output. In this man-
ner, the expansion is no longer an operation per point but con-
siders the spatial information in the latent space. The periodic
shuffling (Qian et al., 2021), a matrix reshuffling operator, is
applied here as a means to rearrange features, particularly for
the convenience of regressing them back to an Euclidean space
in the subsequent phase. Hence, the dimensions of our features
change fromN×rC′ to rN×C′. From the reshuffled features,
we added a 2-D grid to encode the position of each feature point
as input F̂ for the self-attention unit.

We consider a solution that can effectively embed the neigh-
borhood information in a high-dimensional space when plant-
ing new points. The proposed method seeks a mechanism to
better incorporate contextual information, similar to the atten-
tion concept in image captioning and recurrent neural networks
(Vaswani et al., 2017). For that, we introduce a self-attention
unit (Li et al., 2019) that effectively learns the contribution or
weights of each feature vector when generating outputs. This
setting is justified as it encourages incorporating contextual in-
formation by looking at the entire point cloud and evaluating
the importance per point for the prediction. Our attention in-
cludes three components, query sets G, key sets H , and values
K, where:

G = F̂WG H = F̂WH (3)

where WG and WH are weights of the MLPs. Note here the

dimensions of G and H are the same. We derive the score W ,
of dimension rN × rN , from the alignment of G and H by
applying the softmax function, which provides the weights for
each feature vector in K. Here, the output dimension of K is
rN × (C′ + 2). Note here the three components G,H,K are
derived from F̂ , hence the self-attention definition. In addition,
to avoid over-fitting we also add a skip connection from F̂ to
Fup.

3.3 Regression

We adopt a common coordinate regression unit, similar to Yu
et al. (2018b); Li et al. (2019); Qian et al. (2021), which con-
sists of several MLPs. The coordinate regression unit maps the
features to our final prediction outcome Q.

3.4 Cost Function

The cost function to evaluate the quality of the network pre-
diction would usually measure the closeness of the newly es-
tablished point to the ground truth P. The common choice is
Earth mover distance (EMD, Yu et al., 2018b; Li et al., 2019).
Such distance needs to define a bijection mapping from Q to
P, β(Q) : Q → P. Differing from the EMD, we introduce a
metric that is easier to perform and less rigid. To position points
on the underlying object surfaces, we aim to obtain a predicted
set Q from the sparse samples that are close to ground truth P
by minimizing the Chamfer distance (Qian et al., 2021):

L(P,Q) =
1

|P|
∑
p∈P

min
q∈Q
||p− q||22 +

1

|Q|
∑
q∈Q

min
p∈P
||p− q||22

(4)
This distance is differentiable and also invariant to point order,
which avoids the need to define correspondence. In the training
time, the network evaluates this loss by measuring the similarity
of the predicted outcome and manually cropped ground truth.
The weight parameters in each layer are updated using gradient
descent through back-propagation.
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Figure 2. A typical terrain in our dataset, upsampled by Yu et al. (2018b) and our approach. Points are shaded by their normal
orientations. Our approach provides an outcome of richer features coherent to the original scene (see the residual plot).

We introduce a dynamic weight decaying scheduler to encour-
age weight updating during training. At inference time, the net-
work is fed with spare samples and uses its output as a final,
predicted, form.

4. RESULTS

Implementation details – We trained the proposed up-
sampling network for 100 epochs on one GPU (NVIDIA TI-
TAN 2080Ti) in all experiments. We optimized the network
parameters using the Adam optimizer with a learning rate of
0.001 and a beta of 0.9. This selection is justified by the fact that
momentum introduces a better convergence given complex loss
surfaces. As a training set we use the PU1K dataset, published
by Qian et al. (2021), which consists of 1020 training samples
for all models. Following Qian et al. (2021) convention, we
cropped 50 patches from each 3-D model (51,000 patches in
total) as the input texture to the network. By using textures
from another distribution, different from that of natural scenes,
our aim was to test the generalizability of our network and also
to establish a fair comparison with common architectures. The
upsampling ratio, r, was set to 4 in all experiments. We com-
pared our approach to the recent models by Yu et al. (2018b)
and Yifan et al. (2019). We used the implementation by Qian et
al. (2021) for these models, available in the public domain.

Upsampling application on natural scenes We demonstrate
the application of our network on two datasets. One is a scan
of a tree, and the other is of an ancient wine-press site. The
tree scan features a non-linear complex geometric structure with
many discontinuities and shape variations. The rock-quarried
ancient wine press, prevalent across the Mediterranean basin,
particularly during the late Roman and Byzantine times (Stavi
et al., 2018), provides an extended rock exposure, forming a
seemingly large-area drainage basin, which – upon rain events
– drained into the vat. This site is of great complexity, fea-
turing an abundance of elevation changes (up to 3 meters) and
voids in the point cloud, due to occlusions and a relatively wide
baseline between posts (cf. Fig. 2 and Fig. 6). Both datasets
were acquired by a Leica C10 scanner with both low and high-
resolution settings, the wine press consists of five scans and
consists of approx. 30 million points.

We first study the performance of our proposed model in a re-
gion featuring sharp transitions within the wine press site. Of
focus (Fig. 2) is one blindspot area of one of the scans, where
we used points acquired from others, and evaluated how the
upsampling performs against a lower resolution version of the
data. We measured these differences to the ground truth using
the distance of each predicted point to the closest ground truth.
To quantify the upsampling results we computed the nearest

neighbor distance between the upsampled version of the point
cloud to the ground truth. Results show that we successfully
upsample a sparse set of input points to a dense one exhibiting
rich geometric details, similar to the rock face morphology and
well embedded within it. Analysis of the residuals of our inter-
polated set of points compared to the original scan shows that
they are mostly below 5 millimeters. A comparison of our res-
ults to that of the PU-Net (Fig. 2) shows also how finer details
are highlighted in a much sharper manner.

Generating an even distribution of point density within the
scene is critical to providing a visually pleasing outcome. We
demonstrate the application of our model in contributing to ob-
taining such an outcome. Given a region of interest, the blind-
spot of one individual scan, covered by a much sparser point set
from neighboring scans, we clustered the original data into two
subsets according to their point density (lower density within
the blindspot vs. higher outside) and performed the upsampling
task on the low-resolution section. Though more advanced par-
titioning approaches for the point set may exist, here we use
this simple strategy as a proof of concept. As demonstrated in
Fig. 3, our approach distributes points within that region in a
more uniform pattern compared to using the PU-Net model.

Turning to the tree scan, the value of the proposed GCN net-
work becomes apparent. As noted, the GCN is better designed
for embedding spatial information and is therefore expected to
improve the quality of the final prediction, especially in the
mixture of entities. In Fig. (4) a visual demonstration of the
upsampling performance is provided, comparing also our ap-
proach to the PU-Net and the MPU networks. Here the dif-
ferences to the ground truth are computed again and analyzed
as a histogram with 5mm spacing. While the PU-Net and MPU
blurred the branches and bifurcation points, our model was cap-
able of producing a high-fidelity outcome (cf. Fig. 4 & Fig. 5).
The histogram plotting of the differences (Fig. 5) demonstrates
how our results are more accurate with approx. 70% of the data
having differences lower than 5 mm and approx. 90% with a
sub-centimeter level of accuracy.

An application of our upsampling solution at a site level is
presented in Fig. 6. Our model is capable to bridge the voids
in the five blind spots with the majority of the differences lower
than 3 mm. Note our model is designed for upsampling rather
than shape completion. Therefore, at the bottom of the vat,
where no data exists at all, it did not complete the large void
region, as it was not aimed to. For quantitative evaluation of the
wine-press data, we used the low-resolution version of the scan
as input and compared the outcome with the high-resolution
set. Following the convention in previous upsampling archi-
tectures, we used the Chamfer distance (CD) and Hausdorff
distance (HD). Here, the selection of HD is utilized for a fair
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Raw PU-Net Ours

Figure 3. Comparison of upsampling low resolution data, with outcome generated by the PU-Net and our network. Our approach
helps to generate a more uniformly distributed pointset.

Raw PU-Net MPU Ours G.T.

Figure 4. Upsampling of ow resolution tree pointcloud. Outcome generated by PU-Net, MPU, and Ours and evaluated against ground
truth (G.T.) data. Our approach produces sharper edges and richer features consistent with the original high density point cloud.

Figure 5. Evaluation of residuals of the tree model upsampled by
the PU-Net, MPU and our model, while compared to ground

truth.

evaluation and comparison as the model was trained by the CD.
The CD measures the average of all the distances from a point
in one set to the closest point in the other set, while the HD
measures the largest of all distances. Both metrics measure the
closeness of two clusters in the same metric space, smaller is
better. We divided the whole dataset into 512 patches (each
with 8192 points) and analyzed the average CD and HD of all
patches. As shown in Table (1), compared to PU-Net and MPU,
our proposed model yields the smallest CD and HD on the wine

press dataset. Note though being trained on the dataset from
other domains, our model is capable to generalize the learned
knowledge and leading to the performance it exhibited in the
upsampling of both the wine press and tree modelss.

Network PU-Net MPU Ours

CD 10−3 3.083 2.124 1.995
HD 10−3 50.368 40.189 37.427

Table 1. Quantitative comparison of our proposed model vs. the
PU-Net and MPU on the wine press dataset. Bold-face text

denotes the best performance.

5. CONCLUSIONS

Neural upsampling approaches provide a promising avenue to
address the defects and partial coverage in point clouds depict-
ing natural objects and scenes. In that respect, this paper pro-
posed an architecture by which we compensated for the lack of
coverage and recovered detail directly from scans. Recogniz-
ing the deficiency of the common applied PointNet++ based ar-
chitecture, one objective was to address the insufficient recept-
ive field for feature computation and the loss of detail around
a mixture of entities. Recognizing that feature proximity rep-
resents the similarity of entities in upsampling, we first con-
structed a dynamic graph rather than an Euclidean graph for
efficient feature extraction and then expanded these features to
perform upsampling guided by a self-attention mechanism. In
this manner, the dynamic graph allowed an incremental group-
ing of similar entities and an extension of the receptive field to
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the entire graph. This way the learned features captured both
local and global trends. These enriched features were evalu-
ated by their contribution to each point in the final prediction.
Therefore, new points were planted under the guidance of con-
textual information. Results demonstrated that the contribution
of the proposed approach in improving the density distribution
at voids and recovering details conformed to the ground truth.
This strategy may help in further applications in attribute estim-
ation or visualization-related applications.
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Figure 6. Upsampling of the wine press point cloud, the proposed method generates a point cloud with rich geometric details.
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