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ABSTRACT: 

 

Although deep learning has greatly improved the semantic segmentation accuracy of point clouds, the segmentation of rare classes in 

large-scale urban scenes has not been targeted in available methods. This paper proposes a two-stage segmentation framework with 

automated workflows for imbalanced rare classes based on general semantic segmentation. The proposed approach includes two 

stages: general semantic segmentation and object-based refined semantic segmentation. Firstly, general segmentation networks are 

utilized to segment general large objects. Secondly, refined semantic segmentation is conducted by an automated workflow: 3D 

clustering and bounding box (BBox) generation are applied to the point cloud of rare fine-grained objects during the training, 

followed by object detection to extract fine-grained objects. Afterwards, as the constraints, the extracted BBoxes further refine the 

segmentation results. Our approach is evaluated on the Hessigheim High-Resolution 3D Point Cloud (H3D) Benchmark and obtains 

state-of-the-art 89.35% overall accuracy and outstanding 75.70% mean F1-Score. Furthermore, rare classes Vehicle and Chimney 

achieve breakthroughs from zero to 63.63% and 52.00% in F1-score, respectively. 
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1. INTRODUCTION 

Automated semantic segmentation of point clouds is 

fundamental for various fields of application, including 

autonomous driving, building information modeling and 

robotics (Chen et al., 2020). With the advances of recent 

technology in remote sensing sensors and platforms, especially 

lightweight LiDAR devices and unmanned aerial vehicles 

(UAV), which facilitate the availability of fine-grained 3D data. 

Such data, while revealing the spatial distribution of target 

objects in high detail, also bring about the problem of 

significant class imbalance. Efficient methods are needed to 

fully harness this unpreceded source of information for 3D 

semantic segmentation. 

 

Established methods like VoxNet (Maturana et al., 2015) 

voxelizes point clouds to make the data structure suitable for 3D 

CNNs. But the sparsity of point clouds causes low efficiency of 

voxel grid arrangement. SSCNs (Graham et al., 2018) takes 

advantage of sparsity and considers only occupied voxels to 

improve the efficiency. Schmohl and Soergel (2019) apply it to 

the large-scale ALS point clouds. But such methods only 

depend on the voxel boundary and ignore the geometric 

structure of local regions. PointNet++ (Qi et al., 2017) 

effectively solves the problem of extracting local features by 

combining sampling-grouping layer and PointNet (Qi et al., 

2017) layer. Nevertheless, features via the pooling operator in 

each individual dimension have the same weight. The self-

attention operator in Point Transformer (Zhao et al., 2021) 

weights each element adaptively. However, when dealing with 

imbalanced rare classes in large-scale urban scenes, the above 

general semantic segmentation methods often fail to extract 

sufficiently effective semantic features of these classes and 

perform poorly. To alleviate this problem, surface features 

based on the local 3D neighborhood (Weinmann et al., 2013) 

can be utilized to strengthen the local perception of networks. 

 

The goal of 3D object detection is to detect class-imbalanced 

high-value objects and indicate object location and size 

attributes in the form of 3D BBoxes. If objects have strong 

shape cues, detectors can easily locate objects and thus provide 

valuable information for semantic segmentation (Dong et al., 

2014). In general, existing 3D detection methods can be broadly 

grouped into two categories, i.e., single-stage detection and 

two-stage detection. Single-stage detection methods regress 3D 

bounding box directly from extracted features, such as 

PointPillars (Lang et al, 2019) and 3DSSD (Yang et al., 2020). 

Two-stage detection methods like PointRCNN (Shi et al., 2019) 

and PV-RCNN (Shi et al., 2020) generate region-proposal-

aligned features in the first stage, and refine predictions in the 

second stage. Single-stage detection methods usually run faster 

due to simpler network structures, whereas two-stage detection 

methods often attain higher precisions benefited from the 

second refined stage. 

 

So far, those 3D segmentation methods developed in the 

computer vision community have mostly been used for general 

large classes in ground scans with limited space, or indoor 

scenes. To our knowledge, specialized segmentation methods 

for imbalanced rare classes in large-scale urban point clouds 

have not yet been investigated. In this paper, we unify object 

detection models into the framework of general semantic 

segmentation, and present a two-stage segmentation framework 

for imbalanced rare classes. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-329-2022 | © Author(s) 2022. CC BY 4.0 License.

 
329



 

The rest of the paper is organized as follows. In Section 2, the 

overall structure of the proposed two-stage segmentation 

framework is introduced in detail. Section 3 shows the 

experimental details on the H3D dataset, and analyzes the 

results of general semantic segmentation and our two-stage 

segmentation. Section 4 is left for conclusion and outlook. 

 

2. METHODOLOGY 

In this section, we present our proposed two-stage segmentation 

framework for imbalanced rare classes. The overall structure is 

illustrated in Fig. 1, which consists of general semantic 

segmentation stage and refined semantic segmentation stage. 

General semantic segmentation is used to extract general large 

classes, based on which the refinement of imbalanced rare 

classes is performed in the second stage. 

 

2.1 General Semantic Segmentation 

Since Point Transformer is invariant to permutation of the input 

elements due to the inherent set-level operation of the self-

attention structure, which is consistent with the disordered 

distribution of point clouds, it is quite natural to choose the 

network as the main component of general semantic 

segmentation stage. But unlike the original Point Transformer, 

not only point original features but also local surface features of 

points are fed into the network. In this way, the local perception 

of the network can be enhanced to a certain extent. 

 

Local surface features provide the attributes of the local 

approximate surface of each point (Weinmann et al., 2013), 

which can be calculated based on the local 3D neighborhood. 

Only descriptors with strong semantic interpretation are selected 

to construct the local features of each point p , which are 

described by one 6-tuple 

 

F ( , , , , , )p px py pz p p pn n n d f r=                         (1) 

 

where , ,px py pzn n n  are the parameters of the normal vector, 
pd  

is the distance from the origin to the fitted plane of point p , 

pf  is change of curvature, and 
pr  is the residual from point p  

to its fitted surface. Normals distinguish flat and inclined 

surfaces, 
pd  is the association with global information, 

pf  

represents the local surface variation and 
pr  describes the local 

roughness. This kind of geometric adjacency can enhance the 

local perception of the network. 

 

As part and parcel of general semantic segmentation stage, point  

transformer layer is formed by two linear mappings and a self-

attention calculation. The linear mapping converts the input-

output dimension, and the self-attention estimates the internal 

relationship among the input points. The self-attention 

calculation of each point ix  is expressed by 

 

( ) ( )( )( ) ( )
( )j

q v

x X i

i k i j jy x x pos osx p   


= − + + e     (2) 

 

where iy  is the output feature vector, ( )jx X i  is the 

neighborhood of the point ix , which is obtained by the KNN 

algorithm.   is the softmax activation function, and   is the 

attention mapping function, which is implemented by a 

multilayer perceptron (MLP), i.e. 2 linear layers and a ReLU 

(Glorot et al., 2011) activation function. k , 
q  and v  are all 

linear mappings for adapting to different feature dimensions, 

and e  denotes an elementwise multiplication. pos  is the 

positional coding, which is a linear mapping from the relative 

coordinate of the points: 

 

( )p i jcopos r cor= −                             (3) 

 

where icor  and 
jcor  are respectively the 3D coordinates of 

point i  and point j , 
p  is a MLP. 

 

The U-Net-like architecture (Ronneberger et al., 2015) is 

applied to connect point tranformer layers (Figure 2), which 
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Figure 1. Structure of the proposed approach. 
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consists of 4 encoder layers and 4 decoder layers. Transition 

down is implemented by the farthest point sampling and KNNs 

searching. Transition up is realized by trilinear interpolation. 

For the semantic segmentation task, a MLP maps the point 

feature to the label space ky  at the last layer. All the learnable 

parameters of the network could be updated by optimizing the 

cross-entropy loss function. 

 

 
Figure 2. The network architecture of the general semantic 

segmentation block. 

 

2.2 Refined Semantic Segmentation 

In the stage of refined semantic segmentation, the training 

process and the inference process are separated. During 

training, automated label generation in the form of 3D BBox is 

essential to unify object detection models into the framework of 

semantic segmentation. Firstly, fine-grained rare classes are 

selected individually to avoid confusion with general classes. 

Then, considering their discrete distribution, density-based 

spatial clustering of applications with noise (DBSCAN) method 

(Ester et al., 1996) is utilized to divided the point cloud of rare 

classes into separate reliable clusters. Afterwards, the vertices of 

each cluster corresponding to the convex hull are calculated and 

adjusted to the vertices of 3D BBox. After the automated 

process above, the generated BBox labels of rare classes and the 

original point cloud can be fed into the object detection block. 

 

Thanks to its satisfactory detection precision in large-scale 

complex scenes, PointRCNN is chosen as the detection block. 

The main components of the network are 3D proposal 

generation and 3D BBox refinement. 3D proposal generation 

performs the rough segmentation of foreground points, based on 

which 3D BBox proposals are constructed. PointNet++ with 

multi-scale grouping is utilized as the backbone network to 

learn discriminative point-wise features of the raw point clouds. 

In order alleviate the class imbalance problem between 

foreground points and background points, the focal loss (Lin et 

al., 2017) is chosen to update the network as follows: 

 

( )( ) 1 log( )t t ttFL p p p


= − −                     (4) 

 

where 
tp  is the estimated probability for the class with ture 

label (foreground point), ( )1t tp


 −  is a self-adaptive 

modulating factor that not only balances the importance of 

positive/negative examples, but also differentiate between 

easy/hard examples. 
t  controls the rate of change of the 

weighting factor ( )1 tp


− ,   denotes focusing parameter that 

smoothly adjusts the rate at which simple examples are down-

weighted. 

 

In the stage of 3D BBox refinement, when the 3D intersection 

over union (IoU) between a ground-truth BBox and a BBox 

proposal is greater than 0.6, the point-wise features and 

associated features for each positive 3D proposal are fed to 

PointNet++ for refining the 3D Bbox locations as well as the 

foreground object confidence. All the learnable parameters 

could be updated by optimizing the following loss function: 

 

1
( , ) 

1
         ( , )

pos
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i

pos pos
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
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
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
                   (5) 

 

where   is the set of 3D proposals and 
pos  stores the positive 

proposals. iprop  is the estimated confidence of the thi  

proposal and ilabel  represents the corresponding label, 

pos

iprop  and pos

ilabel  denotes the thi  positive 3D proposal and 

its BBox ground truth. The loss function clsL  can supervise the 

prediction confidence of foreground objects and 
regL  is utilized 

to refine the BBox locations, which are the cross-entropy loss 

and the bin-based regression loss (Shi et al., 2019), respectively.  

 

Finally, the 3D BBoxes of rare fine-grained objects are 

predicted in the inference stage and these high precision 

BBoxes are utilized as constraints for rare class segmentation.  

 

3. EXPERIMENTS 

3.1 Data Description 

The experiments are based on the public H3D dataset (Kölle et 

al., 2021). The dataset was collected by a Riegl VUX-1LR 

Scanner and two oblique-looking Sony Alpha 6000 cameras 

 

 

Split 

H3D Classes [%] 

Low Veg. I. Surf Vehicle U. Furn. Roof Facade Shrub Tree Soil V. Surf Chimney 

Train 35.96 17.53 0.43 1.95 10.56 2.02 1.81 13.60 14.45 1.64 0.04 

Validation 25.85 22.21 1.27 3.15 21.10 3.82 2.36 15.34 4.10 0.70 0.11 

Table 1. Comparison of class occurrences in H3D dataset. 
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integrated on a RIEGL UAV platform. The mean point density 

is 800 points/m² enriched by RGB colors and the ground 

sampling distance (GSD) of images is 2-3 cm. In addition, the 

points have been manually labelled with the following 11 

classes: Low vegetation, Impervious surface, Vehicle, Urban 

furniture, Roof, Facade, Shrub, Tree, Soil/Gravel, Vertical 

surface, Chimney. However, this fine-grained class catalog 

leads to data imbalance.  

 

Detailed statistics of class occurrences in H3D dataset is shown 

in Table 1, the most underrepresented classes are Vehicle and 

Chimney, which only occupy 0.43% and 0.04% in the training 

set, respectively. The significant data imbalance makes the 

semantic segmentation of rare classes a challenging task.  

 

3.2 Implementation Details 

Our implementation of the two-stage segmentation approach is 

realized on a NVIDIA RTX2080Ti GPU with the framework of 

Pytorch 1.0. According to the analysis in section 3.1, In order to 

reduce the computational burden, the training data and the test 

data are cropped into 49 splits and 22 splits, respectively. 

 

In the stage of general semantic segmentation, the configuration 

of the feature encoder is (32, 2048) (64, 1024) (128, 512) (256, 

256), where (32, 64, 128, 256) represents the feature dimension 

in the corresponding layer, and the output point number is 

(2048, 1024, 512, 256). In the point transformer block, the 

decoder has a symmetrical configuration with the encoder. The 

Adam optimizer is employed in the network. We train the 

network for 20 epochs with batch size 4 and an initial learning 

rate of 0.0005. 

 

In the stage of refined semantic segmentation, Vehicle and 

Chimney are treated as imbalanced rare classes for refined 

semantic segmentation according to the section 3.1. For the 

backbone network PointNet++ in the process of 3D proposal 

generation, we subsample 65536 points from each split as the 

inputs of the training. Then 4 set-abstraction layers with multi-

scale grouping are used to subsample points into groups with 

sizes 4096, 1024, 256, 64. For the 3D BBox refinement 

network, 512 points are randomly selected from each 3D 

proposal as the input and 3 set abstraction layers with group 

sizes 128, 32, 1 are used to generate a single feature vector for 

the BBox refinement. The proposal generation network is 

trained for 300 epochs with batch size 8 and learning rate 0.002, 

while the BBox refinement network is trained for 200 epochs 

with batch size 4 and learning rate 0.002. 

 

3.3 Segmentation Results 

Our proposed approach is evaluated on the H3D Benchmark 

dataset. The segmentation results are evaluated by overall 

accuracy (OA) and F1-score. 

 

The semantic segmentation results and confusion matrix are 

shown in Figure 3(b), where the overall accuracy achieves state-

of-the-art 89.35% and the mean F1-score achieves outstanding 

75.70%. The visualization of the corresponding result on test 

set is shown in Figure 4(c), where the point cloud with RGB is 

shown in Figure 4(a). The confusion mainly exists between 

Vehicle and Urban furniture, and Soil/gravel are often inferred 

as Low vegetation. These ambiguities are caused by their 

limited inter-class distances and scarce appearances. 

 
 

Models 

 

OA 

 

Mean F1-score 

F1-score 

Vehicle Chimney 

Single-stage 89.19% 65.36% 0 0 

Two-stage 89.35% 75.70% 63.63% 52.00% 

Table 2. Performance comparison between the proposed two-

stage approach and the single-stage segmentation. 

 

In order to verify the effectiveness of the proposed 

segmentation approach for imbalanced fine-grained objects, we 

also compare it with the single-stage segmentation (without 

refined semantic segmentation). Figure 3(a) shows the detailed 

confusion matrix and Figure 4(b) displays the visualization 

result. The performance comparison is shown in Table 2. 

  
              (a)                      (b)  

Figure 3. Confusion matrices on (a) the single-stage segmentation (b) our proposed two-stage approach. 
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Benefited from the specialized segmentation for imbalanced 

rare classes, the two-stage approach performs better than the 

single-stage method in all evaluation metrics. Due to the low 

percentage of the fine-grained rare classes, there is only a 

limited improvement (0.16%) in overall accuracy. However, 

Vehicle and Chimney have achieved breakthroughs from zero to 

63.63% and 52.00% in F1-score respectively, which has also 

promoted our two-stage approach outperforms the single-stage 

segmentation by a large margin of 10.34 percentage points in 

the mean F1-score. 

 

4.  CONCLUSION AND OUTLOOK 

In this work we have presented a two-stage segmentation 

approach for imbalanced rare classes, which has unified object 

detection models into the semantic segmentation framework. 

Comprehensive experiments on large-scale urban data 

demonstrated that the proposed approach have obtained the 

state-of-the-art overall accuracy and the satisfactory mean F1-

score, and have achieved the outstanding F1-scores for 

imbalanced rare classes. However, the proposed solution also 

has limitations. The proposed method is only suitable for fine-

grained objects with strong discrete distributions, and it requires 

a considerable amount of computational resources due to the 

additional training for the refinement network. In future work, 

we will focus on the feature-level unification of detection 

networks into segmentation framework, and construct an end-

to-end lightweight segmentation network for imbalanced rare 

classes. 
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